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Abstract

The paper looks at tooling aspects of transforming C# programs into symbolic trans-
ducers with branching rules (BSTs). The latter are used for describing list comprehensions
that incorporate loop-carried state. One concrete application is log analysis where input
streams of data are transformed into output streams of data via intermediate pipelines of
transducers. The paper presents algorithms for translating C# to BSTs, and for exposing
control state in BSTs.

1 Introduction

This paper discusses some of the algorithmic support underlying the tool introduced in [14]
that implements effectful comprehensions and introduces the notion of symbolic transducers
with branching rules (BSTs). Effectful comprehensions provide an elegant way to describe list
comprehensions that incorporate loop-carried state. As a motivation, consider the problem of
analyzing logs. The log on the disk is compressed, and thus the user has to first decompress
the input stream of bits into bytes. Then the bytes are decoded into characters, and finally
sequences of characters are deserialized or parsed into objects in a higher-level language such
as C#. Such processing from input stream of bits to output stream of bits with intermediate
layers of objects is not uncommon today [8, 1, 19, 5], and applying fusion to such pipelines can
be beneficial [13, 18]. In order for such fusion techniques to be widely applicable to real world
programs there must be an accessible way to specify effectful comprehensions.

While efficient fusion of transducers is important and improves efficiency akin to filter
fusion [13] and deforestation [18], so is the aspect of transforming C# programs (that are used
in the frontend) into transducers (that are used in the backend). This latter aspect and the
underlying tool support and algorithms used for that is the primary focus of this paper. We
present a C# interface for specifying effectful comprehensions that encapsulates state usage.
The interface is similar to ones found in existing streaming libraries. We describe the algorithms
that are used to translate programs that implement this interface into symbolic transducers.
There are two levels of transformations. First we show how we translate C# programs into BSTs
and then how we further transform the generated BSTs to expose control states, by eliminating
register dependencies, where we study partial and full register exploration algorithms for BSTs.

T.Eiter, D.Sands, G.Sutcliffe and A.Voronkov (eds.), LPAR-21S (Kalpa Publications in Computing, vol. 1),
pp. 86–99
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2 Branching Symbolic Transducers

We here formally define branching symbolic transducers or BST s and give examples of how
BST s capture behavior of programs. For the background logic of BST s we assume a background
structure that has an effectively enumerable background universe U, and is equipped with a
language of function and relation symbols with fixed interpretations.

We use τ , ι and o to denote types, and we write Uτ for the corresponding sub-universe of
elements of type τ . The Boolean type is bool, with Ubool = {true, false}, the integer type is
int, and the type of k-bit bit-vectors is bvk. The Cartesian product type of types ι and o is
ι× o. We use 〈·, . . . , ·〉 : τ1 → · · · → τn → τ1 × · · · × τn as constructors for Cartesian product
(i.e. tuple) types. For projecting the nth element of a Cartesian product term x we use πn(x).
The type ι∗ is the type for finite sequences of elements of type ι. The universe U(ι∗) is the

Kleene closure (Uι)∗ of the universe Uι. We also write type ι≤k as a semantic subtype of ι∗ of
sequences of elements of length at most k ≥ 0.

Terms and formulas are defined by induction over the background language and are assumed
to be well-typed. The type τ of a term t is indicated by t : τ . Terms of type bool, or Boolean
terms, are treated as formulas, i.e., no distinction is made between formulas and Boolean terms.
All elements in U are also assumed to have corresponding constants in the background language
and we use elements in U also as constants. The set of free variables in a term t is denoted
by FV(t), t is closed when FV(t) = ∅, and closed terms t have Tarski semantics [[t]] over the
background structure. Substitution of a variable x : τ in t by a term u : τ is denoted by t[u/x].

A λ-term f is an expression of the form λx.t, where x : ι is a variable, and t : o is a term
such that FV(t) ⊆ {x}; the type of f is ι → o; [[f ]] denotes the function that maps a ∈ Σ to
[[t[a/x]] ∈ Γ. As a convention, f and g stand for λ-terms. A λ-term of type ι→ bool is called a
ι-predicate. We write ϕ and ψ for ι-predicates and, for a ∈ Σ, we write a ∈ [[ϕ]] for [[ϕ]](a) = true.
We often treat [[ϕ]] as a subset of Σ. Given a λ-term f = (λx.t) : ι → o and a term u : ι, f(u)
stands for t[u/x]. A predicate ϕ is unsatisfiable when [[ϕ]] = ∅; satisfiable, otherwise.

The main building block of an BST is a rule. A rule is an expression that denotes a partial
function corresponding to a straight-line conditional statement of a program that may yield
outputs, produce updates and raise exceptions. We first provide an inductive definition of
rules that omits type annotations. We then define additional well-formedness criteria and the
semantics for rules.

• Undef is the exception rule.

• If f is a λ-term then Base(f) is a basic rule.

• If ϕ is a predicate and r1, r2 are rules then Ite(ϕ, r1, r2) is an if-then-else (ite) rule.

We say that a rule r is well-formed with respect to the type ι→ o, denoted r : ι→ o, when one
of the following conditions holds:

• r is the rule Undef.

• r is a rule Base(f : ι→ o).

• r is a rule Ite(ϕ : ι→ bool, r1 : ι→ o, r2 : ι→ o).

A rule r : ι→ o represents a function [[r]] from Uι to Uo ∪ {⊥} For all a ∈ Uι:

[[Undef]](a)
def
= ⊥

[[Base(f)]](a)
def
= [[f ]](a)

[[Ite(ϕ, r1, r2)]](a)
def
=

{
[[r1]](a), if a ∈ [[ϕ]];
[[r2]](a), otherwise.
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We now introduce the central definition of a symbolic branching transducer that uses the
definition of rules.

Definition 1. A Symbolic Branching Transducer or BST A with input type ι, output type o
and state type τ is a tuple (q0, R, F ), where

• q0 ∈ Uτ is the initial state;

• R is an input rule of type (ι× τ)→ (o≤k × τ), for some k ≥ 0;

• F is a final rule of type τ → o≤k, for some k ≥ 0.

For a basic subrule r = Base(λ(x, y).〈f(x, y), g(x, y)〉) of the input rule, f is called the yield
and g the update of r. A basic subrule of the final rule is called a final yield. �

We write p
a/b−−→A q for a concrete transition of A such that [[RA]](a, p) = (b, q). Similarly,

we write q
/b−→A for a final output of A such that [[FA]](q) = b. Intuitively, a final output is a

special case of an input-epsilon move of a classical finite state transducer into a final state, but
it is algorithmically useful to keep final rules separate from general input-epsilon moves. Unlike
input-epsilon moves in general, final rules do not affect the core algorithms, while providing a
very convenient mechanism to yield additional outputs upon reaching the end of the input tape.

We write Aσ/γ;τ to indicate the input/output types σ/γ and the state type τ of a BST A.
In the following we use the abbreviations Σ = Uι, Γ = Uo and Q = Uτ .

The reachability relation p
a/b−−→→A q for a ∈ Σ∗, b ∈ Γ∗, and p, q ∈ Q is defined through the

closure under the following conditions, where ‘·’ is concatenation of sequences:

• For all q ∈ Q, q
ε/ε−−→→A q.

• If p
a/b−−→→A p

′ a/c−−→A q then p
a·a/b·c−−−−−→→A q.

Definition 2. The transduction of a BST A, TA, is a function from Σ∗ to Γ∗ ∪ {⊥}:

TA(a)
def
=

{
b · c if ∃ q ∈ Q, b, c ∈ Γ∗ such that (q0A

a/b−−→→A q
/c−→A)

⊥ otherwise

�

BST s are inherently deterministic and single-valued as rules are functions and according to
Definition 2 all of the input is consumed before the final rule is applied.

The following example illustrates the use of BST s on a typical string transformation scenario
and illustrates the fragment of C# that we use for defining BST s in this paper.

Example 2.1. The C# program in Figure 1 corresponds to a BST that decodes certain
occurrences of pairs of digits between 5 and 9 by their corresponding ASCII letters. For example
DecodeDigitPairs("a77") is "aM".

Let f be the λ-term λ(x, y).((10∗(y−48))+(x−48)) and let ϕ be the predicate λ(x, y).(‘5’ ≤
x ≤ ‘9’). The tree of if else statements in the Update method maps directly to the following
input rule where we lift the λ-prefix to be in the front:

λ(x, y).Ite(y = 0, Ite(ϕ(x, y),Base([], x),Base([x], y)),
Ite(ϕ(x, y),Base([f(x, y)], 0),Base([x], y)))
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partial class DecodeDigitPairs : Transducer<char,char> {

char prev = 0;

public override IEnumerable<char> Update(char x) {

if (prev == 0) { // no previous digit was recorded

if (’5’ <= x && x <= ’9’) {

prev = x; // store the digit

} else {

yield return x; // output directly

}

} else { // prev != 0 so prev is the previous digit

if (’5’ <= x && x <= ’9’) {

yield return (char)((10*(prev-48))+(x-48));

prev = 0;

} else {

yield return x; // output directly

}

}

}

public override IEnumerable<char> Finish() {

if (prev != 0) yield return prev;

}

}

Figure 1: Sample C# transducer.
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Figure 2: Depiction of the BST in Figure 1. Dashed arrows correspond to final rules. Oval
nodes correspond to branch conditions and rectangular nodes correspond to basic rules.

Similarly, the final rule corresponds to the Finish method:

λy.Ite(y 6= 0, [y], [])
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abstract class Transducer<I,O> {

abstract IEnumerable<O> Update(I datum);

virtual IEnumerable<O> Finish() { yield break; }

}

Figure 3: The abstract class for transducers that DecodeDigitPairs Figure 1 extends.

The graphical illustration of the BST for DecodeDigitPairs is shown in Figure 2. All graphs
in the paper are produced automatically from our analysis framework. �

3 C# to BSTs

In this section we present a procedure for translating a transducer specified in C# (see Figure 1),
into an equivalent BST (see Figure 2). The C# code is in the form of a class implementing the
Transducer <I,O> interface in Figure 3. The code must:

• produce output via yield return statement,

• not reference variables apart from its parameters, local variables and non-static fields,

• not call functions outside the class or any non-pure functions (purity is checked).

To translate C# into BSTs the procedure has to be able to lift types and operations on them in
C# into those in a background logic for a BST. If the background logic is defined by what is
supported in Z3 the lifting could for example lift:

• int into 32-bit bitvectors,

• bool into the Boolean type,

• struct into tuples (or algebraic datatypes) of the component types,

The following explanation assumes that an appropriate lifting is available, but does not go into
details.

We write a function that maps a1, . . . , an to b1, . . . , bn as {a1 7→ b1, . . . , an 7→ bn}. Given a
function f we write the modified function that maps a to b as f{a 7→ b}.

The entry point to the procedure is ToBST in Figure 4. Given a program P it constructs
control flow graphs (CFGs) [6] for the Update and Finish methods (using GetCFG) and calls
ToRuleR (or ToRuleF ) to translate the C# code into rules for a BST. The state type τ for
the final BST is a Cartesian product type of the lifted field types. ToBST also maps (see
line 4) the fields of P into an initial variable mapping, where each field is mapped to a term
that projects the appropriate value out of the state. This initial mapping represents an identity
transformation on the state. To construct the initial state q0, ToBST lifts the initial values of
the fields of P into the background logic and constructs the appropriate product from them.
Finally, ToBST returns a BST with q0, where the input and final rules implement the Update

and Finish methods respectively.
The main procedure for translating C# into input rules is ToRuleR in Figure 5. In addition

to a basic block B from a CFG and the current variable assignment vars , each call to ToRuleR
is passed a path constraint ϕpath . As ToRuleR recursively calls itself to explore further basic
blocks, the recursion structure will correspond to the tree of possible executions of the current
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ToBST(P )

1 (in, out) := (I,O) as defined by P ’s base class Transducer <I,O>

2 Bupdate := GetCFG(method IEnumerable <out> Update(in input) from P )
3 Bfinish := GetCFG(method IEnumerable <out> Finish() from P )
4 vars := {ith field of P 7→ λ(x, y).πi(y) | i = 1 . . .m, where m is the number of fields in P}
5 R := ToRuleR(P,Bupdate , vars{input 7→ λ(x, y).x}, [], true)
6 F := ToRuleF (P,Bfinish , vars, [], true)
7 q0 := 〈z lifted into the background logic | z ∈ the fields of P 〉
8 return (q0, R, F )

Figure 4: Translation of C# into a BST

ToRuleR(P,B, vars, ū, ϕpath)

1 if ¬IsSat(ϕpath)
2 return ⊥
3 for each stmt in the statements of B
4 (vars, w̄) := EvalStmt(stmt , vars)
5 ū := ū ++ w̄
6 match the terminator of B
7 case if (cond) Btrue else Bfalse :
8 (vars, ū, ϕcond) := Eval(cond , vars)
9 Rtrue := ToRuleR(P,Btrue , vars, ū, ϕpath ∧ ϕcond)

10 Rfalse := ToRuleR(P,Bfalse , vars, ū, ϕpath ∧ ¬ϕcond)
11 if Rtrue = ⊥ return Rfalse

12 elseif Rfalse = ⊥ return Rtrue

13 else return Ite(ϕcond , Rtrue , Rfalse)
14 case goto Btarget :
15 return ToRuleR(P,Btarget , vars, ū, ϕpath)
16 case yield break :
17 return Base(λ(x, y).〈ū, 〈vars(f) | field ∈ f of P 〉〉)
18 case throw :
19 return Undef

Figure 5: Translation of a CFG into a rule

CFG. In each recursive call ϕpath is the conjunction of branch constraints for the corresponding
execution path. On line 1 satisfiability of ϕpath is checked using an SMT solver to prune paths
from the rule being constructed.

For obtaining final rules ToRuleF , which is not shown, is used. The only difference to
ToRuleR is that on line 17 the returned base rule does not specify a state update.

The basic block B consists of a list of non-branching statements followed by a terminator.
ToRuleR executes the statements in the basic block by calling EvalStmt, which returns an
updated variable assignment and a list of yields. The code on lines 6–19 that pattern matches
on the terminator of B handles the different types of control flow:
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if else causes the exploration to branch into two recursive ToRuleR calls. The path constraint
of the recursive calls to ToRuleR may end up being unsatisfiable, in which case the rule
simplifies to the one from the other branch instead of an Ite-rule.

goto has one target and as such the recursive call is a tail call, i.e., for efficiency this call could
just set the parameters in the current call and jump to the beginning of the procedure.

yield break terminates the current execution path. A Base-rule is constructed from the list of
yields along the path and the state update as defined by the values in vars for the fields
of P .

throw results in an Undef-rule, indicating that the input was rejected.

This process of exploring an execution tree of the CFG while pruning unsatisfiable branches
also supports looping constructs in C#, since these translate to a CFG with if else and goto

terminators. As long as the loops terminate for all inputs and states (also unreachable ones),
ToRuleR will also terminate. However, it is easy to use loops to specify very large rules, in
which case ToRuleR may run out of memory or appear to hang.

Example 3.1. The following transducer formats unsigned 32-bit integers in decimal notation.

partial class FormatInt : Transducer<uint,char> {

public override IEnumerable<char> Update(uint x) {

int digits = 10;

int divisor = 1000000000;

while (divisor > 1 && divisor > x) {

divisor /= 10;

--digits;

}

for (int i = 0; i < digits; ++i) {

yield return (char)((x / divisor) % 10 + ’0’);

divisor /= 10;

}

yield return ’\n’;

}

}

The input rule for this transducer has ten different Base-rules (one for each number of digits).
A transducer written in C# without loops would be larger and the code would have more
repetition. �

The procedure for translating C# statements is EvalStmt in Figure 6, which directly handles:

• yield return statements by returning the expression evaluated with Eval in the list of
yields, and

• local variable definitions by returning an updated vars.

For statements which consist of just a C# expressions it calls Eval, which interprets the
expression in the context of the current vars and returns an equivalent expression in the
background logic. Since expressions may have side effects, Eval also returns an updated version
of vars.

The handling of function calls on lines 6–13 of Figure 6 calls for further explanation. To
evaluate the function f its CFG is created and interpreted by a call to the procedure ToExpr

92



Translating C# to Branching Symbolic Transducers Saarikivi and Veanes

EvalStmt(stmt , vars)

1 match stmt
2 case yield return a:
3 (vars, , va) := Eval(a, vars)
4 return (vars, [va])
5 case var a = b:
6 (vars, result) := Eval(b, vars)
7 return (vars{a 7→ result}, ū)
8 default:

// The statement is an expression
9 (vars, ) := Eval(stmt , vars)

10 return (vars, [])

Eval(expr , vars)

1 result = ⊥
2 match expr
3 case a = b:
4 (vars, result) := Eval(b, vars)
5 vars := vars{a 7→ result}
6 case f(a1,...,an):
7 Bf := GetCFG(f)
8 varsf := {}
9 for i = 1 . . . n

10 (vars, v) := Eval(ai, vars)
11 varsf := varsf{ith parameter of f 7→ v}
12 result := ToExpr(Bf , varsf , true)
13 vars := varsn
14 case var if var is a variable:
15 result := vars(var)
16 case l if l is a literal:
17 result := l lifted into the background logic
18 case a + b:
19 plus := + lifted into the background logic
20 (vars, va) := Eval(a, vars)
21 (vars, vb) := Eval(b, vars)
22 result := plus(va, vb)

// Cases for other binary and unary operations omitted
23 return (vars, result)

Figure 6: Translation of C# expressions into a background logic

in Figure 7. The arguments are interpreted left-to-right (applying any side effects in vars) and
an initial variable assignment varsf mapping the parameters of f to the arguments is created.

ToExpr is largely similar to ToRuleR in Figure 5, except that it constructs a formula in
the background logic instead of rules. The main differences are in the terminators supported,
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ToExpr(B, vars, ϕpath)

1 if ¬IsSat(ϕpath)
2 return ⊥
3 for each stmt in the statements of B
4 (vars, ) := Eval(stmt , vars)
5 match the terminator of B
6 case if (cond) Btrue else Bfalse :
7 (vars, , ϕcond) := Eval(cond , vars)
8 etrue := ToExpr(B, true,vars, ϕpath ∧ ϕcond)
9 efalse := ToExpr(B, false,vars, ϕpath ∧ ¬ϕcond)

10 if etrue = ⊥ return efalse

11 elseif efalse = ⊥ return etrue

12 else return ite(ϕcond , etrue , efalse)
13 case goto Btarget :
14 return ToExpr(Btarget , vars, ϕpath)
15 case return a:
16 ( , result) := Eval(a, vars)
17 return result

Figure 7: Translation of a CFG for a pure function into an expression in a background logic

with functions passed to ToExpr having to end in a return statement and yield statements
not being supported. Also note that on line 12 the ite being returned is a term in the
background logic instead of an Ite-rule. As the initial varsf constructed by Eval includes only
the parameters of f , only pure functions are supported by ToExpr.

While the Eval presented here uses ToExpr to inline function calls, ToExpr can also be
used to provide background definitions for functions. This would result in more compact terms
being created, but would prevent functions from being simplified to the context they are called
from.

4 Register to Control State Exploration

In this section we develop an algorithm that allows us to eliminate either all or some of the
state registers used in a deterministic BST A. In particular, we focus on two, most prominent
cases:

• full exploration, and

• Boolean exploration.

For the purpose of explaining the exploration algorithm, we extend A = (q0, R, F ) with a
component P that is a finite set of control states and an initial control state p0 ∈ P . The rules
R and F are extended to be maps from P to rules, and each basic subrule of the input rule
R has an additional control state component p ∈ P . With this extension in mind, we write a
basic rule as Base(yield , update, p). We say that A is stateless when the register type τ is the
unit type T0 (UT0 = {〈〉}), i.e., registers are not used in a stateless BST , and thus R has the
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Explore(Aι/o;τ1×τ2)

1 p0 := π1(q0A)
2 q0 := π2(q0A)
3 S := stack(q0)
4 P := {p0}
5 Add

def
= λ p. if p /∈ P then P := P ∪ {p}; Push(S, p)

6 R := {7→}
7 F := {7→}
8 while S 6= ∅
9 p := Pop(S)

10 R(p) := Expl(λy : τ2.true, Inst(λy : τ2.true, RA, p),Add)
11 F (p) := Expl(λy : τ2.true, Inst(λy : τ2.true, FA, p),Add)
12 return (P, p0, q0, R, F )

Inst(ϕ,R, p)

1 match R
2 case Undef: return Undef
3 case Base(f, g): return Base(λy.f(p, y), λy.g(p, y))
4 case Ite(ψ, t, f):
5 ϕt := λy.ϕ(y) ∧ ψ(p, y)
6 ϕf := λy.ϕ(y) ∧ ¬ψ(p, y)
7 if IsSat(ϕt) return Inst(ϕf , f, p)
8 elseif IsSat(ϕf ) return Inst(ϕt, t, p)
9 else return Ite(λy.ψ(p, y), Inst(ϕt, t, p), Inst(ϕf , f, p))

Expl(ϕ,R,Add)

1 match R
2 case Undef: return Undef
3 case Ite(ψ, t, f): return Ite(ϕ,Expl(ϕ ∧ ψ, t,Add),Expl(ϕ ∧ ¬ψ, f,Add)
4 case Base(f, g):
5 ψ := λy z .ϕ(y) ∧ (z = π1(g(y)))
6 r := Undef
7 while ∃M |= ψ
8 r := Ite(λy.p = π1(g(y)),Base(f, λy.π2(g(y)), p), r)
9 ψ := λy z .ψ(y, z) ∧ z 6= zM

10 Add(zM )
11 return r

Figure 8: Exploration algorithm of BST s.

equivalent form
{p1 7→ r1, p2 7→ r2, . . . , p|R| 7→ r|R|}

where each rule ri corresponds to a conditional statement that may yield outputs and transition
to new control states but does not make use of registers by storing intermediate results in
registers. This extension is useful for separation of concerns, it helps to keep the control state
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Figure 9: BST after full exploration of DecodeDigitPairs in Figure 1.

separate from the data state. For example, the BST is Example 2.1 is not stateless because the
rules depend on the register y.

By full exploration of A, we mean a construction of a stateless BST Af such that TA = TAf ,
i.e., A and Af are equivalent. Full exploration is not always possible, because equivalence of
stateless BST s reduces to equivalence of symbolic finite transducers (SFTs), and equivalence of
SFTs is decidable [16] modulo a decidable label theory, while equivalence of BST s is undecidable
already for very restricted decidable label theories. Even when full exploration is possible, Af

may still be exponentially larger than A.
By Boolean exploration of A, we mean a construction of an BST Ab such that TA = TAb

where all Boolean registers of A have been eliminated. For example, if the state type of A is
(bool× bool)× int then the the state type of Ab is int, i.e., the two Boolean registers have
been eliminated by adding new control states.

Note that, in order to completely eliminate the symbolic update of a rule Base([], λ(x, y).ϕ(x)),
where ϕ is a ι-predicate, i.e., to replace ϕ by λx.true (resp. λx.false) we would need to decide
if ∀xϕ(x) holds, i.e., ¬ϕ is unsatisfiable, (resp. if ∀x¬ϕ(x) holds, i.e., ϕ is unsatisfiable).

Algorithm. The generic exploration algorithm of BST s is described in figure 8. The
algorithm takes as its input a BST A, and assumes a projection of the state type τ of A into
two parts τ1 and τ2. We assume, without loss of generality, that τ = τ1 × τ2. The algorithm
uses an SMT solver to solve satisfiability and to generate models for formulas.

The algorithm generates a new BST by exploring the rules with respect to τ1, effectively
eliminating τ1, i.e. turning it into an explicit state. In order to avoid special cases, we may
always assume that either τ1 or τ2 can be unit types T0 (UT0 = {〈〉}). Now, full exploration of
A corresponds to the case when τ2 is unit type, and Boolean exploration corresponds to the
case when τ1 is a Cartesian combination of Boolean registers and τ2 is a Cartesian combination
of all the non Boolean registers.

Inst(ϕ,r,p) creates an instance of the rule r with the path condition ϕ with respect to the
fixed register values given by p. For the exception rule this is a no-op. For a basic rule this is
a partial instantiation of the yield and update with respect to p, where λy.f(p, y) instantiates
the first projection of the state register with the value p. An important point for the rules
is that unreachable rule instances are incrementally eliminated by deciding satisfiability of
corresponding accumulated path conditions.

Expl(ϕ,r,add) is a form of partial exploration of r the with respect to τ1 or the projection
projection function. For the exception rule the operation is a no-op. For an if-then-else rule, the
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step is a direct propagation of the concretizations of the branches. The core of the computation
takes place during the concretization of basic rules.

Theorem 4.1. Let A be a deterministic BST with state type τ1×τ2. If Explore(A) terminates
then the result is a BST that is equivalent to A and whose state type is τ2.

We omit the formal proof of the theorem but note that termination of the algorithm depends
on two factors: decidability of the background theory, and finiteness of the reachable subset
of Uτ1 . The first point is already needed in the Inst procedure that eliminates unsatisfiable
branches. The second point is needed both, for termination of construction of r in Expl, as well
as for guaranteeing that the search stack is bounded in size. A sufficient condition for the second
point is when the functions used for computing the first state projection have the finite-range
property, i.e., when Uτ1 can be assumed to be finite.

Example 4.1. The BST after full exploration of DecodeDigitPairs from Figure 1, is illustrated
in Figure 9. The unexplored BST (in Figure 2) has a single control state 0, while the fully
explored BST has 6 control states. �

5 Implementation

We have implemented the C# to BSTs and the register exploration algorithms in the Automata
library, which is available under the MIT license. A version with our changes can be found at:

https://github.com/OlliSaarikivi/Automata/

The C# frontend is implemented in the CSharpFrontend project. A string containing a class
extending Transducer<I,O> can be turned into an instance of STb<FuncDecl,Expr,Sort> (a BST
with Z3 formulas as its background logic) by calling:

Microsoft.Automata.CSharpFrontend.CSharpParser.FromString(Z3Context,string)

For Boolean exploration STb has an ExploreBools() method.

6 Related Work

Symbolic transducers were introduced in flat form in [16] for analysis of string sanitizers with
the main focus on symbolic finite transducers or SFTs. The paper [14] develops composition
algorithms for BSTs. Further work on symbolic transducers has focused on register exploration
and input grouping. Input grouping tries to take advantage of grouping characters into larger
tokens in order to avoid intermediate register usage, that has applications in decoder analysis [7]
and parallelization [17].

Stream processing area has a large body of work [9, 10, 11, 12, 15]. Some libraries for
streams provide APIs for expressing stateful operations. The Apache Flink [5] and Spark
Streaming [4] distributed streaming engines both provide support for using state in stream
operations and an associated framework for implementing fault tolerance in the presence of
state. The Highland.js [3] and Conduit [2] are traditional stream libraries, which both provide a
way to express stateful operations.
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7 Conclusion

The translation of C# into BSTs in Section 3 allows a natural and compact way to specify effectful
comprehensions as imperative code. Using a fragment of the host language for specification
ensures a seamless integration by obviating impedance mismatches arising from differences in
type systems.

The register exploration algorithm in Section 4 exposes control states in the BST, thus
allowing the programmer to freely use C#’s native types for state while still permitting efficient
application of BST algorithms that leverage control state, such as fusion [14].
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