Projectivity and unification in the varieties of locally finite monadic MV-algebras

Antonio Di Nola¹, Revaz Grigolia², and Giacomo Lenzi³

 ¹ University of Salerno, Salerno, Italy adinola@unisa.it
² Tbilisi State University, Tbilisi, Georgia revaz.grigolia359@gmail.com
³ University of Salerno, Salerno, Italy gilenzi@unisa.it

Abstract

A description of finitely generated free monadic MV-algebras and a characterization of projective monadic MV-algebras in locally finite varieties is given. It is shown that unification type of locally finite varieties is unitary.

1 Introduction

Monadic MV-algebras (monadic Chang algebras by Rutledge's terminology) were introduced and studied by Rutledge in [5] as an algebraic model for the predicate calculus qL of Lukasiewicz infinite-valued logic, in which only a single individual variable occurs. Rutledge followed P.R. Halmos' study of monadic Boolean algebras. In view of the incompleteness of the predicate calculus the result of Rutledge in [5], showing the completeness of the monadic predicate calculus, has been a great interest. Adapting for the propositional case the axiomatization of monadic MV-algebras given by Rutledge in [5], we can define modal Lukasiewicz propositional calculus MLPC as a logic which contains Lukasiewicz propositional calculus Luk, the formulas as the axioms schemes: $\alpha \to \exists \alpha, \exists (\alpha \lor \beta) \equiv \exists \alpha \lor \exists \beta), \exists (\neg \exists \alpha) \equiv \neg \exists \alpha, \exists (\exists \alpha + \exists \beta) \equiv \exists \alpha + \exists \beta, \exists (\alpha + \alpha) = \exists \alpha + \exists \alpha, \exists (\alpha \cdot \alpha) = \exists \alpha \cdot \exists \alpha$ and closed under modus ponens and necessitation (if α , then $\forall \alpha$, where $\forall \alpha = \neg \exists \neg \alpha$).

Let *L* denote a first-order language based on $\cdot, +, \rightarrow, \neg, \exists$ and L_m denotes monadic propositional language based on $\cdot, +, \rightarrow, \neg, \exists$ and Form(L) and $Form(L_m)$ - the set of all formulas of *L* and L_m , respectively. We fix a variable *x* in *L*, associate with each propositional letter *p* in L_m a unique monadic predicate $p^*(x)$ in *L* and define by induction a translation Ψ : $Form(L_m) \rightarrow Form(L)$ by putting: $\Psi(p) = p^*(x)$ if *p* is propositional variable, $\Psi(\alpha \circ \beta) = \Psi(\alpha) \circ \Psi(\beta)$, where $\circ = \cdot, +, \rightarrow, \Psi(\exists \alpha) = \exists \Psi(\alpha)$.

Through this translation Ψ , we can identify the formulas of L_m with monadic formulas of L containing the variable x. Moreover, it is routine to check that $\Psi(MLPC) \subseteq QL$.

2 Monadic *MV*-algebras

The characterization of monadic MV-algebras as pair of MV-algebras, where one of them is a special kind of subalgebra, are given in [3, 2]. MV-algebras were introduced by Chang in [1] as an algebraic model for infinitely valued Lukasiewicz logic.

^{*}The author is supported by the grant CNRS-SNRSF N 09/09 and the grant SNRSF N 31/08.

Projectivity and unification in the varieties of locally finite monadic MV-algebras Di Nola, Grigolia, Lenzi

An *MV*-algebra is an algebra $A = (A, \oplus, \odot, ^*, 0, 1)$ where $(A, \oplus, 0)$ is an abelian monoid, and the following identities hold for all $x, y \in A$: $x \oplus 1 = 1, x^{**} = x, 0^* = 1, x \oplus x^* = 1, (x^* \oplus y)^* \oplus y = (x \oplus y^*) \oplus x, x \odot y = (x^* \oplus y^*)^*$.

An algebra $A = (A, \oplus, \odot, ^*, \exists, 0, 1)$ is said to be monadic MV-algebra (for short MMValgebra) if $A = (A, \oplus, \odot, ^*, 0, 1)$ is an MV-algebra and in addition \exists satisfies the following identities: $x \leq \exists x, \exists (x \lor y) = \exists x \lor \exists y, \exists (\exists x)^* = (\exists x)^*, \exists (\exists x \oplus \exists y) = \exists x \oplus \exists y, \exists (x \odot y) = \exists x \odot \exists y, \exists (x \oplus y) = \exists x \oplus \exists y.$

We shall denote a monadic MV-algebra $A = (A, \oplus, \odot, *, \exists, 0, 1)$ by (A, \exists) , for brevity. Let $\exists A = \{x \in A : x = \exists x\}.$

A subalgebra A_0 of an MV-algebra A is said to be relatively complete if for every $a \in A$ the set $\{b \in A_0 : a \leq b\}$ has the least element.

A subalgebra A_0 of an MV-algebra A is said to be *m*-relatively complete, if A_0 is relatively complete and two additional conditions hold:

 $(\#) \ (\forall a \in A)(\forall x \in A_0)(\exists v \in A_0)(x \ge a \odot a \Rightarrow v \ge a \& v \odot v \le x),$

 $(\#\#) \ (\forall a \in A) (\forall x \in A_0) (\exists v \in A_0) (x \ge a \oplus a \Rightarrow v \ge a \& v \oplus v \le x).$

Proposition 1. [3]. Let $(A, \oplus, \odot, *, \exists, 0, 1)$ be a monadic MV-algebra. Then the MV-subalgebra $\exists A$ of MV-algebra $(A, \oplus, \odot, *, 0, 1)$ is m-relatively complete.

Proposition 2. [3]. There exists a one-to-one correspondence between.

- (1) monadic MV-algebras (A, \exists) ;
- (2) the pairs (A, A_0) , where A_0 is *m*-relatively complete subalgebra of A.

3 Projective monadic *MV*-algebras

From the variety of monadic *MV*-algebras **MMV** select the subvariety $\mathbf{K_n}$ for $1 \le n \ne \omega$, which is defined by the following equation [3]: $(K_n) \ x^n = x^{n+1}$, that is $\mathbf{K_n} = \mathbf{MMV} + (K_n)$.

Proposition 3.[3] If (A, \exists) is a totally ordered monadic MV-algebra, then $A = \exists A$.

Proposition 4.[3] If (A, \exists) is a finite monadic MV-algebra with totally ordered $\exists A$, then MV-algebra A is isomorphic to a product of totally ordered MV-algebras A_i , $i \in I$, $A_i \cong \exists A$ and $\exists A$ is isomorphic to the diagonal subalgebra of the product.

It is defined a unique monadic operator \exists on S_n^k , where $S_n = (S_n; \oplus, \odot, *, 0, 1)$ and $S_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$, which corresponds to *m*-relatively complete linearly ordered *MV*-subalgebra, converting the algebra S_n^k into a simple monadic *MV*-algebra [3]. This subalgebra coincides with the greatest diagonal subalgebra, i.e. $d(S_n^k) = \{(x, \ldots, x) \in S_n^k : x \in S_n\}$. Denote this monadic *MV*-algebra by (S_n^k, \exists_d) . In this case the monadic operator \exists_d is defined as follows: $\exists_d(x_1, \ldots, x_k) = (x_j, \ldots, x_j)$, where $x_j = max(x_1, \ldots, x_k)$. The operator \forall_d is defined dually: $\forall_d(x_1, \ldots, x_k) = (x_i, \ldots, x_i)$, where $x_i = min(x_1, \ldots, x_k)$.

Notice that $\mathbf{K}_{\mathbf{n}}$ is generated by (S_p^k, \exists_d) , p = 1, ..., n and $k \in \omega$. Moreover, $\mathbf{K}_{\mathbf{n}}$ is locally finite and there exists maximal $k \in \omega$, depending on n, such that (S_n^k, \exists_d) is *m*-generated. The maximal k we denote by t(n). There exists also a positive number r(k, n) depending on k and n such that $(S_n^k, \exists_d)^{r(k,n)}$ is *m*-generated. So,

Theorem 5.

$$\prod_{p=1}^{n} \prod_{k=1}^{t(p)} (S_{p}^{k}, \exists_{d})^{t(k,p)}$$

is a free m-generated algebra $F_{\mathbf{K}_{\mathbf{n}}}(m)$ in the variety $\mathbf{K}_{\mathbf{n}}$.

Let us notice, that exact description of one-generated free MMV-algebra in the variety $\mathbf{K_n}$ is given in [3].

Theorem 6. The *m*-generated MMV-algebra A from $\mathbf{K_n}$ is projective iff A is isomorphic to $(S_1^1, \exists_d) \times A'$.

Theorem 7. Any subalgebra of the free m-generated algebra $F_{\mathbf{K}_{n}}(m)$ is projective.

Let $\mathbf{V_n}$ be the variety generated by $\{S_1, ..., S_n\}$. Let us observe that

$$\prod_{p=1}^{n} (S_p^1, \exists)^{t(1,p)}$$

is an algebra with trivial monadic operator \exists (i. e. $\exists x = x$) which is isomorphic as an MValgebra to the *m*-generated free MV-algebra $F_{\mathbf{V}_{\mathbf{n}}}(m)$. Denote this algebra as $(F_{\mathbf{V}_{\mathbf{n}}}(m), \exists)$. It holds

Theorem 8. The MMV-algebra $(F_{\mathbf{V}_{\mathbf{n}}}(m), \exists)$ is a retract of the algebra of the free *m*-generated algebra $F_{\mathbf{K}_{\mathbf{n}}}(m)$. So, $(F_{\mathbf{V}_{\mathbf{n}}}(m), \exists)$ is projective.

4 Monadic operators on finite *MV*-algebras

Suppose that A is a finite MV-algebra. Then $A \cong S_{n_1} \times S_{n_2} \times ...S_{n_k}$ where the $n_i \ge 1$. Let $\Pi = \{K_1, K_2, ..., K_m\}$ be a partition of $\{1, 2, ..., k\}$. We shall say that Π is homogeneous if $i, j \in K_l$ implies $S_{n_i} = S_{n_j}$. Given such a Π , each K_i has associated a unique S_{n_j} which we shall denote by A_i . We clearly have $A \cong A_1^{K_1} \times ... \times A_m^{K_m}$. Since each K_i is finite, there is a monadic operator \exists_i defined on $A_i^{K_i}$ such that $(A_i^{K_i}, \exists_i)$ is an MMV-algebra with $\exists_i(A_i^{K_i}) = A_i$. Setting $\exists = \exists_1 \times ... \times \exists_m$ and acting pointwise, we obtain a monadic operator \exists on A, that is, (A, \exists) is an MMV-algebra. If a $K_i \in \Pi$ has at least two members, then determined the monadic operator will not be trivial, that is will not be the identity operator.

Proposition 9.[2] Suppose that A is a finite MV-algebra, say $A = S_{n_1} \times S_{n_2} \times ... S_{n_k}$.

(i) For each homogeneous partition $\{K_1, K_2, ..., K_m\}$ of $\{1, 2, ..., k\}$, there is a monadic operator defined on A. Conversely, each monadic operator defined on A is determined by some homogeneous partition of $\{K_1, K_2, ..., K_m\}$.

(ii) If $A = S_n^k$, then any partition on $\{1, 2, ..., k\}$ determines a monadic operator on A and conversely, each monadic operator on A comes from some partition of $\{1, 2, ..., k\}$.

5 Unification problem

Let **V** be a variety of algebras and $F_{\mathbf{V}}(m)$ *m*-generated free algebra over the variety **V**. Recall that an algebra A of **V** is finitely presented if it is a quotient of the form $A = F_{\mathbf{V}}(m)/\theta$, with θ a finitely generated congruence. Following [4], by an algebraic unification problem we mean a finitely presented algebra A of **V**. An algebraic unifier for A is a homomorphism $u: A \to P$ with P a *m*-generated projective algebra in **V** and A is algebraically unifiable if such an algebraic unifier exists. Given another algebraic unifier $w: A \to Q$, we say that u is more general than w, written $w \leq u$, if there is a homomorphism $g: P \to Q$ such that w = gu. The algebraic unification type of an algebraically unifiable finitely presented algebra A in the variety **V** is Projectivity and unification in the varieties of locally finite monadic MV-algebras Di Nola, Grigolia, Lenzi

now defined exactly as in the symbolic case, using the partially order \leq induced by the quasiorder \leq . Let $U_{\mathbf{V}}(P)$ be the set of unifiers $\sigma : F_{\mathbf{V}}(m) \rightarrow F_{\mathbf{V}}(m)$ for the unification problem $P(x_1, ..., x_m)$; it is a quasi-ordered set. The problem $P(x_1, ..., x_m)$ is solvable iff $U_{\mathbf{V}}(P) \neq \emptyset$. Let (Σ, \leq) be a poset, where \leq is the ordering induced by the quasi-ordering identifying the equivalence classes with its elements. $Max\Sigma$ is said to be *basis* of unifiers for P.

We say that an equational theory E has:

- 1. Unification type 1 iff for every solvable unification problem P, $Card(Max\Sigma) = 1$.
- 2. Unification type ω iff for every solvable unification problem P, $Card(Max\Sigma) = n \neq 1$, $n \in \omega$.
- 3. Unification type ∞ iff for every solvable unification problem P, $Card(Max\Sigma)$ is infinite.
- 4. Unification type nullary, if none of the preceding cases applies.

We say that **V** has finitary unification type iff it has type 1 or ω .

Theorem 10. The unification type of the equational class K_n is 1, i. e. unitary.

References

- C. C. Chang, Algebraic Analysis of Many-Valued Logics, Trans. Amer. Math. Soc., 88(1958), 467-490.
- [2] L.P. Belluce, R. Grigolia and A. Lettieri, *Representations of monadic MV- algebras*, Studia Logica, vol. 81, Issue October 15th, 2005, pp. 125-144.
- [3] A. Di Nola, R. Grigolia, On Monadic MV-algebras, APAL, Vol. 128, Issues 1-3 (August 2004), pp. 125-139.
- [4] S. Ghilardi, Unification through projectivity, J. Logic Comput., 7(6),733-752, 1997.
- [5] J.D. Rutledge, A preliminary investigation of the infinitely many-valued predicate calculus, Ph.D. Thesis, Cornell University, 1959.