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Abstract

BliStr is a system that automatically develops strategies for E prover on a large set of problems.

The main idea is to interleave (i) iterated low-timelimit local search for new strategies on small sets

of similar easy problems with (ii) higher-timelimit evaluation of the new strategies on all problems.

The accummulated results of the global higher-timelimit runs are used to define and evolve the notion

of “similar easy problems”, and to control the selection of the next strategy to be improved. The

technique was used to significantly strengthen the set of E strategies used by the MaLARea, PS-E,

E-MaLeS, and E systems in the CASC@Turing 2012 competition, particularly in the Mizar division.

Similar improvement was obtained on the problems created from the Flyspeck corpus.

1 Introduction and Motivation

The E [9] automated theorem prover (ATP) contains a number of points where learning and tun-
ing methods can be used to improve its performance. Since 2006, the author has experimented
with selecting the best predefined E strategies for the Mizar/MPTP problems [11, 13, 14], and
since 2011 the E-MaLeS [8] system has been developed. E-MaLeS uses state-of-the-art learning
methods to choose the best schedule of strategies for a problem. An early evaluation of E-
MaLeS in CASC 2011 has been counterintuitive: E-MaLeS solved only one more FOF problem
than E. Under reasonable assumptions (imperfect knowledge, reasonably orthogonal strategies)
it is however easy to prove that for (super-)exponentially behaving systems like E, even simple
strategy scheduling should on average (and with sufficiently high time limits) be better than
running only one strategy. A plausible conclusion was that the set of E strategies used by
E-MaLeS is not sufficiently diverse.

For the 2012 Mizar@Turing competition,1 1000 large-theory MPTP2078 [1] problems (that
would not be used in the competition) were released for pre-competition training and tuning,
together with their Mizar [2] and Vampire [7] proofs. From the premises used in the Mizar
proofs, Vampire 1.8 (tuned well for Mizar in 2010 [14])2 could prove 691 of these problems in
300s. A pre-1.6 version of E run with its old auto-mode could solve only 518 of the problems. In
large-theory competitions like Mizar@Turing, where learning from previous proofs is allowed,

1http://www.tptp.org/CASC/J6/Design.html#CompetitionDivisions
2After writing the first version of this paper, Andrei Voronkov noted that he uses similar techniques for

developing strategies for Vampire. A comparison of his system to BliStr would be interesting, but so far its
description has not been published.
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metasystems like MaLARea [6, 15] can improve the performance of the base ATP a lot by
choosing a small number of the most relevant axioms (premises) for the base ATP. But the SInE
premise-selection heuristic [3] used by Vampire has been also tuned on large problems several
years. With the great difference between the base ATPs (Vampire and E) on small version of
the problems,3 the result of the competition between SInE/Vampire and MaLARea/E would
be hard to predict. This provided a direct incentive for constructing a method for automated
improvement of E strategies on a large set of related problems.

2 Blind Strategy Making

For the rest of this paper, the task (main criterion) is fixed to:

Criterion (Max). Develop a set of E strategies that together solve as many of the 1000 small
Mizar@Turing pre-competition problems as possible.

A secondary criterion is that:

Criterion (Gen). The strategies should be reasonably general.

I.e., they should perform similarly also on the unknown problems that would be later used in
the competition. The third criterion is:

Criterion (Size). The set of such strategies should not be too large.

This is to make sure that strategy-selection systems like E-MaLeS stand a chance. This
setting is very concrete, however nothing particular is assumed about the Mizar@Turing prob-
lems.

Even though the author has some knowledge of E (see, e.g., [12]), the strategy-improving
methods were intentionally developed in a data-driven way, i.e., assuming as little knowledge
about the meaning of E’s strategies as possible. The credo of AI research is to automate out
human intelligence, so rather than manually developing deep theories about how the strategies
work, which ATP parameters are the right for tuning, how they influence each other, etc., it was
considered more interesting to push such a “blind” approach as far as possible, and try hard to
automate the discovery process based on data only. That is also why there is no explanation
of E strategies here (see the E manual), except the following.

A strategy is assumed to be a collection of ATP parameters with their (integer, boolean,
enumerated) values. The parameters influence the choice of inference rules, orderings, selection
heuristics, etc. Perhaps one unusual feature of E is that it provides a language that allows
the user to specify a linear combination of clause-selection heuristics used during the given-
clause loop. The individual clause-selection heuristics further consist of a (dependent) number
of parameters, making the set of meaningful strategy parameters very large (probably over
1000). Capturing this expressive power seemed tedious, and also looked like a hurdle to a
straightforward use of the established ParamILS [4] system which searches for good parameters
by iterative local search. Since ParamILS otherwise looks like the right tool for the task, a data-
driven (“blind”) approach was applied again to get a smaller set (currently 20) of meaningful
parameters: the existing strategies that were (jointly) most useful on the training problems
(see 2.1) were used to extract a smaller set (a dozen) of clause-selection heuristics. In some
sense, an intelligent designer (Schulz) was trusted to have already made reasonable choices

3By a small problem we mean a problem using only the axioms needed for the Mizar proof. The large
version additionally allows all previously proved Mizar lemmas.
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in creating these smaller building blocks, but we at least know that these are the building
blocks that provide the best performance so far, and reduce their parameter search to their
linear combinations. This can certainly be made more “blind” later. The currently used set of
parameters and their allowed values4 limits the space of all expressible strategies to ca. 4.5∗107.

2.1 Choosing a Starting Set of Strategies

As mentioned above, the E auto-mode solves in 300s 518 of the 1000 problems. One obvious
choice of a set of starting strategies for further improvement would be to take those that are
used by the auto-mode to solve the 518 problems. The auto-mode is typically constructed from
an evaluation of about 280 pre-defined E strategies on TPTP [10]. It has been observed several
times that the auto-mode in general chooses good strategies on TPTP, but it does not choose
so well the (still pre-defined) strategies for MPTP problems. In other words, even though some
MPTP problems are included in TPTP, the auto-mode should not be trusted to know the best
pre-defined strategies for MPTP. The following method was used instead.

All the 280 pre-defined strategies were run on randomly chosen 200 problems from the 1000
with a low 5s timelimit, solving 117 problems in total. A minimal set of strategies cover-
ing the 117 solutions was computed (using MiniSat++), yielding the following six pre-defined
strategies:5

G-E--_008_B31_F1_PI_AE_S4_CS_SP_S2S G-E--_008_K18_F1_PI_AE_CS_SP_S0Y

G-E--_010_B02_F1_PI_AE_S4_CS_SP_S0Y G-E--_024_B07_F1_PI_AE_Q4_CS_SP_S0Y

G-E--_045_B31_F1_PI_AE_S4_CS_SP_S0Y G-E--_045_K18_F1_PI_AE_CS_OS_S0S

These six strategies were then run again on all the 1000 training problems with 60s, proving 597
problems altogether. To get a fair (300s) comparison with the 300s runs of E and Vampire auto-
mode, only solutions obtained by each of these six strategies within 50s can be considered. This
yields 589 problems, i.e., a 13.7% improvement over the E auto-mode. Thus, as conjectured,
there are pre-defined E strategies that can already do much better on MPTP problems than
the E auto-mode. However their difference from Vampire’s performance (691 problems) is still
large.

2.2 Growing Better Strategies

How can new strategies be found that would solve some of the unsolved 403 problems? The
space of possible strategies is so large that a random exploration seems unlikely to find good
new strategies.6 The guiding idea is to again use a data-driven approach. Problems in a given
mathematical field often share a lot of structure and solution methods. Mathematicians become
better and better by solving the problems, they become capable of doing larger and larger steps
with confidence, and as a result they can gradually attack problems that were previously too
hard for them. The reason for translating the Mizar library for ATPs and having competitions
like Mizar@Turing is exactly to enable development and evaluation of systems that try to
emulate such self-improvement.

By this analogy, it is plausible to think that if the solvable problems become much easier for
an ATP system, the system will be able to solve some more (harder, but related) problems. For
this to work, a method that can improve an ATP on a set of solvable problems is needed. While

4For the exact set of used parameters and values see the file e-params.txt in the BliStr distribution. The E
interpretation of the parameters is in the file e wrapper1.rb .

5Their exact interpretation can be found in E’s source code.
6See Section 4 for an experiment in this direction.
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this can still be hard (or even impossible), it is often much easier task than to directly develop
strategies for unsolved problems. The reason is that an initial solution is known, and can be
used as a basis for algorithms that improve this solution using local search or other non-random
(e.g., evolutionary) methods. As already mentioned, the established ParamILS system can be
used for this.

2.3 The ParamILS Setting and Algorithm

Let A be an algorithm whose parameters come from a configuration space (product of possible
values) Θ. A parameter configuration is an element θ ∈ Θ, and A(θ) denotes the algorithm
A with the parameter configuration θ. Given a distribution (set) of problem instances D, the
algorithm configuration problem is to find the parameter configuration θ ∈ Θ resulting in the
best performance of A(θ) on the distribution D. ParamILS is an a implementation of an iterated
local search (ILS) algorithm for the algorithm configuration problem. In short, starting with an
initial configuration θ0, ParamILS loops between two steps: (i) perturbing the configuration to
escape from a local optimum, and (ii) iterative first improvement of the perturbed configuration.
The result of step (ii) is accepted if it improves the previous best configuration.

To fully determine how to use ParamILS in a particular case, A, Θ, θ0, D, and a performance
metric need to be instantiated. In our case, A is E run with a low timelimit tlow, Θ is the set
of the ca. 4.5 ∗ 107 E strategies, and as a performance metric the number of given-clause loops
done by E during solving the problem was chosen. If E cannot solve a problem within the low
timelimit, a sufficiently high value (106) is used. CPU time could be in some cases a better
metric, however for very easy problems it could be hard to measure the improvement factor
with confidence. It thus remains to instantiate θ0 and D.

2.4 Guiding ParamILS

It seems unlikely that there is one best E strategy for all Mizar@Turing problems. In principle
this could be possible particularly if the strategy language allowed to specify variant behavior
for different problem characterizations, however this is not yet the case. Thus, it seems coun-
terproductive to use all the 597 solved training problems as the set D for ParamILS runs. If
there is no best strategy, improved performance of a strategy on one subset of all problems
would be offset by worse performance on another subset, the average value of the performance
metric would not improve, and ParamILS would not develop such strategy further.

But this already suggests a data-driven way to guide ParamILS. If there is no best strategy,
then the set of all solvable problems is partitioned into subsets on which the particular strate-
gies perform best. In more detail, this “behavioral” partitioning could be even finer, and the
vector of relative performances of all strategies on a problem could be used as a basis for various
clusterings of the problems. The current heuristic for choosing successive θ0 and D is as follows.

BliStr selection heuristic: Let θi be a set of E strategies, P j a set of problems, and Eθi(P
j)

the performance matrix obtained by running E with θi on P j with a higher time limit thigh
(set to 10s). Let cmin < cmax be the minimal and maximal eligible values of the performance
metric (given-clause count) (set to 500 and 30000). Let E′

θi
(P j) be Eθi(P

j) modified by using
an undef value for values outside [cmin, cmax], and using an undef value for all but the best
(lowest) value in each column. Let V (versatility) be the minimal number (set to 8) of problems
for which a strategy has to be best so that it was eligible, and let N be the maximum number of
eligible strategies (set to 20). Then the eligible strategies are the first N strategies θi for which
their number of defined values in E′ is largest and greater than V . These strategies are ordered

315



BliStr: The Blind Strategymaker Urban

by the number of defined values in E′, i.e., the more the better, and their corresponding sets
of problems Di are formed by those problems P j , such that E′

θi
(P j) is defined.

Less formally, we prefer strategies that have many best-solvable problems which can be
solved within [cmin, cmax] given-clause loops. We ignore those whose versatility is less than V
(guarding the Gen criterion from Section 2), and only consider the best N (guarding the Size
criterion from Section 2). The maximum on the number of given-clause loops guards against
using unreasonably hard problems for the ParamILS runs that are done in the lower time limit
tlow (typically 1s, to do as many ParamILS loops as possible). It is possible that a newly
developed strategy will have better performance on a problem that needed many given-clause
loops in the thigh evaluation. However, sudden big improvements are unlikely, and using very
hard problems for guiding ParamILS would be useless. Too easy problems on the other hand
could direct the search to strategies that do not improve the harder problems, which is our
ultimate scheme for getting to problems that are still unsolved. The complete BliStr loop is
then as follows. It iteratively co-evolves the set of strategies, the set of solved problems, the
matrix of best results, and the set of eligible strategies and their problem sets.

BliStr loop: Whenever a new strategy θ is produced by a ParamILS run, evaluate θ on
all Mizar@Turing training problems with the high time limit thigh, updating the performance
matrices E and E′, and the ordered list of eligible strategies and their corresponding problem
sets. Run the next ParamILS iteration with the updated best eligible strategy and its updated
problem set, unless the exact strategy and problem set was already run by ParamILS before. If
so, or if no new strategy is produced by the ParamILS run, try the next best eligible strategy
with its problem set. Stop when there are no more eligible strategies, or when all eligible
strategies were already run before with their problem sets.7

This loop is implemented in about 500 lines of publicly available Perl script.8 It imple-
ments the selection heuristic, controls the ParamILS runs, and the higher-timelimit evaluations.
Content-based naming (SHA1) is used for the new strategies, so that many BliStr runs can be
merged as a basis for another run.

3 Evaluation

Table 1 summarizes two differently parametrized BliStr runs, both started with the 6 pre-
defined E strategies solving the 597 problems in 60s. Each BliStr run uses thigh = 10 (which
in retrospect seems unnecessarily high). BliStr4001 uses tlow = 1 and a timelimit TParamILS
of 400s for each ParamILS run. 37 iterations were done before the loop stopped. The 43
(= 6 + 37) strategies jointly cover 648 problems (when using thigh), the best strategy solving
569 problems. Similarly for BliStr25003 , which in much higher real time covered less problems,
however produced the strongest strategy. Together with four other runs (some stopped early
due to an early bug, and some already start with some of the new strategies), there were 113
ParamILS runs done in 30 hours of real time on a 12-core Xeon 2.67GHz server, and covering
659 problems in total (all with thigh = 10).

22 strategies are (when using a simple greedy covering algorithm) needed to solve the 659
problems, in general using 22 ∗ 10s = 220s, which is less than the 6 ∗ 60s = 360s used by
the 6 initial strategies to solve the 597 problems. These 22 strategies were later run also with
a 60s time limit, to have a comparison with the initial 6 strategies. Their joint 60s cover-

7The stopping/selection criteria are now quite strict to see the limits of this approach. But it is easy to
relax, e.g., by allowing further runs on smaller subsets, or letting survive/develop also the “not-best-enough”
strategies with high mean performance.

8https://github.com/JUrban/BliStr
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Table 1: Two BliStr runs and a union of 6 runs done within 30 hours

description tlow TParamILS real time user time iterations best strat. solved

BliStr4001 1s 400s 593m 3230m 37 569 648

BliStr25003 3s 2500s 1558m 3123m 23 576 643

Union of 6 runs 1800m 113 576 659

Table 2: Comparison on the (small) 400 competition problems using 160s

System Old auto-mode 6 old strats. 16 new strats. Vampire 2.6

Solved 205 233 253 273

age is 670 problems. The (greedily) best 6 of them solve together 653 problems, and the best
of them solves 598 problems alone, i.e. one more problem than the union of the initial strategies.

Evaluation on Small Versions of the Mizar@Turing Problems: To see how general
the strategies are, they were also evaluated on small versions (i.e., using only axioms needed for
their Mizar proof) of the 400 Mizar@Turing competition problems, which were unknown during
the training on the 1000 pre-competition problems. The comparison in Table 2 includes the
old E auto-mode, the 6 best pre-defined strategies, and Vampire 2.6 (used in the competition).
Each system was given 160s total CPU time (distributed evenly between the strategies). The
improvement over the old auto-mode is 25%.

CASC@Turing Competition Performance: An early version of a simple strategy sched-
uler and parallelizer combining the best strategies also with (E’s version of) SInE was used by
MaLARea in the Mizar@Turing competition. This strategy scheduler9 (called Epar) runs 16
E strategies either serially or in parallel. In the competition MaLARea/Epar solved 257 of
the 400 (large) Mizar@Turing problems in 16000 seconds, and Vampire/SInE 248 problems.10

After the competition, MaLARea was re-run on the 400 problems (on a different computer and
3 hours) both with Epar, solving 256 problems, and with the old E’s auto-mode, solving 214
problems. The better E strategies were relevant for the competition.

The new strategies were also used by E-MaLeS and E1.6pre in the FOF@Turing competi-
tion run with 500 problems. E-MaLeS solved 401 of them, E1.6pre 378, and (old) E1.4pre 344.
These improvements are due to more factors (e.g., using SInE automatically in E1.6), however
the difference between E-MaLeS and E1.6pre became more visible in comparison to the CASC
2011, likely also thanks to the diverse strategies being now available.

Evaluation on Flyspeck Problems: Epar, E1.6pre and Vampire2.6 were also tested on
the newly available Flyspeck problems [5]. With 900s Vampire solves 39.7% of all the 14195
problems, Epar solves 39.4%, and their union solves 41.9%. With 30s, on a random 10% prob-
lem subselection, Epar solves 38.4%, E1.6pre 32.6%, and Vampire 30.5% of the problems. This
means that on this completely different set of problems the newly developed strategies solve
22% more problems than the original version of E.

9https://github.com/JUrban/MPTP2/blob/master/MaLARea/bin/runepar.pl
10Vampire still won the competition: a bug in MaLARea caused 17 undelivered proofs.
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4 Evolution vs. Revolution

A.C. Clarke’s Third Law states that any sufficiently advanced technology is indistinguishable
from magic. The evolutionary technique described above is rational science, but without an
explanation the appearance of new strong strategies for an established ATP may look a bit
magical. In an early stage, the lack of explanation led one colleague to suggest “focusing on
unsolved problems” rather than improving the performance on solved problems. While the
science mostly speaks against it (until there are improvable points, the search is completely
random and the search space is vast), a simple experiment was done later to see how good this
theory is. In this experiment, all the 403 unsolved training problems were given to ParamILS,
which was run for 7 hours, starting with the default (bad) set of parameter values.

The result of this long run was a strategy that solved 15 of the 403 problems. The first
success happened after about 1000 attempts. The likely explanation is that reasonable strategies
perhaps are not so rare in the constructed parameter space. Some parameters might have
relatively little importance once the more important parameters are guessed reasonably well,
thus effectively reducing the search for the first successful data point. Even though this “non-
evolutionary” approach is inferior to the evolutionary one, their combination might bring further
improvements. This depends on how likely it is to randomly hit a strategy that is good for a
set of so far unsolved problems which are relatively different from all the problems solved so
far.

5 Conclusion and Future Work

Running BliStr for 30 hours seems to be a good time investment for ATP systems that are used
to attack thousands of problems. It is also a good investment in terms of the research time of
ATP developers. The system can probably be made faster, and used online in metasystems like
MaLARea. The current selection heuristic could be modified in various ways, as well as the
stopping criterion. The set of parameters and their values could be extended, allowing broader
and more precise tuning. Extension to other ATPs should be straightforward.
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