
Satisfiability Checking and Query Answering for

Large Ontologies

Christoph Weidenbach1 and Patrick Wischnewski12

1 Max Planck Institute for Informatics,
Saarbrücken, Germany

2 Universität des Saarlandes,
Saarbrücken, Germany

{weidenbach,wischnew}@mpi-inf.mpg.de

Abstract

In this paper we develop a sound, complete and terminating superposition calculus
plus a query answering calculus for the BSH-Y2 fragment of the Bernays – Schönfinkel
Horn class of first-order logic. BSH-Y2 can be used to represent expressive ontologies. In
addition to checking consistency, our calculus supports query answering for queries with
arbitrary quantifier alternations. Experiments on BSH-Y2 (fragments) of several large
ontologies show that our approach advances the state of the art.

1 Introduction

In addition to research in description logics [1], reasoning in ontologies has recently drawn a lot
of attention in automated theorem proving [4, 19, 16, 7] as well as database theory [9, 3]. The
approaches differ in the expressiveness of the considered logics, the supported reasoning tasks
as well as the quality of the reasoning procedures. A focus in description logics is on the sound
and complete computation of the concept hierarchy, whereas theorem proving and data base
approaches typically consider existentially quantified queries. Concerning the theorem proving
approaches we can distinguish complete methods from incomplete ones. Whereas the former
guarantee completeness and consistency of the ontology [19], the latter consider very expressive
ontologies [4, 16, 7] and aim at providing useful query answering.

The approach of this paper is to keep completeness plus consistency checking, but to push
the border of expressivity. Previously [19] we have shown effective satisfiability testing for the
language BSH-Y1 consisting of clauses of the form

→ P (a1, . . . , an) Ground Fact R(x, y), R(y, z)→ R(x, z) Transitivity

S(x)→ T (x) Subsort Relation R(x, y), R(x, z)→ y ≈ z Functionality

where all function symbols are constants enjoying the unique name assumption. The language
covers the YAGO ontology. We have shown that we can decide satisfiability of the YAGO
ontology consisting of 10m clauses over 2m constants of the above form in about one hour by
superposition based saturation. Existentially quantified queries with respect to the saturated
YAGO ontology can then typically be answered in the range of seconds.

In this paper we consider an extended language, called BSH-Y2, where in addition to the
above clauses we consider clauses of the form

P1(t11, . . . , t1n1), . . . , Pk(tk1, . . . , tknk
)→ Negative Clauses

P1(t11, . . . , t1n1
), . . . , Pk(tk1, . . . , tknk

)→ P (s1, . . . , sm) Defined Relations

P. Fontaine, R.A. Schmidt, S. Schulz (eds.), PAAR-2012 (EPiC Series, vol. 21), pp. 163–177 163

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

where the tij , sj are either constants or variables and all variables of the sj show up in some
tij (range restriction). Due to a further developed superposition calculus (Section 3) and its
implementation, the extended BSH-Y2 language is still suitable to decide large ontologies. We
tested our implementation on three large ontologies: the extension YAGO++ of the YAGO
ontology fully covered by BSH-Y2 (10m clauses), the BSH-Y2 fragment of the SUMO ontology
as it appears in the TPTP library [12], serving about 90% of the TPTP SUMO version (82k
clauses, SUMO-Y2), and on the CYC ontology as it appears in the TPTP library [13], serv-
ing about 30% of the TPTP CYC version (1m clauses, CYC-Y2). We considered the SUMO
ontology and the CYC ontology from the CASC–23 competetion [20]. Spass-Y2 can check con-
sistency for the YAGO++ and SUMO-Y2 ontologies, where we found 2 logical inconsistencies
in SUMO-Y2. So far we have not been able to check consistency of CYC-Y2. We stopped after
finding and debugging 35 logical inconsistencies. For further details, see Section 5.

Furthermore, we provide complete reasoning support for queries with arbitrary quantifier
alternations, introduced in Section 4. Again queries are typically answered in the range of sec-
onds with respect to the minimal model of a saturated ontology via a special query answering
calculus. Note that then, completeness turns into soundness for queries with quantifier alter-
nations. For example, answering a query of the form ∃x ∀y Φ requires complete reasoning for
the universal quantifier in order to obtain a sound result for the overall query. In Section 5,
we provide experimental data for query answering with respect to YAGO++ and SUMO-Y2.
The paper ends with a short summary and further discussion of related work. The proofs of
the theorems are available in a technical report [23].

2 Preliminaries

In this paper we follow the notations from [21]. We assume a first-order language over a
signature Σ as usual. We use x, y, z to denote variables, a, b and c to denote constants, s, t, l,
r to denote terms P , Q, S to denote predicate symbols, A, B to denote atoms C, D to denote
clauses and N to denote a set of clauses. Let vars be the function returning all variables of a
term, an atom, and a clause, respectively. We write σ for a substitution.

We only consider Horn clauses which we write in implication form Γ → ∆ with Γ is a
multiset of literals and ∆ is either the empty set or a singleton set containing one atom. We
call a positive ground unit clause (→ A) a fact and a negative ground unit clause (A →) a
negative fact. For the empty clause we write 2.

An inference is a rule of the form

C1 . . . Cn

D

where the clause D can be derived from the premises C1, . . . , Cn. We say an inference is ground
iff all clauses C1, . . . , Cn and D are ground. An inference system is a collection of inference
rules. As usual for the superposition calculus, inferences will be restricted to maximal positive
literals and negative literals that are either maximal or selected.

We say that a ground clause C is redundant with respect to a set of clauses N if there exists
a set {C1, . . . , Ck} of ground instances of clauses from N such that C is true in every model of
{C1, . . . , Ck} and C � Cj , for all j with 1 ≤ j ≤ k. A non-ground clause is called redundant if
all its ground instances are.

A ground inference π is redundant with respect to N if either one of its premises is redundant
in N , or else there exists a set {C1, . . . , Ck} of ground instances of clauses from N such that
the conclusion of π is true in every model of {C1, . . . , Ck} and C � Cj , for all j with 1 ≤ j ≤ k,

164

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

where C is the maximal premise of π. A non-ground inference is called redundant if all its
ground instances are redundant.

We say that a set of clauses N is saturated up to redundancy with respect to some inference
system, if all inferences from N are redundant.

A reduction rule reduces the search space by deleting clauses or by reducing clauses to
simpler ones. A reduction is denoted as

R C1 . . . Cn

D1

...
Dm

where the clause above the bar C1, . . . , Cn are replaced by the clauses below the bar D1, . . . , Dm.
A reduction rule implements a special redundancy criteria.

A Herbrand interpretation I is a set of ground atoms. Each ground atom A is called true in
I if A ∈ I. It is called false in I if A 6∈ I. A negated atom ¬A is true in I if A 6∈ I. A ground
clause C is called true in I if one of its literals is true in I. We write I |= C in this case.

2.1 Admissible Term Ordering

For reasoning in large domain problems efficiently handling transitivity is important due to the
fact that the standard superposition approach is too prolific in this context; it computes the
whole transitive closure. The chaining calculus [2] has been designed for efficiently dealing
with transitivity in general by avoiding the computation of the transitive closure in many cases.
We have integrated the chaining calculus into our new reasoning calculus.

The chaining calculus is defined in terms of an extension of the usual reduction ordering on
terms. This extension is called admissible and defined as follows.

An ordering � on ground terms and literals is called admissible if

• it is well-founded and total on ground terms and literals,

• it is compatible with reduction on maximal subterms, i.e. L � L′ whenever L and L′ contain
the same transitive predicate symbol Q, and the maximal subterm of L′ is strictly smaller
than the maximal subterm of L,

• it is compatible with goal reduction, i.e.

– ¬A � A for all ground atoms A,

– ¬A � B whenever A is an atom Q(s, t) and B is an atom Q(s′, t′), such that Q is a
transitive predicate and max (s, t) � max (s′, t′),

– ¬A � ¬B whenever A is an atom Q(s, s) and B atom Q(s, t) or Q(t, s), where Q is
a transitive predicate and s � t.

An ordering on ground clauses is called admissible if it is the multiset extension of an
admissible ordering on literals.

For implementing an actual admissible ordering a triple (maxL, pL,minL) is associated with
each literal L. Two literals are compared by lexicographically comparing their associated triples.
For the comparison of the first and last component of the triples the superposition term ordering
� is used and for comparing the middle component the ordering 1 > 0 is used. The individual
members of the triples are defined as follows: If L is of the form Q(s, t) for a transitive predicate

165

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

Q we set maxL to the maximum of s and t, and minL to the minimum of the two terms (with
respect to �). If L is of the form A or ¬A for some atom A the top symbol of which is not a
transitive predicate, we set maxL = A and minL = >, where > is special symbol minimal in
the term ordering �. We set pL = 1, if L is negative, and 0 otherwise.

2.2 Minimal Model

The chaining calculus assumes a given clause set N which does not contain any transitivity
axioms. Instead, it assumes that the respective predicates are marked as transitive. These
predicates are treated specially by the chaining rules. The candidate model for a set of Horn
clauses that entails the transitive closure is defined in terms of rewrite proofs. The rewrite
proof from the term l to r via the transitive predicate Q, is denoted as l ⇓RC

Q r. A detailed
introduction to transitive rewrite proofs can be found in [2].

The following defines a minimal candidate model for a set N of Horn clauses which is also a
model of the transitive closure of N . Assume that N does not contain any transitivity axioms
and assume that the respective transitive predicates are marked as transitive.

Definition (Candidate Interpretation). Let N be a set of clauses from the BSH-Y2 without
transitivity axioms such that the transitive predicates of N are in the set Tr. Further, let �
be an admissible ordering. The following defines a candidate interpretation for N and Tr. Let
C = Γ→ A be a ground instance of a clause from N . Suppose EC′ and RC′ have been defined
for all ground clause C ′ with C � C ′. Then

RC =
⋃

C � C′

EC′

if (i) A � Γ, (ii) A 6∈ R∗C , (iii) Γ ⊆ R∗C , and (iv) no literal is selected in C then

EC = {A}

otherwise EC = ∅. If EC 6= ∅, we say that C is productive and produces A.

R∗C = RC ∪ {Q(l, r) : l ⇓RC

Q r ∧Q ∈ Tr}

The interpretation NI of N is defined as NI =
⋃

C R
∗
C .

Note, this definition is also defined for sets containing non-ground Horn clauses via the
lifting lemma which is a standard result of the superposition framework.

3 Superposition for BSH-Y2

In this section we define the BSH-Y2 class and present our new superposition calculus for
BSH-Y2.

3.1 The BSH-Y2 Class

The set BSH-Y2 is a subset of the Bernays–Schönfinkel Horn fragment with equality. It is able
to represent the YAGO ontology as well as large parts of the ontologies SUMO (SUMO-Y2)
and CYC (CYC-Y2). It is defined below.

We call a clause D = Γ → P (t1, . . . , tn) a definition for the predicate P if it is range
restricted, i.e. vars(P (t1, . . . , tn)) ⊆ vars(Γ). We also say that P is defined by D. A predicate

166

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

Q is called P–dependent in a clause set N if Q is defined by a clause D = Γ → Q(t1, . . . , tn)
in N and (i) P (s′1, . . . , s

′
n′) ∈ Γ or (ii) there is a predicate R with R(s′′1 , . . . , s

′′
n′′) ∈ Γ that

is P-dependent. If Q is not P–dependent we call it P–independent. A definition D = Γ →
P (t1, . . . , tn) is acyclic in a clause set N if P is P–independent. A predicate Q is called
transitive dependent in N iff (i) Q is transitive or (ii) there is a definition C ∈ N with C =
Γ → Q(t1, . . . , tn) and there is a transitive dependent predicate P with P (s1, . . . , sn) ∈ Γ.
Otherwise, we call Q transitive independent.

The BSH-Y2 class consists of the following types of BSH clauses:
→ P (a, b) facts
R(x, y), R(x, z)→ y ≈ z functionality axioms
R(x, y), R(y, z)→ R(x, z) transitivity axioms
P1(t11, . . . , t1n1

), . . . , Pk(tk1, . . . , tknk
)→ negative clauses

P1(t11, . . . , t1n1
), . . . , Pk(tk1, . . . , tknk

)→ P (s1, . . . , sm) acyclic definitions
S1(x)→ S2(x) subsort relations

where the subset of subsort relations is acyclic and we further assume the unique name assump-
tion for the BSH-Y2 meaning that different constants represent different domain elements.

3.2 Calculus for BSH-Y2

In general, verifying the satisfiability in the Bernays–Schönfinkel Horn fragment is EXPTIME
complete. Therefore, standard reasoning procedures are too prolific for reasoning in such large
ontologies; the experiments in Section 5 confirm this. In [19], we have developed a sound and
complete calculus which uses hyperresolution together with the chaining calculus. The resulting
reasoning procedure saturates the YAGO ontology in less than one hour. However, this calculus
is not able to saturate clause sets containing defined relations of BSH-Y2 in acceptable time.
The reason for this observation is that a non-ground transitive atom that occurs in a defined
relation causes the chaining calculus to inspect the whole transitive closure of this predicate.
This problem arises already if one only adds the following clause to the YAGO ontology:

bornIn(x, y), locatedIn(y, z)→ bornInTr(x, z) (1)

where locatedIn is transitive.
Therefore, we have developed a new calculus for BSH-Y2 that performs a two layered-

reasoning. It separates reasoning about non-transitive predicates from reasoning about transi-
tive predicates via dedicated inference rules. These rules are depicted in the following.

The calculus is defined with respect to a clause set N containing clauses from BSH-Y2. Let
SN be the sort theory contained in N . We switch from the simple clause notation introduced
in Section 2 to a clause notation Θ ‖Γ → ∆ where Θ contains solely the sort atoms (monadic
atoms) interpreted as negated sort atoms. This notation helps in defining the below rules
as it explicitly separates sort atoms from others. During the saturation the sort atoms are
treated independently from all other atoms via the rules Empty Sort , Sort Simplification, and
Static Soft Typing. Actually, this simulates a particular ordering and selection strategy for
these atoms on the standard calculus [5]. More precisely, T � S for all subsort declarations
S(x) → T (x). This ordering is well-defined because there are no cycles in SN . Whenever a
clause has an unsolved constraint, this constraint is selected.

An unsolved constraint Θ of a clause Θ ‖Γ → ∆ either contains an atom T (x) such that
x 6∈ vars(Γ∪∆) or an atom T (a) for some constant a. Finally, all sort predicates S occurring in
N are smaller than any other predicate occurring in N . The fact that the monadic predicates
are treated separately allows more efficient implementations for their calculus rules.

167

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

The sort theory SN is static [5] meaning that NI |= S(a) iff SN |= S(a) and this property
is invariant on the saturation of N while fixing SN from the beginning. This is due to the
fact that all positive sort atoms in N occur either as facts or as subsort declarations. Hence,
when deriving a clause S(a),Θ ‖Γ → ∆ with SN 6|= S(a), the clause is a tautology and can
be deleted. This is exploited by the implementation of our new calculus. Note also that the
relations SN |= S(a) and SN |= ∃xS1(x) ∧ . . . ∧ Sn(x) can be efficiently decided by specific
algorithms [21].

The chaining calculus [2] assumes that all transitivity axioms are deleted from the clause
set N and the respective atoms are marked as transitive. We assume the set Tr that contains
all transitive predicate symbols of N .

The rule OECut [18] ensures that the minimal model NI respects the unique name assump-
tion, namely NI |= a 6≈ b for two different constants a and b occurring in N . So the disequations
are not explicitly added to the clause set N .

The superposition calculus for the BSH-Y2 is the following set of inference and reduction
rules.

Non-Transitive Reasoning

Ordered Hyperresolution for BSH-Y2 (HyperY2)

(1 ≤ i ≤ n) Θi ‖Γi → Ai Θ ‖T1, . . . , Tm, B1, . . . , Bn → ∆

(Θ,Θ1, . . . ,Θn ‖T1, . . . , Tm,Γ1, . . . ,Γn → ∆)σ
,

where n ≥ 1, T1, . . . , Tm are transitive atoms, Θ1, . . . ,Θn,Θ are solved, Γ1, . . . ,Γn contain
only transitive atoms, B1, . . . , Bn are non-transitive atoms, σ is the simultaneous most general
unifier of Ai and Bi for all i ∈ {1, . . . n}, respectively, and Aiσ are strictly maximal in (Θi ‖Γi →
Ai)σ.

Object Equality Cutting (OECut)

‖ → a ≈ b
2

,

where a and b are two different constants.

Transitive Reasoning

Ordered Chaining for BSH-Y2 (OChainY2)

Θ1 ‖ → Q(l, s) Θ2 ‖ → Q(t, r)

(Θ1,Θ2 ‖ → Q(l, r))σ

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of s and t, Θ1 and Θ2

are solved, Q(t, r)σ is strictly maximal in (Θ ‖Γ → Q(t, r))σ, lσ 6� sσ, rσ 6� tσ, and there are
only transitive literals in Γ.

168

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

Negative Chaining for BSH-Y2 (NChainY2)

Θ1 ‖ → Q(l, s) Θ2 ‖Γ, Q(t, r)→
(Θ1Θ2 ‖Γ, Q(s, r)→)σ

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of l and t, Θ1 and Θ2

are solved, sσ 6� lσ, rσ 6� tσ, Q(t, r)σ is maximal with respect to (Θ ‖Γ, Q(t, r)→)σ, and there
are only transitive literals in Γ.

Θ1 ‖ → Q(l, s) Θ2 ‖Γ, Q(t, r)→
(Θ1,Θ2 ‖Γ, Q(t, l)→)σ

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of s and r, Θ1 and Θ2

are solved, lσ 6� sσ, tσ 6� rσ, Q(t, r)σ is maximal with respect to (Θ ‖Γ, Q(t, r)→)σ, and there
are only transitive literals in Γ.

Ordered Resolution for BSH-Y2 (OReY2)

Θ1 ‖ → Q(t1, t2) Θ2 ‖Γ, Q(s1, s2)→
(Θ1,Θ2 ‖Γ→)σ

,

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of Q(t1, t2) and Q(s1, s2),
Θ1 and Θ2 are solved, Q(s1, s2)σ is strictly maximal in (Θ ‖Γ, Q(s1, s2) →)σ, and there are
only transitive literals in Γ.

Sort Reasoning

Empty Sort
S(x),Θ ‖Γ→ ∆

(Θ ‖Γ→ ∆)σ
,

if σ is a substitution with S(xσ) is ground, x 6∈ vars(Γ ∪∆), and SN |= S(xσ).

Sort Simplification

R S(a),Θ ‖Γ→ ∆

Θ ‖Γ→ ∆
,

if SN |= S(a). In the sort theory of a clause set from the BSH-Y2 sort simplification coincides
with sort resolution.

Static Soft Typing

R S(x),Θ ‖Γ→ ∆
,

if SN 6|= ∃x S(x).

Theorem (Decison Procedure for BSH-Y2). The BSH-Y2 calculus is sound, complete and
terminating for BSH-Y2.

169

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

3.3 Implementation

For successfully saturating a clause set from BSH-Y2, an efficient implementation of the new
calculus rules is essential. In our implementation we avoid to generate clauses that are redundant
and can, therefore, immediately be removed from the search space.

In particular, every time an application of hyperresolution derives a clause Θ, S(a) ‖Γ→ A
an application of sort simplification becomes possible on the ground sort instance S(a). If
S |= S(a) the clause is reduced to Θ ‖Γ → A. If S 6|= S(a) then the clause is a tautology
and can be deleted. Therefore, we have integrated this sort reasoning in the implementation of
hyperresolution. This means that the clause Θ ‖Γ→ A where Θ does not contain any further
ground sort instances is derived.

Additionally, our implementation of the calculus relies on the efficient term indexing data
structure Filtered context trees that we have introduced in [19]. We have integrated the im-
plementation of our new calculus together with the data structures in the theorem prover
Spass [22]. We call the resulting version Spass-Y2.

4 Query Answering

In this section we present a query language with arbitrarily many quantifier alternations and
the corresponding sound and complete query answering procedure. This procedure answers
queries with respect to the minimal model of a clause set from BSH-Y2.

4.1 Query Language

Consider the language Φ defined in terms of the below syntax

Φ := Γ | ∀x(Γ→ Φ) | ∃x(Γ ∧ Φ) | >

where Γ is a conjunction of atoms.

In order to guarantee completeness of our new query answering procedure, we require further
restrictions on the query language. We call a formula of the language Φ variable shielded iff it is
either ground or it is of the form ∃x(Γ∧Φ′) or ∀x(Γ→ Φ′) and all variables occurring under a
transitive dependent predicate in Γ or occurring freely in Φ′, also occur under a non-transitive
dependent predicate or a sort predicate in Γ.

We call a formula ϕ a query if it is a variable shielded sentence from the language Φ. Further,
we assume that a variable is bound by at most one quantifier in a query.

Note, that shielding of the variables is not a real restriction because it can always be achieved
via a special predicate entity, s.t. for every constant c of the signature entity(c) is entailed by
the minimal model of the respective ontology.

4.2 Query Answering Calculus

Let N be the saturation of a set of clauses from BSH-Y2 with respect to the superposition
calculus of Section 3 and 2 6∈ N . Further, let SN be the sort theory contained in N . Our query
answering calculus is composed of deterministic rule system with respect to N and SN and
consists of three calculus rules; one for each type of query: existential query, universal query
and ground query. The efficiency of our rule system is based on the following observation.

170

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

Lemma. Let N be the saturation of a clause set from the BSH-Y2 with 2 6∈ N and let A be
a transitive independent ground atom. Then NI |= A iff there is a ground substitution σ and a
clause Θ ‖ → B ∈ N with Bσ = A and SN |= Θσ.

Note, all transitive independent definitions are ground instantiated during the saturation.
For all rules, we assume that Ai are transitive independent atoms, Ti are transitive dependent
atoms and Si are sort atoms. Note, each subquery Φ′σ derived from our calculus, is again a
query because all variables of Φ are shielded. Likewise, for all transitive dependent atoms Ti of
a query Φ and a substitution σ, it holds that Tiσ is ground if σ is grounding for all transitive
independent atoms and all sort atoms of Φ. Because of the previous lemma, it is sufficient to
consider only clauses of the form Θ ‖ → A from N as the right premisses.

Verifying the side-conditions of the query answering calculus rules requires to perform en-
tailment operations. The sort entailment of condition 1 and condition 3 is a well-sorted check
which is quasi-linear [15]. The entailment check in condition 4 is performed by exhaustively
applying the saturation calculus of Section 3 with a set of support strategy. Note, our new cal-
culus is a decision procedure for this minimal model reasoning problem because of Theorem 3.2
and [8].

Existential query

Φ = ∃x(S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1, . . . , Tn3 ∧ Φ′) Θi ‖ → A′i
Φ′σ

if there is a grounding substitution σ such that

1. SN |= Siσ for all i ∈ {1, . . . , n1}

2. Aiσ = A′iσ for all i ∈ {1, . . . , n2}

3. SN |= Θiσ for all i ∈ {1, . . . , n2}

4. NI |= Tiσ for all i ∈ {1, . . . , n3}

Universal query

Φ = ∀x(S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1 ∧ · · · ∧ Tn3 → Φ′) Θi ‖ → A′i
Φ′σ

if there is a grounding substitution σ such that

1. SN |= Siσ for all i ∈ {1, . . . , n1}

2. Aiσ = A′iσ for all i ∈ {1, . . . , n2}

3. SN |= Θiσ for all i ∈ {1, . . . , n2}

4. NI |= Tiσ for all i ∈ {1, . . . , n3}

171

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

Ground query

Φ = S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1 ∧ · · · ∧ Tn3 Θi ‖ → A′i
true

if there is a grounding substitution σ such that

1. SN |= Si for all i ∈ {(1, . . . , n1}

2. Ai = A′iσ for all i ∈ {1, . . . , n2}

3. SN |= Θi for all i ∈ {1, . . . , n2}

4. NI |= Tiσ for all i ∈ {1, . . . , n3}

4.3 Query Answering Procedure

If N is the saturation of a clause set from BSH-Y2 in terms of the calculus of Section 3 then
Algorithm 1 implements the query answering procedure which is sound and complete with
respect to the minimal model NI . The strategy corresponds to a quantifier elimination over
finite domains.

Algorithm 1: AnswerQuery

Input: Query Φ, saturated clause set N
1 if Φ = > then return true
2 else if Φ = ∃x.Γ ∧ Φ′ then
3 foreach Φ′σ ∈ ext(Φ,N) do
4 if AnswerQuery(Φ′σ,N) then return true;

5 end
6 return false;

7 else if Φ = ∀x.Γ→ Φ′ then
8 foreach Φ′σ ∈ unv(Φ, N) do
9 if ¬AnswerQuery(Φ′σ,N) then return false;

10 end
11 return true;

12 else if gnd(Φ, N) = true then return true
13 else return false

The algorithm expects as its input a query Φ and the clause set N . First, the algorithm
checks whether the given query Φ is an existential quantified, a universally quantified or a
ground query. Then it computes the set of all subqueries obtained by applying the respective
calculus rule. The set ext(Φ, N) is the set of all subqueries from applying the rule Existential
query to Φ and N . Likewise, the set unv(Φ, N) is the set of all subqueries from applying the rule
Universal query to Φ and N . Finally, gnd(Φ, N) is the result of the application of Ground query.
If gnd(Φ, N) is true then the algorithm returns true otherwise it returns false. Our algorithm
processes a query from the outer query to the inner subquery. Checking if NI |= ∀x(Γ → Φ′)
requires to check if each ground instance of Γ is also contained in the set of instances of Φ′.
Since, we have to compute the ground instances of Γ anyway, we process the queries from the
outer to the inner query.

172

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

Our implementation of the query answering calculus follows exactly Algorithm 1. The rules
are implemented following the implementation of hyperresolution style rules. One exception
to the straight forward implementation is the condition 4 that checks if a transitive dependent
atom A is entailed by NI . We do not use the whole reasoning engine of Spass-Y2 for this
purpose. Instead, we have implemented a procedure that simulates several derivation steps in
hyperresolution style macro steps while keeping an efficient implicit representation of the query
clause.

Theorem. Let Φ be a query, N the saturation of a clause set from the BSH-Y2 with respect
to the saturation calculus of Section 3. If NI is the minimal model of N , then

NI |= Φ⇔ AnswerQuery(Φ, N) = true

5 Experiments

We have extended the automated theorem prover Spass 3.8 [22] with the saturation and query
answering calculus presented in this paper. We call this new version Spass-Y2. Spass-Y2
is sound, complete and terminating for BSH-Y2 and additionally provides a query answering
engine for queries with quantifier alternations.

For our experiments we used the SUMO and CYC ontologies from the CASC–23 [20] com-
petition. In order to obtain the clause set SUMO-Y2, we extracted all clauses belonging to
the BSH-Y2 language from the SUMO ontology file CSR003+2.ax of the TPTP. The clause set
SUMO-Y2 contains 82, 064 which is about 90% of CSR003+2.ax. The remaining 10% cannot
be expressed in the BSH-Y2 fragment. In particular, the relations s instance and s subclass
can be expressed in BSH-Y2. Likewise, for CYC-Y2 we extracted the BSH-Y2 clauses from
the base knowledge of the CYC TPTP file CSR002+5.ax. The clause set CYC-Y2 contains
about 1, 033, 447 clauses out of 3, 341, 996. We consider only the BSH-Y2 fragment of the base
knowledge of CYC in CYC-Y2 because this has already a high level of inconsistency. In other
words, we do not consider the microtheories of CYC for our experiments. The YAGO++ on-
tology that we used for our experiments includes the first-order representation of the YAGO
ontology plus further axioms. For example, we added the following definition which is an refine-
ment of the relation locatedIn: locatedIn(x, y) → locatedInTr(x, y), removed the transitivity
axiom for locatedIn and added a transitivity axiom for locatedInTr. This allows us to check the
relation locatedIn for additional properties like functionality and antisymmetry. The relation
locatedInTr together with the respective transitivity axioms represents the transitive closure of
the original locatedIn relation. The resulting clause set YAGO++ contains 9, 918, 724 clauses
over 2m constants.

We ran our experiments on a 2 x Intel Xeon Processor X5660 (12 MB Cache, 2.80 GHz)
Debian Linux machine with 96 GB RAM with Spass-Y2 compiled as 64 bit binary. We require
a 64 bit architecture for our experiments because Spass-Y2 needs to address around 20 GB
RAM for the saturation of the YAGO++ ontology.

5.1 Saturation Procedure

In our experiments we compare clasp 2.0.4 with the grounder gringo [6], DLV [11], Vam-
pire 1.8 [14], E 1.4 [17], iProver 0.8.1 [10] and Spass 3.8 [22] with Spass-Y2. Spass 3.8 contains
already some of our data structure from our previous work [19] but not an implementation of
the calculi presented here. All provers were called using the recommended default settings with
a time limit of 100 min. We ran each of these tools with YAGO++, SUMO-Y2 and CYC-Y2.

173

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

YAGO++ SUMO-Y2 CYC-Y2

Tool Derived Result Time Derived Result Time Derived Result Time

clasp 1, 118, 858, 572 kbs 70 min 1, 322, 070 sat 20 sec unsat 1 min

DLV t.o. 100 min sat 30 sec t.o. 100 min

Vampire kbs 1 min kbs 25 min unsat 26 sec

E kbs 6 min t.o. 100 min kbs 3 min

iProver kbs 1 min 967, 678 t.o. 100 min kbs 8 sec

Spass3.8 49, 848, 842 sat 60 min 1, 530, 025 t.o. 100 min 18, 907, 803 t.o. 100 min

Spass-Y2 2, 722, 246 sat 16min 790, 691 sat 45min 328,904 unsat 1 min

Figure 1: Evaluation of Spass-Y2

The results are depicted in Figure 1. The first column shows the tool and the second the results
for the respective ontology. The column derived shows the number of newly generated formulas
during problem processing. This column contains empty entries because this information was
not always available when the prover timed out (t.o.) after 100 min or was killed by operating
system/self killed (kbs), depicted in the result column. We have also tested the model finders
FIMO 0.2, E-Darwin 1.4, and Paradox 0.4, but none of these tools could find a model for any
of the three ontologies within 100 minutes. Except for Spass-Y2, none of these tools could
saturate all three ontologies and find inconsistencies. clasp performed nicely on SUMO-Y2 and
CYC-Y2, but it could not find a model of YAGO++ because it run out of main memory (96
GB).

5.2 Query Answering Procedure

We have tested the query answering abilities of Spass-Y2 in the standard first-order semantics
as well as in minimal model semantics. For the evaluation in terms of the standard first-order
semantics, we have tested the 20 queries of the SUMO category of the CASC-23 competition.
Before answering the queries we have saturated the SUMO-Y2 ontology and removed the logical
inconsistencies. We have identified two logical inconsistencies of the SUMO ontology as used
in CASC-23. Then we applied the saturation procedure of Spass-Y2 with a, in this case,
complete set of support strategy in order to find a proof for the respective query. This approach
terminates on 13 problems with a proof and on further five with a consistent saturated set. The
latter result is due to the fact that SUMO-Y2 does not contain all SUMO clauses. All results
were obtained within one second. The conjectures of the remaining two problems cannot be
formulated in the BSH-Y2 language. Spass-Y2 could have answered all of these questions
in terms of the inconsistent SUMO ontology (principle of explosion). After identifying and
fixing 35 inconsistencies in the base knowledge of CYC, we did not consider CYC for further
experiments because it is questionable what an answer in terms of an inconsistent ontology
means.

We have tested the query answering procedure of Section 4 of Spass-Y2 by running the
procedure on the following queries with respect to the saturated clause set of the YAGO++
ontology.

174

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

Each of the following queries regard a particular feature of our query language or the BSH-Y2
language. This includes quantifier alternations, transitive dependent and transitive independent
definitions.

Q1 = ∃x(politician(x) ∧ physicist(x))

Q2 = ∃x, y, z(hasSuccessor(x,GeorgeWBush) ∧ graduatedFrom(x, z)∧
graduatedFrom(y, z) ∧ isMarriedTo(x, y))

Q3 = ∃x, y(bornIn(Angela Merkel, y) ∧ locatedIn(x, y) ∧ country(y))

Q4 = ∃x, y(bornIn(x, y) ∧ ∀z.hasChild(x, z)→ bornIn(z, y))

Q5 = ∃x(bornIn(x, y) ∧ politician(x) ∧ locatedIn(x,Europe) ∧ physicist(x))

Q6 = ∃x(bornIn(x,Hamburg) ∧ politician(x) ∧ physicist(x)∧
hasSuccessor(Helmut Schmidt, x))

Q7 = ∀x(politicianOf(x,Germany)→ ∃y, z. hasSuccessor(y, x) ∧ bornIn(y, z)∧
locatedIn(z,Germany))

Q8 = ∃x(politician(x) ∧ bornInCountry(x,Germany))

The time that Spass-Y2 needed to answer this queries are depicted in the below table.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0:00.79 0:01.13 1:10.28 0:00.33 0:09.20 0:00.00 0:03.36 0:29.95

The automated theorem proving systems that participated in the CASC-23 LTB division are
not suitable in order to answer these queries. They are incomplete because of their axiom
selection strategy. In the case of a quantifier alternation, completeness is required for soundness.
Furthermore, these systems do not provide a minimal model query answering procedure.

Spass-Y2 answers most of the queries in a few seconds with respect to minimal model
semantics. Our implementation returns ”Yes” or a counter example for universal queries and
”No” or a complete set of answers for existential queries. For example the queryQ6 returns {x 7→
AngelaMerkel}. Spass-Y2 together with YAGO++, SUMO-Y2, CYC-Y2, and the queries are
available from the Spass homepage http://www.spass-prover.org/ in section prototypes and
experiments. There is also a prototype of a web frontend accessible from http://spassyago.

spass-prover.org/.

6 Conclusion

We have presented a sound and complete superposition calculus for BSH-Y2 covering YAGO++
and large portions of SUMO and CYC. The implementation Spass-Y2 can effectively decide
satisfiability for all three ontologies, where all other systems we have tested fail on at least one
input set. clasp performed nicely on SUMO-Y2 and CYC-Y2 but failed on YAGO++ due to the
2m constants and transitive relations preventing efficient grounding. Our results on SUMO-Y2
show that winning the respective CASC competition category can be easily done by focusing
on one of the logical inconsistencies. Our results on CYC show, where we stopped after finding
and debugging 35 inconsistencies, that it is highly inconsistent. So keeping completeness, but
further developing theory and implementation in order to be able to effectively check consistency
for large problems can lead to useful insights.

175

http://www.spass-prover.org/
http://spassyago.spass-prover.org/
http://spassyago.spass-prover.org/

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

In addition, we provide a new calculus for query processing supporting queries with arbitrary
quantifier alternations with respect to consistent and saturated clause sets of YAGO++ and
SUMO-Y2. Typical query response times for complex queries are in the range of seconds. There
is currently no other implementation of an automated reasoning procedure that supports queries
with quantifier alternations with respect to large ontologies out of the BSH-Y2 fragment.

References

[1] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider.
The Description Logic Handbook: Theory, Implementation and Applications. Cambridge Univer-
sity Press, March 2003.

[2] Leo Bachmair and Harald Ganzinger. Ordered chaining calculi for first-order theories of transitive
relations. J. ACM, 45(6):1007–1049, November 1998.

[3] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. In Proceedings of the twenty-eighth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, PODS ’09, pages 77–86. ACM,
2009.

[4] Ulrich Furbach, Ingo Glöckner, Hermann Helbig, and Björn Pelzer. Loganswer - a deduction-based
question answering system (system description). In Alessandro Armando, Peter Baumgartner, and
Gilles Dowek, editors, IJCAR, volume 5195 of LNCS, pages 139–146. Springer, 2008.

[5] Harald Ganzinger, Christoph Meyer, and Christoph Weidenbach. Soft typing for ordered reso-
lution. In William McCune, editor, CADE 14, volume 1249 of LNCS, pages 321–335. Springer,
1997.

[6] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and S. Ziller. A portfolio solver
for answer set programming: Preliminary report. In LNAI, volume 6645, pages 352–357. Springer,
2011.

[7] Krytof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning. In Nikolaj Bjørner and
Viorica Sofronie-Stokkermans, editors, CADE-23, volume 6803 of LNCS, pages 299–314. Springer,
2011.

[8] Matthias Horbach and Christoph Weidenbach. Superposition for fixed domains. ACM Trans.
Comput. Log., 11(4), 2010.

[9] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in Description Logics by a Reduction
to Disjunctive Datalog. Journal of Automated Reasoning, 39(3):351–384, 2007.

[10] K. Korovin. iProver – an instantiation-based theorem prover for first-order logic (system descrip-
tion). In A. Armando, P. Baumgartner, and G. Dowek, editors, IJCAR, volume 5195 of LNCS,
pages 292–298. Springer, 2008.

[11] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The DLV system for knowledge representation and reasoning. ACM Trans.
Comput. Log., 7(3):499–562, 2006.

[12] Adam Pease and Geoff Sutcliffe. First order reasoning on a large ontology. In Geoff Sutcliffe,
Josef Urban, and Stephan Schulz, editors, ESARLT, volume 257 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007.

[13] Deepak Ramachandran, Pace Reagan, and Keith Goolsbey. First-orderized researchcyc: Expres-
sivity and efficiency in a common-sense ontology. In In Papers from the AAAI Workshop on
Contexts and Ontologies: Theory, Practice and Applications, 2005.

[14] Alexandre Riazanov and Andrei Voronkov. Vampire 1.1. In Rajeev Gor, Alexander Leitsch, and
Tobias Nipkow, editors, IJCAR, volume 2083, pages 376–380–380–376–380–380. Springer, 2001.

[15] Manfred Schmidt-Schauß. Computational Aspects of an Order-Sorted Logic with Term Declara-
tions, volume 395 of LNCS. Springer, 1989.

176

Satisfiability Checking and Query Answering for Large Ontologies C. Weidenbach, P. Wischnewski

[16] Michael Schneider and Geoff Sutcliffe. Reasoning in the owl 2 full ontology language using first-
order automated theorem proving. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors,
CADE-23, volume 6803 of LNCS, pages 461–475. Springer, 2011.

[17] Stephan Schulz. E - a brainiac theorem prover. Ai Communications, 15(2-3):111–126, 2002.

[18] Stephan Schulz and Maria Paola Bonacina. On Handling Distinct Objects in the Superposition
Calculus. In B. Konev and S. Schulz, editors, Proc. of the 5th International Workshop on the
Implementation of Logics, Montevideo, Uruguay, pages 66–77, 2005.

[19] Martin Suda, Christoph Weidenbach, and Patrick Wischnewski. On the Saturation of YAGO. In
Jrgen Giesl and Reiner Hähnle, editors, IJCAR, volume 6173 of LNCS, pages 441–456. Springer,
2010. An extended version of this article can be found in the Technical Report MPI-I-2010-RG1-
001.

[20] Geoff Sutcliffe. The cade-23 automated theorem proving system competition - casc-23. AI Com-
mun., 25(1):49–63, 2012.

[21] Christoph Weidenbach. Combining superposition, sorts and splitting. In Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 2, chapter 27, pages 1965–
2012. Elsevier, 2001.

[22] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick
Wischnewski. Spass version 3.5. In CADE-22, volume 5663, pages 140–145. Springer, 2009.

[23] Christoph Weidenbach and Patrick Wischnewski. Satisfiability checking and query answering for
large ontologies. Technical Report MPI-I-2011-RG1-001, Max Planck Institute for Informatics,
2011.

177

	Introduction
	Preliminaries
	Admissible Term Ordering
	Minimal Model

	Superposition for BSH-Y2
	The BSH-Y2 Class
	Calculus for BSH-Y2
	Implementation

	Query Answering
	Query Language
	Query Answering Calculus
	Query Answering Procedure

	Experiments
	Saturation Procedure
	Query Answering Procedure

	Conclusion

