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Abstract

Search and optimization problems are a major arena for the practical application of Artificial
Intelligence. However, when supply chain optimization and scheduling is tackled, techniques based
on linear or non-linear programming are often used in preference to Evolutionary Computation such
as Genetic Algorithms (GAs). It is important to analyse whether GA are suitable for continuous
real-world supply chain scheduling tasks which need regular updates.

We analysed a practical situation involving iron ore train networks which is indeed one of signifi-
cant economic importance. In addition, iron ore train networks have some interesting and distinctive
characteristics so analysing this situation is an important step toward understanding the performance
of GA in real-world supply chain scheduling. We compared the performance of GA with Nonlin-
ear programming heuristics and existing industry scheduling approaches. The main result is that our
comparison of techniques here produce an example in which GAs perform well and is a cost effective
approach.

1 Introduction
Supply chain management and associated optimization problems, involving both scheduling ahead and
real-time decisions, are often both complicated and practically, financially and economically important:
see, for example, case studies from the coal mining, airline crew, fleet vehicle routing and wine industries
[23, 9, 3].

Popular techniques for solving such complicated optimisation problems are those based on linear
programming techniques and a hierarchical process in which multiple optimization problems are solved
in a predefined sequence [4]. The Dantzig-Wolfe decomposition introduced in [12] uses delayed column
generation to solve linear programming problems and is widely used to solve optimization problems
[24]. Other variants of the decomposition technique are used to solve large optimization problems in
industries such as airline crew scheduling [3], fleet vehicle routing [9], wireless mesh network resource
allocation [5].

As optimization problems get larger or more complicated, these sorts of linear programming tech-
niques (and variations with a mixture of some non-integers and/or some non-linearity) tend to need to
involve heuristics, relaxation and branching and bounding [26] to find good results, albeit not necessar-
ily global optima, within a reasonable amount of time. That raises a natural question about the search
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for optima in industrial applications. When, if at all, are the search problems complicated enough that
traditional Artificial Intelligence (AI) search techniques such as, forms of evolutionary computation are
better to use in practice than these operations research/mathematical optimization techniques?

In this paper, we look at a particular application domain, train scheduling on ore train networks, as
an interesting and practical example arena for providing a local answer to this question about rival styles
of optimization techniques.

There is already plenty of research on train scheduling problems. It is not possible to mention all
of it: here are a few recent papers. Zhou and Zhong studied train scheduling for high speed passengers
train [28]. Caprara et al proposed using a Lagrangian heuristic algorithm to schedule real-world trains
[6]. Carey and Crawfords studied train scheduling at busy train stations [7]. Yuan and Hansen studied
optimization of capacity of trains at train stations and their scheduling [27]. Abril et al proposed a
distributed search method in the form of tree to solve a train scheduling problem [1]. Chung et al studied
the Korean railway system and proposed a genetic algorithm based technique for train sequencing [10].
Li et al proposed a scheduling solution for trains depending on their global information [20]. Cheng
and Yang studied the Taiwan railway system and proposed a Fuzzy Petri Nets approach for its control
in abnormal or non-regular situations [8]. Lee and Chen proposed a heuristic approach for the train
scheduling and its path optimization [19]. Fischetti et al studied Italian railways and optimizes train
scheduling using non-linear and stochastic programming approaches [13]. Arenas et al proposed the
use of genetic algorithm to solve Train Timetable Problem for annual railway operations service plan
[2]. Gorman proposed a tabu search algorithm to find the weekly schedules for the freight railroad
network [14] (tabu search is an iterative heuristic search technique which starts with a suitable solution
and tries to improve it [15, 16]). Gorman also compared the results with solution of genetic algorithms
and found that tabu search works well for bigger sized problems.

These train scheduling studies are situated in large interconnected passenger and freight networks.
Mining rail networks are different in important ways. For one, the networks are often much simpler,
with one main route from each mine to the port. For example in the North-West of Western Australia
there are four main private rail networks operating between company mines and their own ports: BHP
Billiton, Rio Tinto, Fortescue Metals Group and Roy Hill. These are some of Australia’s longest private
rail networks.

To our knowledge there are few studies concentrating on solving the transportation scheduling prob-
lem via a rail network in the mining industry. Singh et al proposed a decision support system using
mixed integer programming model [22]. The proposed system uses Hunter Valley Coal Australia as a
case study and modeled its long term capacity expansion plan. The study focused on coal industry but
did not propose any approach for optimizing train scheduling in coal transportation. Similarly, Kozan
and Liu proposed a demand responsive decision support system for transportation of coal from order
placement to delivery to the customer [17]. In this study all operations related to coal transportation
including coal shipment, coal stockpiles and coal railway transportation are considered. The proposed
decision support system is based on a non-linear programming approach and is applied on Queensland
Australia’s coal railway network. The study identified the railway network as a bottleneck to entire sup-
ply chain and evaluated the efficiency of the supply chain system with respect to the changes in number
of trains used in the railway network. The study focused on time tabling the trains in order to optimize
the entire supply chain involving train, stockpile and ship.

The other idiosyncratic characteristic of a mine rail network is that trains usually leave the mine
when full, and leave the port when empty, rather than following a predetermined timetable [11]. A
real-time train routing decision process is needed. To the best of our knowledge there is only one study
which tackled the related issue of train scheduling depending on variable demand. Kuo et al studied the
freight train scheduling having elastic demand [18]. A column generation based technique is proposed
to optimize the freight train schedules to minimize the cost for carriers. In the study, a case study of pan-
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European network in analyzed. The study had a major constraint of considering the railway network to
be unidirectional.

In this paper we consider two typical private mine train networks and attempt to optimize the
throughput of the railways with the only control variables being the decisions to direct a train onto
a siding to stop, and to stop (or not) trains approaching a junction. We conduct experiments with differ-
ent numbers of trains available. There are many reasonable ways to formalize an objective function to
represent throughput but in this preliminary study we just measure the time taken for all trains to leave
the port empty and return full.

Our experiments compare optimization techniques based on the four main styles. We first use a
standard industry approach that is implemented in a way to give priority to the trains going towards the
port. In other words, loaded trains will get priority to have a non-stop journey which is our understanding
of current industry practice. This approach is called Industry Approach. The second technique uses an
approach where priority is given to the train which reaches the junction first. This approach is called
Traditional Approach. The third technique is a standard Nonlinear Programming (NLP) approach where
all possible decisions expected in future are considered among all trains over the railway network.
The NLP approach is expected to always give the best results (global optimized solution) at the cost
of computational complexity. The rival AI approach is just to use a very standard package genetic
algorithm (GA) implementation to make the same control decisions. Because we work in real-time we
curtail the searches to allow rescheduling every time an empty train leaves the port. After comparing all
the four approaches, we simulated the network for 24 hours to analyze the long term improvement in
the efficiency of scheduling the trains using different techniques.

The main contributions of this paper are as follows: a detailed case study of real-time optimization
task for scheduling trains in real-life and important (but simple) train networks; a comparison of differ-
ent approaches to this real-world problem; demonstration of significantly superior performance using
the GA approach (in this case); and demonstrating the significant improvement in performance of the
railway network by using the GA approach.

1.1 Problem description

In Western Australia, there are four major iron ore mining companies and each of them have their own
private railway network for transportation of iron ore from their mines to Port Headlands. The collection
of four private railway networks form Pilbara Railways. Each company has specific number of trains
operating round the clock between their mines and Port Headlands. The number of trains may change
to optimize the supply chain or maintenance.

Train scheduling is a critical problem in the supply chain of the iron ore mining industry. According
to the norms of the industry, the trains are run close to maximum speed limit and loaded trains are
mostly run nonstop from mine to port. The railway network is mostly single track with multiple sidings
for crossing of trains. The decision of crossing of the trains has the simple criteria that unloaded trains
are stopped on sidings to ensure the nonstop journey of loaded trains from mine to port [21]. This may
decrease the overall cost and time of the train transportation operation. There can be multiple reasons
for industry to run loaded trains nonstop from mine to port and important reasons are mentioned below
which are expected to add extra cost and time in the operations.

• It makes the crossing decisions simple and avoids accidents or blockage of railway track.

• The loaded trains take longer time to accelerate to maximum speed limit as compared to the
unloaded trains.

• The siding tracks may deteriorate quickly if loaded trains are stopped on them.
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Figure 1: Sample iron ore railway network schematic.

In this study we propose that both loaded or unloaded trains may be stopped in order to optimize
the overall time and cost of the train transportation operation. From the research of the area of Western
Australia, it is found that all iron ore mines have higher altitude than the port and loaded trains are
usually running down the hill. Therefore, the loaded train, which is heavy, will accelerate quickly
downhill due to the gravity while unloaded trains will be taking longer time when accelerating up the
hill. This is further discussed in the case study in next section of the article.

A sample iron ore railway network is shown in Figure 1. It contains railway tracks for two mines
linked to a single port. There are two sections which are common between the two different tracks where
one section has sidings for crossing of trains. There are five sections independent to each track which
include two sidings on each track. Each train departing the port needs to know its destination mine.
Each siding must have the length greater than the length of the train and must have one or more than
one extra track to let a train stop on it. All sections of the railway network are represented by unique
numbers such that Section 1 is represented by ‘S1’, Section 2 is represented by ‘S2’, and so on. Trains
do not stop at the mines or port but slow down for loading and unloading respectively. Each train has
either the status of ‘loaded’ or ‘unloaded’. Each train takes some time to cross a point which depends on
the length and speed of the train. Each train starts its journey from port as ‘unloaded’ train and ends its
journey at port as ‘loaded’ train. The train knows its destination mine at the time of starting its journey
and its status is ‘unloaded’ which changes to ‘loaded’ at the mine.

2 Proposed Model
The time taken by a train to complete its round trip is given by Tj which is equal to the sum of the times
taken by the train to cross each section on the railway network between port and destined mine. Each
train will cross each section twice: once loaded and once unloaded. Subscript j represents the train
number.

Tj =

m∑
i=1

(Tsli + Tsui
) (1)

where Tsl and Tsu represent the time taken by the loaded and unloaded train respectively to cover a
section and i and m represent the section number and total number of sections respectively.

In this study, we are trying to minimize the total time T taken by all the trains to complete their
journeys and reach back to the port loaded. It is represented as:

T =

n∑
i=1

Ti (2)

where subscript i represents the number of trains running on the railway network.
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Four different techniques are used to calculate T as mentioned earlier. All techniques are used to
simulate the network in advance by generating decisions of crossings of trains and minimize Equ. 2.
The techniques are implemented in Java and the Jenetics library [25] is used for genetic algorithms.

In our model we propose to calculate the total time T whenever a train starts its journey. Train
demand is variable in the iron ore mining industry and are dispatched as per demand and availability.
Using Traditional and Industry approaches, the decisions are easy to be implemented in real time while
using NLP and genetic algorithms, the decisions are needed to be simulated in advance in quick manner
to ensure that all decisions for the network are available before the time of the decision. The NLP
approach simulates all possible decisions to find global minima while genetic algorithms are run for
small time and it may happen that global minima can not be found. However, as the railway networks for
iron ore mining industries are not very complicated and small, it is expected that a reasonable optimized
solution will be obtained using standard GA in short time.

Following are the rules which are followed for experiments

• Each train leaving the port must know its destination.

• The journey for each train will start from a point on Section 1 which is linking to the port with
status ‘unloaded’.

• The journey for each train will stop with status ‘loaded’ at the same point on Section 1 from where
it started its journey

• The status of the train changes from ‘unloaded’ to ‘loaded’ at the mine during its round trip
journey.

• Each train needs to complete a round trip from port to mine and back to port.

• Each siding on the railway network can accommodate single or multiple trains depending on the
length of the siding and length of the train.

• The length of the train is taken as 3km for the sample iron ore railway network and length of the
siding is taken as 6km. Each single track section is 60km long.

• If two trains are found to be on a section in opposite direction then this will lead to crash of trains
and system will stop all trains (simulations).

• The maximum speed limit for a train on the railway network is taken as 60km/h.

• Each train traveling on the railway network is accumulating its Tj which will keep on accumulat-
ing till its journey finishes.

• The total time T is calculated for all the trains traveling on the network which have started the
journey. Any train on the port will not be considered till it starts its journey.

• Each time when a train starts its journey, T is calculated for the network. Therefore, one train on
the railways network (one which is starting its journey) will have its Tj = 0 while all other trains
will have their own respective Tj .

For the NLP approach, all possible decisions of trains crossings needs to be simulated. It is observed
that each train will cross another train once over its journey and each crossing will involve two decisions
where either of the trains can be stopped. This shows that the total number of decisions D will be
dependent on the number of trains as:
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D = 2k and k =

n−1∑
i=1

i (3)

where n represents the total number of trains on the railway network. Thus NLP approach simulate the
network with D number of scenarios to find the global minima of T .

For the GA approach, the decisions to stop the trains is dependent on the genetic algorithms. Dif-
ferent possible decisions of train crossings are taken over entire railway network till all trains complete
their journey and total time T is calculated. The genetic algorithm simulate different decision scenarios
to minimize Equ. 2. A chromosome genotype in this study consists of a sequence of boolean decisions
where 0 and 1 represent the stopping of unloaded and loaded train respectively. The length of chromo-
some is k and maximum number of possible decision is D for n trains as mentioned in Equ. 3. The
altering of the offspring population is performed by mutation probability taken as 0.3 and crossover
probability as 0.6. Initial population is taken as 100 while the termination criteria for the evolution is
100 generations. The objective function is to minimize T as presented in Equ. 2 and the minimum T is
selected as the optimal total time taken by all the trains present on the railway network to complete their
journey.

For the evaluation of each approach, different numbers of trains are used in the railway networks
and total time T is found. For each selected number n of trains, we conducted 100 simulations and
calculated the average total time T . In each simulation, random positions of trains on the railway
network are generated in such a manner that one train is about to start its journey from the port while
rest of the trains are present on the railway network. The time taken by the randomly placed trains on
the network is considered randomly in a range where minimum time taken is considered to be the time
taken by the train traveling nonstop and is calculated by dividing the distance of the train which it is
expected to cover by the maximum speed of the train and maximum time is 20% of the minimum time
added to the minimum time.

After proving the concept of using GA as preferred technique, we conducted another set of experi-
ments where we ran trains nonstop for 24 hours. The trains returning the port start their journey back to
mine with their status changed from ‘unloaded’ to ‘loaded’. All approaches are tested except the NLP
approach due to its increasing computation time with the increase in number of decisions.

2.1 Case study: Roy Hill

Roy Hill’s railway network is taken as a case study for our study because the details are available online
[21]. The iron ore railway network schematic of Roy Hill is presented in Figure 2. The railway network
is 344km single lane with four sidings for crossing of trains. Each siding is approximately 3.2km
long and is sufficient for a train to stop. The heavy haul railway is built to support the transportation
of 55Mtpa of iron ore. Roy Hill is using 4 trains transporting iron ore to port nonstop from mine.
Each train is estimated to have payload of more than 31000 tonnes of iron ore. This shows that any
improvement (decrease) in total time T will significantly increase the revenue for Roy Hill.

As discussed earlier, it is not always optimal to stop an unloaded train to make the journey of loaded
train nonstop. It can be observed from the information presented by Roy Hill that the payload of iron
ore on each train will generate the acceleration due to gravity around 4500km/hr2 on the ramp having
an angle of 10o due to its weight. This shows that loaded train will quickly accelerate to reach its
maximum allowed speed and efficiency of overall system will not be significantly degraded if loaded
trains are stopped to optimize the train scheduling.
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Figure 2: Roy Hill iron ore railway network schematic [21].

Table 1: Average Total time T for sample railway network.

Average total time T in minutes
Trains Industry Traditional NLP GA

3 1650.17 1636.88 1602.43 1602.43
4 2256.32 2195.57 2128.89 2128.89
5 2863.01 2790.03 2674.04 2674.04
6 3473.87 3371.19 3211.98 3212.01
7 4092.86 3957.96 3753.65 3754.37
8 4758.25 4571.24 N/A* 4297.83

* NLP had 228 scenarios and was computational expensive

3 Results and discussion
The results for running the simulations using all considered techniques are calculated. The average total
time T for the sample railway network using all considered techniques is presented in Table 1. The
average round trip for a train on the sample railway network is plotted in Figure 3. It is found that
Traditional Approach provided better results as compared to Industry Approach. In addition, Genetic
Algorithms (GA) and NLP approaches provider better results as compared to Traditional and Industry
approaches. This is due to the fact that NLP and GA approaches are able to foresee the impact of
current decisions on future decisions. Comparing NLP and GA approaches, it is observed that GA
either provides the same results or very close to NLP Approach. The NLP Approach simulating 8 trains
on the sample network had 228 different scenarios to simulate which was found to be computationally
very expensive and experiment was not conducted for this scenario. However, it is expected in the light
of earlier results that NLP approach would give the global minima on the cost computational complexity
and GA approach would provide the results close to NLP approach.

It is expected that raising the number of trains increases the complexity of the train scheduling and
crossing. The results show that the NLP Approach performs slightly better compared to GA Approach
especially when number of trains are higher than 5. However, the computation time is significantly
increased due to the increase in the number of scenarios as mentioned in Equ. 3.

The average round trip time as mentioned in Figure 3 for a train increases with the increase in
number of trains and is highest when eight trains are running on the sample network. The increase in
the slope of average time for a train with the increase in number of trains using GA and NLP approaches
is very low as compared to the increase in average time taken by a train using Traditional or Industry
approaches. The average round trip time for a train is approximately equal for GA and NLP approaches.

Similarly, for the case study of Roy Hill railway network, the average total time T using all analyzed
approaches are presented in Table 2. The average round trip for a train on Roy Hill’s railway network
are plotted in Figure 4. The trend of the results is found to be similar as observed for the case of sample
railway network. It is observed that the average round trip time for a train on Roy Hill network increases
sharply with the increase in the number of trains as compared to the case of sample railway network.
It is because Roy Hill’s railway network has longer sections, a single mine and four sidings only. The
increase in number of trains to five means that each single track has a train traveling on it. The results
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Figure 3: Average time taken by a train for a round trip journey on sample railway network. (Both GA and NLP
approaches took approximately same time and are overlapping)

Table 2: Total time T for Roy Hill’s railway network.

Average total time T in minutes
Trains Industry Traditional NLP GA

3 2297.41 2216.01 2080.61 2080.61
4 3201.11 3062.97 2774.52 2774.52
5 4071.88 3882.28 3476.88 3476.90
6 5031.21 4780.72 4160.49 4189.72
7 5907.00 5587.73 4870.76 4959.08
8 6838.49 6448.34 N/A* 5779.84

* NLP had 228 scenarios and was computational expensive

for 8 trains using NLP Approach are not available because it takes too long to generate 228 different
scenarios. The results of GA and NLP approaches are close to each other or the same and perform
better than Traditional and Industry approaches.

Figure 4: Time taken by a train for a round trip journey on Roy Hill’s railway network. (Both GA and NLP
approaches took approximately same time and overlapping in some part of the graph)
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Table 3: Average total distance covered by trains on Sample railway network.

Average total covered distance in Kms
Trains Industry Traditional Genetic Algorithm

3 4303.69 4870.46 4952.20
4 5423.53 6394.95 6573.23
5 6519.83 7898.56 8183.20
6 7551.51 9246.26 9660.64
7 8763.26 10725.49 11359.28
8 9776.38 11971.67 12817.38

Figure 5: Average distance covered by a train in 24 hours on Sample railway network.

3.1 Time based continuous experiment
The results of the above experiments proved our proposed concept of using GA approach in scheduling
trains for iron ore railway networks which are small, single path and have few crossings. In the next
phase, we conducted experiments to run the system continuously for 24 hours where ‘loaded’ trains
returning to the port start their journey towards the mine again after unloading itself. The status of the
train changes to ‘unloaded’ again after reaching the port and scheduling system is simulated again for
all decisions because a new ‘unloaded’ train is departing from the port. All approaches are simulated
except NLP Approach because number of scenarios increased significantly due to the increase in the
number of decisions involved over 24 hours of tested time. 100 experiments are simulated for different
number of trains for both Sample and Roy Hill’s railway network.

The average total distance covered by all trains over sample network in 24 hours for 100 simulated
experiments is presented in Table 3. The graph for average distances covered by a train in 24 hours over
sample railway network using different approaches is shown in Figure 5. As expected it is observed that
average total distance covered by all trains increases with the increase in the number of trains running
over the Sample railway network. However the average distance covered by a train over Sample railway
network decreases with the increase of the number of train on the railway network. It can be observed
from Table 3 and Figure 5 that the GA approach outperforms both Traditional and Industry approaches.
The results also show that running long time simulations of 24 hours makes evident that the performance
of Industry Approach is significantly lower than other approaches.

The experiments were also conducted on Roy Hill’s railway network and average distances covered
by all trains in 24 hours are presented in Table 4. The average distance covered by a train over Roy
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Table 4: Average total distance covered by trains on Roy Hill’s railway network.

Average total time T in minutes
Trains Industry Traditional Genetic Algorithm

3 4897.94 5704.94 5893.37
4 6216.25 7365.20 7529.83
5 7627.49 8702.30 9218.00
6 8780.90 10318.42 10778.79
7 9964.88 11134.48 11956.43
8 11444.60 12709.71 13343.57

Figure 6: Average distance covered a train in 24 hours on Roy Hill’s railway network.

Hill’s railway network in 24 hours are presented in Figure 6. The results for Roy Hill’s railway network
were found to be similar to the case of Sample railway network. The performance of GA Approach is
found to be better than other approaches.

4 Conclusion
We have presented a case study of a real-world real-time optimization task in supply chain management.

The case study involves the special situation of a private iron ore train network. These are quite
simple networks with essentially one main route from each mine (of a few different ones) down to a
single port. However, there are long sections of single track so that passing in different directions is
done via sidings. We sought to optimize the throughput of the network with a fixed number of trains
available only making decisions about the routing, halting and re-starting of trains in and out of sidings
and into junctions. Because there is no schedule of train departures from the mines or the port, there
is an important real-time element to this problem. Of course, the problem is one of serious financial
importance to the mining company and the local economy.

The purpose of the experiments was to compare the performance of typical non-linear programming,
operations research style approach to these problems with the less frequently used evolutionary com-
putation styles. We just used a simple iterative version of each to run the real-time control. We used a
few typical networks, one an actual network and we varied the number n of trains available across the
experiments. We compared the times to achieve a round trip of all n trains from port back to port.

The result was a demonstration of superior performance using the GA approach. In addition, results
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show that iron ore industry should improve their scheduling system for railway network because all
analyzed approaches performed better than the Industry Approach.

In future work we intend to extend these experiments to include ships’ scheduling on the port and
run simulations over multiple days to have a more realistic model.
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