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Abstract

We present fully formalized proofs of some central theorems from combinatorics. These
are Dilworth’s decomposition theorem, Mirsky’s theorem, Hall’s marriage theorem and the
Erdős-Szekeres theorem. Dilworth’s decomposition theorem is the key result among these.
It states that in any finite partially ordered set (poset), the size of a smallest chain cover and
a largest antichain are the same. Mirsky’s theorem is a dual of Dilworth’s decomposition
theorem, which states that in any finite poset, the size of a smallest antichain cover and
a largest chain are the same. We use Dilworth’s theorem in the proofs of Hall’s Marriage
theorem and the Erdős-Szekeres theorem. The combinatorial objects involved in these
theorems are sets and sequences. All the proofs are formalized in the Coq proof assistant.
We develop a library of definitions and facts that can be used as a framework for formalizing
other theorems on finite posets.

1 Introduction

Formalization of any mathematical theory is a difficult task because the length of a formal
proof blows up significantly. In combinatorics the task becomes even more difficult due to
the lack of structure in the theory. Some statements often admit more than one proof using
completely different ideas. Thus, exploring dependencies among important results may help in
identifying an effective order amongst them. Dilworth’s decomposition theorem, first proved by
R. P. Dilworth[6] in 1951, is a well-known result in combinatorics. It states that in any finite
partially ordered set (poset) the size of a smallest chain cover and a largest antichain are the
same. Since then, the theorem attracted significant attention and several new proofs [15, 19, 8]
were discovered. In addition to being an important structural result on posets, Dilworth’s
Theorem can be used to give intuitive and concise proofs of some other important results in
combinatorics such as Hall’s Theorem [10, 11, 4], the Erdős-Szekeres Theorem [7], and Konig’s
Theorem [3].

In this paper we present a fully formalized proof of Dilworth’s decomposition theorem.
Among the several proofs available we follow the proof by Perles [15] due to its clean and concise
reasoning steps. We then mechanize proofs of Hall’s Marriage theorem [11, 4] and the Erdős-
Szekeres theorem [7]. Proofs that we mechanize for these theorems essentially use Dilworth’s
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decomposition theorem. In these proofs a finite poset is constructed from the objects involved
and then Dilworth’s decomposition theorem is applied to obtain the result. These proofs are
explained in detail in Section 3-4. We also formalize a dual of Dilworth’s Theorem (Mirsky’s
Theorem [14]) which relates the size of an antichain cover and a chain in a poset.

Formalization of known mathematical results can be traced back to the systems Automath
and Mizar [9]. Mizar hosts the largest repository of formalized mathematics. Mizar system also
supports some built in automation to save time during proof development. However, this results
in a large kernel (core) and reduces our faith in the system. The Coq proof assistant[13, 5] deals
with this problem in a novel way. It separates the process of proof development from proof
checking. Some small scale proof automation is also possible in Coq. However, every proof
process finally yields a proof-term which is verified using a small kernel. Thus the part (kernel)
of the code we need to trust remains small. All the results discussed in this paper are fully
formalized in the Coq proof assistant. In addition to a small kernel, the Coq proof assistant also
has some other useful features such as dependent records and coercions. Dependent records are
used to pack mathematical objects and their properties in one definition. For example, in the
Coq standard library different components of a partial order and their properties are expressed
using a single definition of dependent record (PO). Similarly, coercions can be used to define
a hierarchy among mathematical structures. This avoids redefining similar things at different
places. The Coq system also hosts a standard library [2] that contains a large collection of
useful definitions and results. We use this facility and avoid new definitions unless absolutely
essential.

In this paper, we present the details of our mechanized proofs of Dilworth’s, Mirsky’s, Hall’s,
and the Erdős-Szekeres theorems. All the terms that appear in the formal statement of these
theorems are explained in Section 2 and Sections 4-6. The exact definitions of these terms in
Coq are listed in Section A (Appendix). Description of some useful results on sets and posets
appears in Section 3. Finally, we review related work in Section 7 and conclude in Section 8.

2 Definitions

Once a statement is proved in Coq, the proof is certified without having to go through the
proof-script. It is however necessary to verify whether the statement being proved correctly
represents the original theorem. Therefore the number of new definitions needed to understand
the theorem statement should be small. We have attempted to achieve this by reusing the
definitions from the Coq standard Library whenever possible. In this section we explain the
definitions of all the terms which appear in the formal statements of Dilworth’s and Mirsky’s
Theorem.

2.1 Definitions from the Standard Library

The Coq Standard Library[2] is well documented. We have used the Sets module from the
Standard Library, where a declaration S: Ensemble U is used to represent a set S.

• Sets are treated as predicates, i.e, x ∈ S iff S x is provable.

• Set membership is written as In S x instead of just writing S x.

• The Empty set is defined as a predicate Empty_set which is not provable anywhere.
Singleton x and Couple x y represent the sets {x} and {x, y} respectively.

A Partial Order is defined as a record type in the Coq standard library. It has four fields,
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Record PO (U : Type) : Type := Definition_of_PO {
Carrier_of : Ensemble U;
Rel_of : Relation U;
PO_cond1 : Inhabited U Carrier_of;
PO_cond2 : Order U Rel_of }.

For example, consider the following declaration,

Variable U:Type.

Variable P: PO U.

It creates a record P of type PO U. Here P can be treated as a poset with four fields. The
first field of P is accessed using the term Carrier_of _ P. It represents the carrier set of P. The
second field represents binary relation ≤ of the partially ordered set P. It is accessed using the
term Rel_of _ P. The term PO_cond1 _ P is a proof that the carrier set of P is a non-empty
set. Similarly, the term PO_cond2 _ P is a proof that ≤ is an order (i.e, reflexive, transitive
and antisymmetric).

2.2 New Definitions

Coercions and Finite partial orders

We extend the definition of poset to define finite partial orders (FPO) as a dependent record,

Record FPO (U : Type) : Type := Definition_of_FPO {
PO_of :> PO U ;
FPO_cond : Finite _ (Carrier_of _ PO_of ) }.

It has two components; a partial order and a proof that the carrier set of the partial order is
finite. Here, FPO is defined as a dependent record which inherits all the fields of type PO. Note
the use of coercion symbol :> in defining the first field of the record FPO. Here, PO_of acts
as a function and is applied automatically to any term of type FPO that appears in a context
where a term of type PO is expected. Hence, from now onward we can use an object of type
FPO in any context where an object of type PO is expected.

Chains and antichains as predicates

In the Coq Standard Library a chain is defined as a poset whose carrier set is totally ordered.

Record Chain : Type := Definition_of_chain {
PO_of_chain : PO U;
Chain_cond : Totally_ordered U PO_of_chain (@Carrier_of _ PO_of_chain)}.

However, using this definition it becomes difficult to say that a given set is a chain in two
different posets. In the proof of Dilworth’s theorem we frequently refer to a set in the context
of two different posets and wish to claim that the set is totally ordered in both the posets. Thus
we use a different definition for chain. A chain is defined using a predicate Is_a_chain_in. For
a finite partial order P: FPO U on some type U let, C := Carrier_of U P and R:= Rel_of U
P. Then,

Definition Is_a_chain_in (e: Ensemble U): Prop:= (Included U e C /\ Inhabited U e) /\ (∀
x y:U, (Included U (Couple U x y) e) → R x y \/ R y x).
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Here, a chain is a subset of P any two of whose elements are comparable. A subset of P in
which no two distinct elements are comparable is called an antichain. An antichain is defined
using the predicate Is_an_antichain_in. Note that, a chain and an antichain can have at most
one element in common. In a similar way we also define the following notions,

• A chain cover is a collection of chains whose union is the entire poset.

• An antichain cover is a collection of antichains such that their union is the entire poset.

• The width of a poset P, width(P ), is the size of a largest antichain in P.

• The height of a poset, height(P ), is the size of a largest chain in P.

• An element b ∈ P is called a maximal element if there is no a ∈ P such that b ≤ a.

• An element a ∈ P is called a minimal element if there is no b ∈ P such that b ≤ a.

The exact definitions that we use for these terms are listed in Section A(Appendix).

3 Some useful results on sets and posets

In this section we explain some general results on finite partial orders. These results are used at
more than one place in the formal proofs of these theorems. They are proved as Lemmas and
compiled in separate files. Most of the Lemma’s statements can be inferred from their names.
These Lemmas appear with the same name in the actual Coq files. Here we only provide an
English description of some of them.

Existence proofs

A large number of lemmas are concerned with the existence of a defined object. For example,
in our proof when we say “Let A be an antichain of the poset P...” we assume that there exists
an antichain for the poset P. However, in a formal system like Coq, we need a proof of existence
of such an object before we can instantiate it. Following is a partial list of such results:

Lemma-1 Chain_exists : There exists a chain in every finite partial order (FPO).
Proof. Trivial.

Lemma-2 Chain_cover_exists: There exists a chain cover for every FPO.
Proof. Trivial.

Lemma-3 Minimal_element_exists: The set minimal(P) is non-empty for every P: FPO.
Proof. Using induction on the size of P.

Lemma-4 Maximal_element_exists: The set maximal(P) is non-empty for every P: FPO.
Proof. Using induction on the size of P.

Lemma-5 Largest_element_exists: If a finite partial order is also totally ordered then there
exists a largest element in it.
Proof. The maximal element becomes the largest element and we know that there exists
a maximal element.
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Lemma-6 Minimal_for_every_y: For every element y of a finite partial order P there exists
an element x in P such that x ≤ y and x ∈ minimal(P).
Proof. Let X = {x : P |x ≤ y}. Then the poset (X,≤) will have a minimal element, say
x0. It is also a minimal element of P.

Lemma-7 Maximal_for_every_x: For every element x of a finite partial order P there exists
an element y in P such that x ≤ y and y ∈ maximal(P).
Proof. Let Y = {y : P |x ≤ y}. Then the poset (Y,≤) will have a maximal element, say
ym. It is also a maximal element of P.

Lemma-8 Largest_set_exists: There exists a largest set (by cardinality) in a finite and non-
empty collection of finite sets.
Proof. Consider the collection of sets together with the strict set-inclusion relation. This
forms a finite partial order. Any maximal element of this finite partial order will be a
largest set. Moreover, such a maximal element exists due to Lemma-4.

Lemma-9 exists_largest_antichain: In every finite partial order there exists a largest an-
tichain.
Proof. Note that this statement is not true for partial orders. The proof is similar to
Lemma-8.

Lemma-10 exists_largest_chain: In every finite partial order there exists a largest antichain.
Proof. Again, it is true only for finite partial orders. Proof is similar to Lemma-8.

Some other proofs

When dealing with sets the set-inclusion relation occurs more naturally than the comparison
based on the set sizes. Therefore, we defined a binary relations Inside (or ≺) on the collection
of all the finite partial orders.

• We say P1 ≺ P2 iff carrier set of P1 is strictly included in the carrier set of P2 and both
the posets are defined on the same binary relation.

In order to use well-founded induction we proved that the relation ≺ is well founded.

Lemma-11 Inside_is_WF: The binary relation Inside (i.e, ≺ ) is well founded on the set of
all finite partial orders.
Proof. Using strong induction on the size of finite partial orders.

Lemma-12 Largest_antichain_remains: If A is a largest antichain of P2 and P1 ≺ P2 then
A is also a largest antichain in P1 provided A ⊂ P1.
Proof. Assume otherwise, then there will be a larger antichain say A′ in P1. This will
also be larger in P2, which contradicts.

Lemma-13 NoTwoCommon: A chain and an antichain can have at most one element in
common.
Proof. Trivial.

Lemma-14 Minimal_is_antichain: Minimal(P) is an antichain in P.
Proof. Trivial.

Lemma-15 Maximal_is_antichain: Maximal(P) is an antichain in P.
Proof. Trivial.

47



Formalization of some central theorems in combinatorics Abhishek Singh

Lemma-17 exists_disjoint_cover: If CV is a smallest chain cover of size m for P, then there
also exists a disjoint chain cover CV

′ of size m for P.
Proof. Using induction on m.

Lemma-18 Largest_chain_has_maximal: In any finite poset P, maximal(P) shares an ele-
ment with every largest chain of P.
Proof. First we observe that every chain in a finite poset has a largest element. We
prove that this element is also in maximal(P).

Lemma-19 Largest_chain_has_minimal: In any finite poset P, minimal(P) shares an element
with every largest chain of P.
Proof. Similar to the proof of Lemma-18.

Lemma-20 Pre_ES: If P is a poset with r.s+ 1 elements, then it has a chain of size r + 1 or
an antichain of size s+ 1.
Proof. There can be two cases; either there is an antichain A of size s+ 1 or the size of
a largest antichain is s. In the first case statement is trivially true. In the second case,
using Dilworth’s theorem we know that there exists a chain cover CV of size s. Since CV
covers the whole poset P and its size is r.s + 1, there must be an chain of size at least
r + 1 in CV .

4 Mirsky’s theorem and Dilworth’s decomposition theorem

4.1 Mirsky’s theorem

Mirsky’s theorem relates the size of an antichain cover and a chain in a poset. The definitions
we have seen so far are sufficient to express the formal statement of Mirsky’s theorem in Coq.

Theorem Dual_Dilworth: ∀ (P: FPO U), Dual_Dilworth_statement P.

where, Dual_Dilworth_statement is defined as,

Definition Dual_Dilworth_statement:= fun (P: FPO U) ⇒ ∀ (m n: nat), (Is_height P m) →
(∃ cover: Ensemble (Ensemble U), (Is_a_smallest_antichain_cover P cover) /\ (cardinal
_ cover n)) → m=n.

It states that in any poset the maximum size of a chain is equal to the minimum number of
antichains in any antichain cover. In other words, if c(P ) represents the size of a smallest
antichain cover of P, then height(P ) = c(P ).
Proof : The equality will follow if one can prove:

1. Size of a chain ≤ Size of an antichain cover, and

2. There is an antichain cover of size equal to height(P ).

It is easy to see why (1) is true. Any chain shares at most one element with each antichain from
an antichain cover. Moreover, every element of the chain must be covered by some antichain
from the antichain cover. Hence, the size of any chain is smaller than or equal to the size of
any antichain cover.

We will prove (2) using strong induction on the size of the largest chain of P . Let m be the
size of the largest chain in P, i.e, m = height(P ).
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• Induction hypothesis: For all posets P ′ of height at most m− 1, there exists an antichain
cover of size equal to height(P ′).

Induction Step: Let M denote the set of all maximal elements of P , i.e, M = maximal(P).
Observe that M is a non-empty antichain and shares an element with every largest chain of P .
Consider now the partially ordered set (P −M,≤). The length of the largest chain in P −M
is at most m − 1. On the other hand, if the length of the largest chain in P −M is less than
m− 1, M must contain two or more elements that are members of the same chain, which is a
contradiction. Hence, we conclude that the length of largest chain in P −M is m− 1. Using
induction hypothesis there we get an antichain cover AC of size m− 1 for P −M . Thus, we get
an antichain cover AC ∪ {M} of size m for P . �

Note that in the induction step of the above proof we assume that maximal(P) shares an
element with every largest chain of P. However, in the formal setting we need a proof of this
fact. It is proved as Lemma-18 in Section 3.

4.2 Dilworth’s decomposition theorem

Dilworth’s decomposition theorem is the central result in our formalization. It relates the size
of a chain cover and an antichain in a poset. We prove the following formal statement,

Theorem Dilworth: ∀ (P: FPO U), Dilworth_statement P.

where Dilworth_statement is defined as,

Definition Dilworth_statement:= fun (P: FPO U)⇒ ∀ (m n: nat), (Is_width P m) → (∃
cover: Ensemble (Ensemble U), (Is_a_smallest_chain_cover P cover) /\ (cardinal _
cover n)) → m=n.

It states that in any poset, the maximum size of an antichain is equal to the minimum number
of chains in any chain cover. In other words, if c(P ) represents the size of a smallest chain cover
of P, then width(P ) = c(P ).

The statement of Dilworth’s theorem appears dual to the statement of Mirsky’s theorem.
However, the proof of Dilworth’s theorem is more involved. The key idea in proving Mirsky’s
theorem was to identify an antichain which intersects every largest chain (Lemma-18). It is
however not easy to identify a chain in a poset which intersects every largest antichain. This is
the main difficulty in translating the proof of Mirsky’s theorem to a proof of Dilworth’s theorem.
Therefore, we mechanize a different proof of Dilworth’s theorem due to Perles[15].
Proof (Perles): The equality width(P ) = c(P ) will follow if one can prove:

1. Size of an antichain ≤ Size of a chain cover, and

2. There is a chain cover of size equal to width(P ).

Again, it is easy to see why (1) is true. Assume otherwise, i.e., there is an antichain A of size
bigger than the size of a smallest chain cover CV . Then A will have more elements than the
number of chains in CV . Hence, there must exist a chain C in CV which covers two elements of
A. However, this cannot be true since a chain and an antichain (in this case C and A) can have
at most one element in common.

Proof of (2) is more involved. We will prove (2) using strong induction on the size of P . Let
m be the size of the largest antichain in P, i.e., m = width(P ).

• Induction hypothesis: For all posets P ′ of size at most n, there exists a chain cover of size
equal to width(P ′).

49



Formalization of some central theorems in combinatorics Abhishek Singh

Induction step: Fix a poset P of size at most n+1. Let maximal(P) and minimal(P) represent
respectively the set of all maximal and the set of all minimal elements of P. Now, one of the
following two cases might occur,

1. There exists an antichain A of size m which is neither maximal(P) nor minimal(P).

2. No antichain other than maximal(P) or minimal(P) has size m.

Case-1: For the first case we define the sets P+ and P− as follows:

P+ = {x ∈ P : x ≥ y for some y ∈ A}
P− = {x ∈ P : x ≤ y for some y ∈ A}

Here P+ captures the notion of being above A and P− captures the notion of being below
A. Note that the elements of A are both above and below A, i.e, A ⊆ P+ ∩ P−. For any
arbitrary element x ∈ P

• If x ∈ A then x ∈ P+ ∩ P− and hence x ∈ P+ ∪ P−.

• If x /∈ A then x must be comparable to some element in A; otherwise {x} ∪ A will be an
antichain of size m+ 1. Hence, if x /∈ A then x ∈ P+ ∪ P−.

Therefore, P+ ∪ P− = P . Since there is at least one minimal element not in A, P+ 6= P .
Similarly P− 6= P . Thus |P+| < |P | and |P−| < |P |, hence we will be able to apply induction
hypothesis to them. Observe that A is also a largest antichain in the poset restricted to P+;
because if there was a larger one, it would have been larger in P also. Therefore by induction
there exists a chain cover of size m for P+, say P+ = ∪m

i=1Ci. Similarly, there is a chain cover
of size m for P−, say P− = ∪m

i=1Di.
Elements of A are the minimal elements of the chains Ci and the maximal elements of the

chains Di. Therefore we can join the chains Ci and Di together in pairs to form m chains which
form a chain cover for the original poset P .

Case-2: In this case we can’t have an antichain of size m which is different from both
maximal(P) and minimal(P). Consider a minimal element x. Choose a maximal element y such
that x ≤ y. Such a y always exists. Remove the chain {x, y} from P to get the poset P ′. Then
P ′ contains an antichain of size m − 1. Also note that P ′ can’t have an antichain of size m.
Because if there was an antichain of size m in P ′, then that would also be an antichain in P
which is different from both maximal(P) and minimal(P), and we would have been in the first
case (i.e., Case-1). Hence by induction hypothesis we get a chain decomposition of P ′ of size
m− 1. These chains, together with {x, y}, give a decomposition of P into m chains. �

We mechanize the above proof in Coq with a slight modification. Instead of using induction
on the cardinality of posets we use well-founded induction on the strict set-inclusion relation.
When working with the Ensemble module of the Coq standard library it is easy to deal with the
set-inclusion relation compared to the comparison based on set cardinalities. Thus, we defined
a binary relations Inside (or ≺) on the collection of all the finite partial orders.

• We say P1 ≺ P2 iff carrier set of P1 is strictly included in the carrier set of P2 and both
the posets are defined on the same binary relation.

Then to use well-founded induction we proved that the relation ≺ is well founded. This is
explained as Lemma-11 in Section 3.
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In the formalization of above proofs we use the principle of excluded middle at many places.
At certain points, we also need to extract functions from relations. Therefore, we import the
Classical and ClassicalChoice modules of the standard library, which assumes the following
three axioms:

Axiom classic : ∀ P:Prop, P \/ ~ P.

Axiom dependent_unique_choice : ∀ (A:Type) (B:A → Type) (R:∀ x:A, B x → Prop), (∀ x
: A, ∃! y : B x, R x y) →(∃ f : (∀ x:A, B x), ∀ x:A, R x (f x)).

Axiom relational_choice : ∀ (A B : Type) (R : A→B→Prop), (∀ x : A, ∃ y : B, R x y) → ∃
R’ : A→B→Prop, subrelation R’ R /\ ∀ x : A, ∃! y : B, R’ x y.

5 Hall’s Marriage Theorem

5.1 Bipartite graphs

A bipartite graph is a triple (L, R , E) where L ∩ R = φ, and E consists of pairs from L × R.
Elements of L ∪ R are called vertices and elements of E are called edges. Here, we consider
only finite bipartite graphs. In Coq, we define it as a dependent record.

Record Bipar_Graph: Type := Def_of_BG {
Graph_of_BG:> Finite_Graph ;
L_of: Ensemble U;
R_of: Ensemble U;
LR_Inhabited: Inhabited _ L_of /\ Inhabited _ R_of;
LR_Disj: Disjoint _ L_of R_of;
LR_Union: Vertices_of (Graph_of_BG ) = (Union _ L_of R_of);
LR_Rel: ∀ x y: U, (Edge_Rel_of (Graph_of_BG )) x y → (In _ L_of x /\ In _ R_of
y) }.

Edges are defined as a binary relation on the vertices.

• The neighborhood of a set S ⊂ L, denoted N(S), is the set of all those vertices that are
in some edge containing a vertex from S, i.e.,
N(S) = {v ∈ R : ∃u ∈ L, (u, v) ∈ E}.

• A matching is a collection of disjoint edges, i.e., no two edges in a matching have a
common vertex.

• A matching is said to be L-perfect if each vertex in L is part of some edge of the matching.

In Coq we define these terms as N (S), Is_a_matching and Is_L_Perfect. The exact defini-
tions appear in Section A(Appendix).

5.2 Hall’s Marriage Theorem

Let G = (L,R,Edge) be a bipartite graph and V = L ∪R. Then we have,

Theorem Halls_Thm: (∀(S: Ensemble U), Included _ S L → (∀ m n :nat,(cardinal _ S m
/\ cardinal _ (N S) n) → m <=n ) ) ↔ (∃ Rel:Relation U, Included_in_Edge Rel /\
Is_L_Perfect Rel).
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where, Included_in_Edge is defined as,

Definition Included_in_Edge (Rel: Relation U): Prop := ∀ x y:U, Rel x y → Edge x y.

It states that, for any bipartite graph G = (L,R,E), ∀S ⊂ L, |N(S)| ≥ |S| if and only if ∃ an
L-perfect matching.
Proof : We prove the “only if” (forward direction) part of the theorem, the “if” part being
trivial. Once we have Dilworth’s theorem, a proof of Hall’s theorem follows rather easily. Turn
the bipartite graph (L,R,E) into a poset P whose elements are vertices of L∪R and the relation
is the reflexive closure of the edge relation. One can imagine the bipartite graph as the Hasse
diagram of poset P .

First, we prove that R is a largest antichain. Fix any antichain A = AL ∪ AR where AL,AR

are in L,R respectively. Now, N(AL) is disjoint from AR as A is an antichain. Hence, |A| =
|AL| + |AR| ≤ |N(AL)| + |AR| ≤ |R|. Here the first inequality follows from the hypothesis
∀S ⊂ L, |S| ≤ |N(S)|.

Now, from Dilworth’s theorem, there is a chain cover C of size |R|. Without loss of generality,
the chains in C are disjoint. Each chain has to have an element of R. If we restrict attention to
the two element chains in C, they form an L-perfect matching. �

Note that in the above proof Dilworth’s theorem only assures the existence of a chain cover
C of size |R|. However, we claim that without loss of generality the chains in C are disjoint.
This is a hidden assumption and needs a justification in the formal proof. Just by looking at
the informal proof of Hall’s theorem one might consider proving the following statement which
justifies the claim,

• In any finite poset P, if C is a chain cover of size |R| then there exists a disjoint chain
cover C′ of size |R| .

It however turns out that the above statement is too strong. For example, let P = (C,R) be
a poset where C = {a, b, c} and R is the reflexive and transitive closure of the binary relation
R′ = {(a, b)}. Now consider C = {{a}, {b}, {c}, {a, b}}, it is clearly a chain cover of size 4.
However, there can’t be a disjoint chain cover of size 4 for the poset P. Therefore, we consider
the following weaker statement,

• In any finite poset P, if C is a smallest chain cover of size |R| then there exists a disjoint
chain cover C′ of size |R|.

This statement is proved as Lemma-17 in Section 3. Since Dilworth’s theorem assures the
existence of a smallest chain cover C of size |R| we use Lemma-17 in the formal proof of Hall’s
Marriage theorem to justify the existence of a disjoint chain cover.

Sequence of distinct representative (SDR)

The Hall’s theorem on bipartite graph can be used to prove the original form of Hall’s the-
orem which talks about the representation of each set in a collection of finite sets. Let
S = {S1, . . . , Sn} be a family of sets and X = ∪

i≤n

Si.

• A sequence of distinct representatives (SDR) for S is a sequence {x1, . . . , xn} of pairwise
distinct elements of X such that xi ∈ Si, 1 ≤ i ≤ n.

Hall’s Marriage theorem then states that,

• S has an SDR iff the union of any k members of S contains at least k elements.
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The above result easily follows from Hall’s theorem on graphs. Consider the bipartite graph
(S,X,E) where E consists of all the pairs (Si, ai) where ai is a member of set Si. An L-perfect
matching in this graph corresponds to an SDR for S and the neighborhood N(S) becomes
∪

Si∈S

Si. Hence the above statement gets transformed to the statement of Hall’s theorem on

graphs.
We closely follow this line of reasoning to prove the SDR version of Hall’s theorem in Coq.

However, instead of considering a sequence of distinct representatives we consider a relation
that assures the SDR criterions. It reduces the overheads of dealing with sequences. In this
setting we have,

Theorem The_Halls_Thm: exists_a_one_one_map ↔ union_is_at_least_m.

where,

exists_a_one_one_map is an abbreviation for, ( ∃ Rel’: Ensemble U → U→ Prop, (∀
(x:Ensemble U) (y:U), Rel’ x y → In _ x y) /\ ( ∀ (x y:Ensemble U) (z: U), (Rel’ x z /\
Rel’ y z)→ x=y) /\ (∀ x: Ensemble U, In _ S x → (∃ y: U, Rel’ x y))) and,

union_is_at_least_m is an abbreviation for, (∀ S’: Ensemble (Ensemble U), Included _
S’ S → ( ∀ m n:nat, (cardinal _ S’ m /\ cardinal _ (Union_over S’) n) → m<= n) )

Note that the existence of such a relation Rel’ assures the existence of a one-one map from S
to X . Moreover, Rel’ is contained in the set membership relation; because Rel’ x y → In _ x
y. Hence, the existence of such relation implies the existence of an SDR and vice-versa.

6 Sequences and the Erdős-Szekeres Theorem

6.1 Finite Sequence of Integers

A sequence (C,≺) consists of a non-empty set C together with a binary relation ≺ satisfying
asymmetry and transitivity properties. Moreover, any two distinct elements of C must be
related with this ordering relation. Note the difference with partial orders, the relation ≺
is asymmetric instead of being antisymmetric. This means for any two elements a, b ∈ C,
a ≺ b →∼ b ≺ a. We define a sequence of integers in Coq as a dependent record,

Record Int_seq:Type:= Def_of_seq {
C_of: Ensemble nat;
R_of: Relation nat;
Seq_cond1: Inhabited _ (C_of);
Seq_cond2: Finite _ (C_of);
Seq_cond3: Transitive _ R_of;
Seq_cond4: Asymmetric _ R_of;
Seq_cond5: Total_Order R_of C_of ; }.

Since we are working only with finite sequences we declare it as Seq_cond2 in the definition of
Int_seq.

6.2 The Erdős-Szekeres Theorem

For a finite sequence s: Int_seq we prove,
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Theorem Erdos_Szeker: ∀ m n, cardinal (C_of s) (m*n+1) → ((∃ s1: Int_seq, sub_seq s1
s /\ Is_increasing s1 /\ cardinal (C_of s1) (m+1)) \/ (∃ s2: Int_seq, sub_seq s2 s /\
Is_decreasing s2 /\ cardinal (C_of s2) (n+1))).

Here Is_increasing and Is_decreasing capture the notions of increasing and decreasing se-
quences respectively. That s1 is a subsequence of s2 is represented by predicate sub_seq s1 s2.
The exact definitions of these terms are given in Section A(Appendix).

The Erdős-Szekeres theorem then states that for any two natural numbers m and n, every
sequence of m.n+ 1 distinct integers contains an increasing subsequence of length m + 1 or a
decreasing subsequence of length n+ 1.
Proof : Let (C,≺) be the sequence where |C| = m.n+ 1. To prove this theorem, we construct
a poset (C,≤) where for any two x, y ∈ C, x ≤ y iff x ≺ y and x is less than y as numbers.
Note that,

• A chain in this partial order (C,≤) is a monotonically increasing subsequence in (C,≺),
and

• An antichain in (C,≤) is a monotonically decreasing subsequence in (C,≺).

Now, we complete the proof of Erdős-Szekeres theorem by proving the following result on general
posets,

• If P is a poset with m.n + 1 elements, then it has a chain of size at least m + 1 or an
antichain of size at least n+ 1.

This statement is proved as Lemma-20 in Section 3. It follows easily from the Dilworth’s
theorem. There can be two cases; either there is an antichain A of size n + 1 or the size of a
largest antichain is n. In the first case statement is trivially true. In the second case, using
Dilworth’s theorem we know that there exists a chain cover CV of size n. Since CV covers the
whole poset P and its size is m.n+ 1, there must be a chain of size at least m+ 1 in CV . This
completes the proof. �

Wrapping Up

This work is done in the Coq Proof General (Version 4.4pre). We have used the Company-Coq
extension [16] for the Proof General. The Coq code for this work is available at [1]. The code
is split into different files. BasicFacts.v and BasicFacts2.v contains some useful properties on
numbers and sets. PigeonHole.v contains some variants of the Pigeonhole Principle. Most of
the definitions and results on finite partial orders are proved in FPO_Facts.v, FPO_Facts2.v

and FPO_Facts3.v. Proofs of Dilworth’s theorem and Mirsky’s theorems appear in the files
FiniteDilworth.v and Dual_Dilworth.v respectively. Halls_Thm.v contains the proof of Hall’s
theorem on bipartite graphs. The second form of Hall’s theorem on sequence of distinct repre-
sentatives (SDR) is proved in Marriage_Thm.v. Proof of the Erdős-Szekeres theorem appears
in Erdos_Szeker.v.

7 Related Work

Rudnicki [18] presents a formalization of Dilworth’s decomposition theorem in Mizar. In the
same paper they also provide a proof of the Erdős-Szekeres theorem using Dilworth’s theorem. A
separate proof of the Hall’s marriage theorem in Mizar appeared in [17]. Jiang and Nipkow [12]
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also presented two different proofs of Hall’s theorem in Isabelle/HOL. We have used a different
theorem prover and formalized all of these results in a single framework. Our work is closest to
the work of [18]. However, we added extra results (Hall’s theorem) in the same framework. The
proof we mechanize for Hall’s theorem uses Dilworth’s theorem and we formalize Hall’s theorem
in both of its popular forms. The first form deals with the matching in a bipartite graph and
the second form is about sequence of distinct representatives (SDR) for a collection of finite
sets. We also provide a clear compilation of some useful results on finite sets and posets that
can be used for mechanizing other important results from the combinatorics of finite structures.

8 Conclusions

Formalization of any mathematical theory involves significant time and effort because the size
of formal proofs blows up significantly. In such circumstances exploring dependencies among
important results might save some time and effort. Dilworth’s decomposition theorem is an
important result on partially ordered sets (poset). It has been used successfully to give concise
proofs of some other important results from combinatorics. Here we use Dilworth’s theorem on
posets to mechanize proofs of two other well known results on sets and sequences. The main
contributions of this paper are:

1. Fully formalized proofs of Dilworth’s decomposition theorem and Mirsky’s theorem in
Coq, together with an explanation of all the definitions and the theorem statement.

2. Fully mechanized proofs of Hall’s Marriage theorem and the Erdős-Szekeres theorem using
Dilworth’s decomposition theorem.

3. A clear compilation of some general results and definitions which could be used as a
framework in the formalization of other similar results.

The Coq code for this work is available at [1]. One can further explore the dependencies of
these mechanized results with other well known results in combinatorics. It can save a lot of
time and effort in mechanizing their proofs.
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A Appendix

Partial Orders, chains and antichains

For a finite partial order P: FPO U on some type U let,

C := Carrier_of U P and,

R:= Rel_of U P.

Then, we have the following definitions:

1. Definition Is_a_chain_in (e: Ensemble U): Prop:= (Included U e C /\ Inhabited U e)
/\ (∀ x y:U, (Included U (Couple U x y) e) → R x y \/ R y x).

2. Definition Is_an_antichain_in (e: Ensemble U): Prop := (Included U e C /\ Inhabited
U e) /\ (∀ x y:U, (Included U (Couple U x y) e) → (R x y \/ R y x) → x=y).

3. Inductive Is_largest_chain_in (e: Ensemble U): Prop:= largest_chain_cond: Is_a_
chain_in e → (∀ (e1: Ensemble U) (n n1:nat), Is_a_chain_in e1 → cardinal _ e n →
cardinal _ e1 n1 → n1 ≤ n) → Is_largest_chain_in e.

4. Inductive Is_largest_antichain_in (e: Ensemble U): Prop:= largest_antichain_cond:
Is_an_antichain_in e → (∀ (e1: Ensemble U) (n n1: nat), Is_an_antichain_in e1 →
cardinal _ e n → cardinal _ e1 n1 → n1 ≤ n ) → Is_largest_antichain_in e.
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5. Inductive Is_a_chain_cover(cover:Ensemble(Ensemble U)): Prop:= cover_cond: (∀ (e:
Ensemble U), In _ cover e → Is_a_chain_in e) → (∀ x:U, In _ C x → (∃ e: Ensemble
U, In _ cover e /\ In _ e x)) → Is_a_chain_cover cover.

6. Inductive Is_an_antichain_cover (cover: Ensemble (Ensemble U)): Prop:= AC_cover_
cond: (∀ (e: Ensemble U), In _ cover e → Is_an_antichain_in e) → (∀ x:U, In _ C x
→ (∃ e: Ensemble U, In _ cover e /\ In _ e x)) → Is_an_antichain_cover cover.

7. Inductive Is_a_smallest_chain_cover (scover: Ensemble (Ensemble U)): Prop:= small-
est_cover_cond: (Is_a_chain_cover P scover) → (∀(cover: Ensemble (Ensemble U)) (sn
n: nat), (Is_a_chain_cover P cover /\ cardinal _ scover sn /\ cardinal _ cover n) →
(sn ≤ n)) → Is_a_smallest_chain_cover P scover.

8. Inductive Is_a_smallest_antichain_cover (scover: Ensemble (Ensemble U)): Prop:=
smallest_cover_cond_AC: (Is_an_antichain_cover P scover) → (∀(cover: Ensemble
(Ensemble U)) (sn n: nat), (Is_an_antichain_cover P cover /\cardinal _ scover sn /\
cardinal _ cover n) → (sn ≤ n)) → Is_a_smallest_antichain_cover P scover.

9. Inductive Is_height (n: nat) : Prop:= H_cond: (∃ lc: Ensemble U, Is_largest_chain_in
P lc /\ cardinal _ lc n) → (Is_height P n).

10. Inductive Is_width (n: nat) :Prop := W_cond: (∃ la: Ensemble U, Is_largest_antichain
_in P la /\ cardinal _ la n) → (Is_width P n).

Bipartite graphs and matching

1. Definition N (S: Ensemble U): Ensemble U:= fun (y: U) ⇒ ∃ x:U, In _ S x /\ Edge x y.

2. Definition Is_a_matching (R: Relation U): Prop:= ( ∀ x y z: U, ((R x z /\ R y z)\/ (R
z x /\ R z y)) → x=y).

3. Definition Is_L_Perfect (Rel: Relation U): Prop:= (Is_a_matching Rel /\ (∀ x: U, In
_ L x → (∃ y: U, Rel x y))).

Increasing and decreasing subsequences

1. Definition Asymmetric := fun (U : Type) (R : Relation U) ⇒ ∀ x y : U, R x y → ~ R y
x.

2. Definition Total_Order (U:Type )(R: Relation U)(S: Ensemble U): Prop:= ∀ s1 s2, (In
_ S s1 /\ In _ S s2) → ( R s1 s2 \/ R s2 s1).

3. Definition sub_seq (s1 s2: Int_seq): Prop:= Included _ (C_of s1) (C_of s2)/\ (∀ m n,
(In _ (C_of s1) m /\ In _ (C_of s1) n ) → R_of s1 m n → R_of s2 m n ).

4. Definition Is_increasing (s: Int_seq): Prop:= ∀ m n, (In _ (C_of s) m /\ In _ (C_of
s) n ) → R_of s m n → m < n.

5. Definition Is_decreasing (s: Int_seq): Prop:= ∀ m n, (In _ (C_of s) m /\ In _ (C_of
s) n ) → R_of s m n → m > n.
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