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Abstract

In this paper, we show the effectiveness of pipeline implementations of Dynamic Pro-
gramming (DP) on Graphics Processing Unit (GPU). We deal with a simplified DP problem
where each element of its solution table is calculated in order by semi-group operations
among several of already computed elements in the table. We implement the DP program
on GPU in a pipeline fashion, i.e., we use GPU cores for supporting pipeline-stages so
that several elements of the solution tables are partially computed at one time. Further,
to accelerate the pipeline implementation, we propose a p-fold pipeline technique, which
enables larger parallelism more than the number of pipeline-stages.

1 Introduction

In this paper, we show the effectiveness of pipeline implementations of Dynamic Programming
(DP) on Graphics Processing Unit (GPU). We deal with a simplified DP problem where each
element of its one-dimensional solution table of size n is calculated in order by semi-group
computations among several of k already computed elements in the table. Since the size of
solution table is n and each element requires computations of k elements, the simplified DP
problem is solved sequentially in O(nk) steps.

It has been studied well to speed up DP programs using GPU (e.g. [1, 2]), where they mainly
focus on optimizing the order of accessing data by proposing novel techniques avoiding memory
access conflicts. In our study, however, we consider adopting a pipeline technique and imple-
menting the DP program on GPU in a pipeline fashion. The pipeline computation technique
[3] can be used in situations in which we perform several operations {OP1, OP2, . . . , OPn} in a
sequence, where some steps of each OPi+1 can be carried out before operation OPi is finished.
In parallel algorithms, it is often possible to overlap those steps and improve total execution
time.

In our previous studies [4, 5], we solve the simplified DP problem on GPU in a pipeline
fashion, i.e., we use GPU cores for supporting pipeline-stages so that several elements of the
solution tables are respectively computed partially at one time. Our pipeline implementation
determines one output value per one computational step with k threads in a pipeline fashion
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and solves the simplified DP problem on GPU in O(n) steps, which is k times faster than the
O(nk) steps for the sequential algorithm.

Here in this paper, we try to further accelerate the pipeline implementation with larger
parallelism. In our previous studies [4, 5], the parallelism is up to k, the number of pipeline-
stages. Here, to accelerate the pipeline implementation, we propose a p-fold pipeline technique,
and show that it enables larger parallelism more than k. We also discuss the effectiveness of
our method with explaining the 0-1 knapsack problem by DP as an example.

The rest of this paper is organized as follows. Section 2 introduces problem definitions and
base algorithms. Section 3 explains our pipeline implementations for DP on GPU. Section 4
proposes our p-fold pipeline technique and explains how to accelerate the pipeline implementa-
tion by increasing the parallelism more than the number of pipeline-stages. And finally, Section
5 offers concluding remarks.

2 Preliminaries

In this section, we introduce some preliminary definitions and base algorithms. We first define
a simplified DP problem to be solved on GPU, and then explain a naive and standard GPU
implementations of programs.

2.1 Simplified DP Problem

In this study, we implement a typical DP program on GPU. To simplify the exposition, we
focus on programs that solve such a simplified DP problem defined as follows:

Definition 1. (Simplified DP Problem) A one-dimensional array ST[0], ST[1], . . . , ST[n− 1] of
size n as a solution table, a set A = {a0, a1, . . . , ak−1} of k integers representing offset numbers,
and a semi-group binary operator ⊗ over integers are given. Without loss of generality, every
element of set A satisfies the following inequality:

a0 > a1 > · · · > ak−1 > 0. (1)

Then, a simplified DP problem (S-DP problem) is to fill all the elements of array ST in such a
way that each ST[i] is computed by the following equation:

ST[i] = ⊗0≤j<k ST[i− aj ] (2)

where ST[0], ST[1], . . . , ST[a0 − 1] are preset with initial values.

For example, Fibonacci number problem can be seen as the S-DP problem where k = 2, a0 =
2, a1 = 1, ⊗ = +, and ST[0]=ST[1]=1.

Even if a problem is solved by DP with two-dimensional solution table, the problem may be
reduced to the S-DP problem of one-dimensional solution table. The interested reader should
refer to [5], where the matrix-chain multiplication (MCM) problem (e.g., [6]) is discussed as an
example.

2.2 Conventional Approach to S-DP Problem

To begin with, we show a straightforward sequential algorithm that solves the S-DP problem.
The algorithm is shown in Figure 1. The outer loop computes values from ST[a0] to ST[n−1] in
order. It should be noted that ST[0], ST[1], . . . , ST[a0−1] are initially given as input values. The
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inner loop computes ST[i] for each i by equation (2). Since the outer loop takes n− a0 = O(n)
iterations and the inner loop requires O(k− 1) steps, this sequential algorithm solves the S-DP
problem in O(nk) steps in total.

A Sequential Algorithm for S-DP Problem

for i = a0 to n− 1 do

ST[i] = ST[i−a0];
for j = 1 to k − 1 do

ST[i] = ST[i] ⊗ ST[i−aj];

Figure 1: A sequential algorithm for S-DP problem

Next, we consider parallelizing the sequential algorithm for S-DP problem. The straight-
forward approach is to parallelize the inner loop by using GPU cores. We can easily write a
multi-thread program that executes the inner loop-body, ST[i] = ST[i] ⊗ ST[i− aj], for each j
in parallel using k−1 threads at one time. Such an implementation, however, does not improve
the time cost, because every thread has access to the same ST[i] and thus memory access con-
flicts occur. As a result, those memory conflicts should be automatically solved at run-time by
the serializing mechanism of GPU, and consequently the whole time-cost stays in O(nk) steps,
which is the same time cost as that of the sequential implementation. Further, even if those
k− 1 threads could operate in concurrent read and concurrent write (CRCW) mode, obviously
we would not get the correct answer because all k− 1 computations of ⊗ in equation (2) would
be performed at one time.

To avoid the possible memory access conflicts, we can use a standard parallel prefix compu-
tation algorithm (e.g., [7, 8]), in which the computations of ⊗ over the k values are executed in
a tournament fashion. Since the parallel prefix computation runs in O(log k) steps for k values,
the entire time cost can be improved to O(n log k) steps even when we use k threads.

Although we can successfully reduce the time cost from O(nk) to O(n log k) by using the
parallel prefix computation, it is not work-time optimal because there are many idle threads
during the computations in a tournament fashion. In the next section we propose other parallel
implementation strategy and show that we can improve the time cost further.

3 Pipeline Implementation on GPU

In this section, we explain our parallel implementation technique for S-DP problem on GPU.
Our program runs in a pipeline fashion.

3.1 Pipeline Implementation for S-DP problem

First, we introduce the pipeline implementation technique shown in our previous studies [4, 5].
In the next section, we will further accelerate the algorithm.

In our parallel implementation, we use a group of k threads to establish k-stage pipeline,
and this thread group treats k consecutive elements of array ST at one time in parallel. Figure
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2 describes our pipeline algorithm for the S-DP problem. The index variable i of the outer
loop stands for the head position of the elements calculated by the k-thread group. The inner
loop controls each thread’s behavior in such a way that the thread j executes computation for
ST[i− j] using the value stored in ST[i− j−aj].

A Pipeline Algorithm for S-DP Problem

for i = a0 to n+ k − 2 do

for j = 0 to k − 1 do in parallel

Thread j executes the following operation if a0 ≤ ij < n where ij = i−j:

ST[ij] =

{
ST[ij − aj]; (j = 0)

ST[ij] ⊗ ST[ij − aj]; (j > 0)

Figure 2: A pipeline algorithm for S-DP problem

An execution example is shown in Figure 3, where k = 3, a0 = 6, a1 = 3, and a2 = 1 hold
and the initial values are stored in ST[0], ST[1],. . . , ST[5]. In step 1, the head position i of
the elements to be computed is 6. In this step the only one thread is activated and executes
ST[6] ← ST[0]. In step 2, the head position is incremented to 7, and two threads are activated.
The first thread treats ST[7] and the second thread works on ST[6]. We say that these steps 1
and 2 are in Warm-up phase of pipeline, for not all threads are working yet and the number of
active threads is gradually incremented one by each step. In step 3, the head position becomes
8, and now all k = 3 threads actively execute operations for ST[8], ST[7], and ST[6] respectively.
From step 3, all k threads are steadily working and hence we say these steps are in Steady-state
phase. It should be noted that finally in step 3 the content of ST[6] is completely determined
while those of ST[8] and ST[7] are partially computed and not yet fixed. From step 3, all the
k = 3 threads are active until step n − a0 when the head position i reaches n − 1, and after
that step the number of active threads decreases one by each step. As you can see there is no
memory access conflict in this example.

As for the time-complexity of our pipeline implementation, from a theoretical viewpoint,
it takes only O(n) steps if there is no memory access conflict, because the outer loop takes
n+ k − a0 − 1 = O(n) iterations and the inner loop requires O(1) time.

From a practical viewpoint, the inner loop may take more time steps, because the possible
memory access conflicts occur. In the worst case when consecutive offset numbers are given,
those ST[ij−aj], in the right-hand side of the assignment statement, coincidentally become the
same element of array ST and hence the worst memory access conflicts occur. In such a case,
all threads in the inner loop are serialized and it takes time proportional to k. See Figure 4
for such a worst-case example. In this example, all five threads try to have access to the same
ST[i − 5] at one time in the inner loop. For such a case, we have proposed a 2-by-2 pipeline
implementation technique to avoid memory conflicts, where each thread invoked in the inner
loop executes two computations for each element of array ST. The details can be found in [4].
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Figure 3: An execution example for the case where k = 3, a0 = 6, a1 = 3, and a2 = 1 hold and
the initial values are preset to ST[0], ST[1], . . ., and ST[5].

Figure 4: The worst-case example where the offset numbers are consecutively given. In this
example, we have k = 5 threads and offset numbers are a0 = 5, a1 = 4, a2 = 3, a3 = 2, and
a4 = 1.

3.2 Correctness of Pipeline Algorithm

Before we improve and accelerate the pipeline implementation in the next section, we consider
the sufficient condition for the pipeline algorithm to work correctly and prove that the condition
always holds and that our algorithm works correctly.

In the inner loop of the algorithm, in order to (partially) calculate the value of ST[ij], each
thread j uses the value of ST[ij − aj] assuming that this value has been computed at the time
it is referenced. In what follows, we show that the assumption is always true if equation (1) is
valid.

In the inner loop (executed in parallel), the values of ST[ij − aj] used by the k threads are
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ST[i− a0], ST[i− 1− a1], ST[i− 2− a2],.... , ST[i− (k − 1)− ak−1]. By the equation (1), we
can say that the largest value among these k referenced indexes is i− (k − 1)− ak−1. On the
other hand, when the index of the outer loop is i, the elements of array ST have already been
calculated up to ST[i − k]. With these observations, the following inequality must be true for
the pipeline algorithm to work correctly:

i− (k − 1)− ak−1 ≤ i− k,

which leads to

1 ≤ ak−1.

Since the inequality 1 ≤ ak−1 is always true by the equation (1), we can say that our pipeline
algorithm correctly calculates the values of array ST.

4 Accelerating Pipeline Implementation on GPU

In the pipeline algorithm introduced in the preceding section, the parallelism is k. In this
section, we consider increasing the degree of parallelism further to accelerate the computation.

4.1 Problem with Simultaneous Execution of Multiple Iterations

A simple idea for the acceleration is to let several iterations in the outer loop of the pipeline
algorithm be executed in parallel at one time. Such an idea, however, may not work because of
the following reason. Each computation of ST[ij] uses the value of ST[ij − aj] which had been
computed up to that operation. See the step 4 of Figure 3 as an example. In the step 4, ST[3],
ST[5], and ST[6] are referred to, though the computation of ST[6] had just been completed in
the preceding step 3. Hence, in the case shown in Figure 3, while step x being executed, the
value of ST that had just been calculated in the preceding step x − 1 is immediately used for
the step x, which means that multiple consecutive iterations of the outer loop of the pipeline
algorithm cannot be executed at the same time.

However, if the offset values are sufficiently large, it is expected that the required elements
for the next calculation had already been computed much earlier. In such a case, there is a
possibility that several consecutive iterations of the outer loop may be executed together at
the same time. For example, in Figure 5, since all elements up to ST[9] had already been
calculated at the time of step 3, all the elements of ST required for the future steps 4, 5, 6,
and 7 are already obtained. Hence, in addition to step 3, it seems that it is possible to execute
these steps from step 4 to 7 at the same time as well. However, such an idea still arises two
problems as follows: possible memory read conflicts and memory write conflicts. The first
problem simply leads to the slowdown of execution because those possible memory conflicts
should be automatically solved at run-time by the serializing mechanism of GPU. The second
problem is from the concurrent write problem, and it is fatal because the calculation cannot
be performed correctly. For example, let us consider the case where we simultaneously execute
those 5 steps from step 3 to 7 in Figure 5. In such a case, ST[12], for example, is to be written
by 3 threads: thread 0 in step 3, thread 1 in step 4, and thread 2 in step 5 try to execute
ST[12] = ST[2], ST[12] = ST[12]⊗ ST[4], and ST[12] = ST[12]⊗ ST[7], respectively. Obviously, we
would not get the correct value by the simultaneous execution of these 3 operations.
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Figure 5: An example of problems with simultaneous execution of multiple iterations, where
k = 3, a0 = 10, a1 = 8, and a2 = 5.

4.2 p-fold Pipeline Implementation on GPU

In this section, we propose a p-fold pipeline technique. Instead of simultaneous execution
of multiple iterations of the outer loop in the pipeline algorithm of Figure 2, we modify the
operations in the inner loop. The idea is to increase the number of threads for the inner loop.

Figure 6 describes the p-fold pipeline algorithm we propose. Here, the number of threads
working in the inner loop is increased to pk from k. Figure 7 shows an execution example when
p = 3. In the example, 9 (= pk) threads are activated during the inner loop, and the parallelism
is increased by a factor of 3 (= p) compared to the original pipeline implementation where only
3 (= k) threads are activated. In our p-fold pipeline implementation, possible memory read
conflicts may occur depending on the offset values, but the memory write conflicts does not.
Hence, we can avoid the fatal problem discussed in the preceding subsection and say that our
p-fold pipeline algorithm works correctly.

As for the time-complexity of the p-fold pipeline algorithm, from a theoretical viewpoint, it
takes O(n/p) steps if there is no memory read conflict, because the outer loop takes

{(n− 1) + (k − 1)p} − {a0 + (p− 1)}+ 1

p
= O

(
n

p

)
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A p-fold Pipeline Algorithm for S-DP Problem

for i = a0 + (p− 1) to (n− 1) + (k − 1)p by p do

for j = 0 to pk − 1 do in parallel

Thread j executes the following operation if a0 ≤ ij < n where ij = i−j:

ST[ij] =

{
ST[ij − a⌊j/p⌋]; (⌊j/p⌋ = 0)

ST[ij] ⊗ ST[ij − a⌊j/p⌋]; (⌊j/p⌋ > 0)

Figure 6: A p-fold pipeline algorithm for S-DP problem

Figure 7: An execution example of the p-fold pipeline algorithm for the case where p = 3, k = 3,
a0 = 10, a1 = 8, and a2 = 5.

iterations and the inner loop requires O(1) time. Since the number of threads is pk, the work
is O(pk × n/p) = O(nk), which is equal to that of sequential algorithm in Figure 1.
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4.3 Example: 0-1 Knapsack Problem

Let us consider an example of solving the 0-1 knapsack problem by DP as follows. Given a set
of K items (each item is given a weight and a value) and the capacity C of a knapsack, the 0-1
knapsack problem is a problem to find a best way to pack the knapsack so that the total value
is maximized within the capacity of the knapsack, by deciding which items to pack and which
to exclude.

It is well-known that the 0-1 knapsack problem can be solved by dynamic programming
using a two-dimensional solution table ST[∗, ∗]. Each ST[i, j] stores the best solution for the
subproblem P(i, j), where P(i, j) is the problem of finding the best way to pack the knapsack
that maximizes the value under the two conditions: 1) only up to the i-th item of given items
are considered to be packed, and 2) the total weight capacity of the knapsack is limited to j.
It should be noted that the original problem is P(K,C).

The P(K,C) can be solved by DP as follows. The solution for each P(i, j) is stored in the
two-dimensional solution table ST[i, j] (0 ≤ i ≤ K, 0 ≤ j ≤ C). Then, P(i, j) can be easily
solved if the two solutions of its subproblems P(i− 1, j) and P(i− 1, j −wi) are already known
where wi is the weight of the i-th item. That is, ST[i, j] can be easily obtained by only checking
the two elements ST[i − 1, j] and ST[i − 1, j − wi]. To obtain P(K,C), we need to fulfill the
two-dimensional solution table of size of (K + 1) rows and (C + 1) columns as Figure 8 in
row-major order from the top-left corner to the bottom-right corner, which takes O(KC) steps.

Figure 8: A two-dimensional solution table for the dynamic programming solving 0-1 knapsack
problem. Each ST[i, j] can be calculated by the two elements ST[i− 1, j] and ST[i− 1, j−wi] in
the row one above.

To apply our p-fold pipeline algorithm to this 0-1 knapsack problem, we need to convert the
two-dimensional solution table ST[∗, ∗] to the liner solution table ST[∗]. This conversion can be
easily done by rearranging elements of ST[∗, ∗] in row-major order so that each ST[i, j] is mapped
to ST[i(C + 1) + j]. It should be noted that in the case of reducing the 0-1 knapsack problem
to the S-DP problem, one of the two offset values, a0, may dynamically changes because it
depends on wi. In this sense, the 0-1 knapsack problem is not formulated strictly as an S-DP
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problem, but it is essentially the same and we can use the p-fold pipeline algorithm. In such a
mapping, the calculation of ST[i] can be executed by using only the two elements of ST whose
indexes are at least (C + 1) smaller than i. In other words, the offset values of S-DP problem
are at least (C + 1), and thus we can expect to use the p-fold pipeline algorithm with a large
parallelism p (e.g., at least more than C) for solving this 0-1 knapsack problem.

5 Concluding Remarks

In this study, we examined the effectiveness of pipeline implementations of Dynamic Program-
ming (DP) on GPU. We dealt with a simplified DP problem where each element of its one-
dimensional solution table of size n is calculated in order by semi-group computations among
several of k already computed elements in the table and proposed pipeline implementations on
GPU model. In our previous studies [4, 5], the degree of parallelism of our pipeline is up to k,
but in this paper, we proposed the p-fold pipeline implementation technique and successfully
increased the parallelism toward pk, though the parameter p depends on the problem to be
solved. As an application example, we explained how to apply our p-fold pipeline technique to
the 0-1 knapsack problem and showed that we can expect a large p for the p-fold pipeline.

For future work, we plan to evaluate the performance of our pipeline implementations by
conducting experiments on GPU. We also plan to study the performance of our pipeline imple-
mentation on theoretical GPU models (e.g., [9, 10]).
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