
EPiC Series in Computing

Volume 79, 2021, Pages 71–81

Proceedings of ISCA 34th International Conference on
Computer Applications in Industry and Engineering

Vanilla Probabilistic Autoencoder

Sebastian Ciobanu

Faculty of Computer Science
Alexandru Ioan Cuza University, Ias, i, Romania

aciobanusebi@gmail.com

Abstract

The autoencoder, a well-known neural network model, is usually fitted using a mean
squared error loss or a cross-entropy loss. Both losses have a probabilistic interpretation:
they are equivalent to maximizing the likelihood of the dataset when one uses a normal
distribution or a categorical distribution respectively. We trained autoencoders on image
datasets using different distributions and noticed the differences from the initial autoen-
coder: if a mixture of distributions is used the quality of the reconstructed images may
increase and the dataset can be augmented; one can often visualize the reconstructed im-
age along with the variances corresponding to each pixel. The code which implements this
method can be found at https://github.com/aciobanusebi/vanilla-probabilistic-ae.

1 Introduction

Neural networks are machine learning models that have emerged in recent years due to deep
learning.

Two standard (supervised) learning tasks are represented by regression and classification.
Let {(x(1), y(1)), . . . , (x(n), y(n))} be a training dataset, where n is the number of training in-
stances, x(1), . . . , x(n) represent the input instances, and y(1), . . . , y(n) represent the output
instances—the labels. If y(i) ∈ R,∀i ∈ {1, . . . , n}, then a regression task is performed. The
setting y(i) ∈ {1, . . . ,K},∀i ∈ {1, . . . , n}, where K is the number of classes, corresponds to a
classification task. In order to carry out the task of predicting the label for a new instance, a
neural network constructs a function f(·) which can be either a multi-layer perceptron (MLP)
[14, sec. 13.2], a convolutional neural network (CNN) [14, ch. 14], a recurrent neural network
(RNN) [14, sec. 15.2] etc. Besides the function f(·), a loss function must be specified. If
y(i) ∈ R,∀i ∈ {1, . . . , n}, then the mean squared error (MSE) loss is usually utilized:

loss(yreal, ypredicted) = MSE(yreal, ypredicted) = (yreal − ypredicted)2,

where yreal ∈ R is the real label of an instance x, and ypredicted ∈ R is the predicted label given
by f(x). Minimizing this loss is equivalent to maximizing the conditional likelihood [14, sec.
4.6] of the training data when the following assumptions are encountered:

Y (i)|x(i) ∼ N (µ = f(x(i)), σ2 = constant),∀i ∈ {1, . . . , n},

Y. Shi, G. Hu, Q. Yuan and T. Goto (eds.), CAINE 2021 (EPiC Series in Computing, vol. 79), pp. 71–81



Vanilla Probabilistic Autoencoder Ciobanu

where Y (i) is the random variable associated with the training label y(i).

If y(i) ∈ {1, . . . ,K} or, equivalently, y(i) ∈ {0, 1}K with
∑K
k=1 y

(i)
k = 1, ∀i ∈ {1, . . . , n}, then

the cross-entropy (CE or CH) loss is often used:

loss(yreal, ypredicted) = CH(yreal, ypredicted)

= CH

((
1 . . . K

yreal1 . . . yrealK

)
,

(
1 . . . K

ypredicted1
. . . ypredictedK

))
= −

K∑
k=1

yrealk log ypredictedk
,

where yreal ∈ {0, 1}K with
∑K
k=1 yrealk = 1 is the real label of an instance x, and

ypredicted ∈ (0, 1)K with
∑K
k=1 ypredictedk

= 1 is the predicted label given by f(x). Note that
ypredicted is not constrained to contain integer values—0 or 1—, but real values between 0 and
1. Minimizing this loss is equivalent to maximizing the conditional likelihood of the training
data when the following assumptions are encountered:

Y (i)|x(i) ∼ Categorical(π = f(x(i))),∀i ∈ {1, . . . , n},

where Y (i) is the random variable associated with the training label y(i).
Up to this point we have focused on supervised learning. Unsupervised learning, on the other

hand, spans other tasks: clustering, anomaly detection, dimensionality reduction etc. The lat-
ter one can be realized using an autoencoder—a neural network model. Let {x(1), . . . , x(n)}
be a training dataset, where n is the number of training instances. The output of the au-
toencoder is the reconstruction xreconstructed of the input x, and this is computed through a
neural network which does not allow to learn directly the identity function—e.g. by using a
bottleneck autoencoder [14, sec. 20.3.1]. As in the supervised setting, the architecture can be
represented by a function f(·), and the loss is either MSE or CH. By exploiting the previously
highlighted equivalence between the loss minimization and the likelihood maximization, one
can set Y (i)|x(i) to follow distributions different from the normal distribution with constant
variance and the categorical distribution. More specifically, we have:

X
(i)
reconstructed|x

(i) ∼ Distribution(parameters = f(x(i))),∀i ∈ {1, . . . , n},

where X
(i)
reconstructed is the random variable associated with the reconstruction of the input x(i):

x
(i)
reconstructed. Unlike the supervised scenario above, the distribution is multivariate, since the

input to the autoencoder is usually multi-dimensional and hence the output, as well.
As a result, new models can arise from this perspective, and some of these models are

analyzed in this paper.
The structure of this paper is as follows:

• in Section 2 we present the related work;

• Section 3 contains information on our method, methodology, and results;

• in Section 4 the conclusion and ideas for future work are presented.

2 Related Work

Up to our best knowledge, the approach of analyzing the effects of different distributions in

X
(i)
reconstructed|x

(i) ∼ Distribution(parameters = f(x(i))),∀i ∈ {1, . . . , n}

72



Vanilla Probabilistic Autoencoder Ciobanu

is not present in the literature in the context of autoencoders, but related ideas do exist.
In regard to single-label supervised learning, we highlight two approaches. The first one

regards linear regression with input-dependent variances in the output distribution—i.e. het-
eroskedastic regression [14, sec. 2.6.3]. More specifically, the assumption is as follows:

Y (i)|x(i) ∼ N (µ = f(x(i))1, σ
2 = f(x(i))2),∀i ∈ {1, . . . , n}.

Its advantage retains in the fact that confidence intervals can be returned along with the pre-
dicted output—the distribution’s mean. The second model regards the mixture of distributions
as outputs—e.g. mixture of linear experts [14, sec. 13.6.2.1] and mixture density networks [2]
etc.:

Y (i)|x(i) ∼ Mixture(parameters = f(x(i))),∀i ∈ {1, . . . , n}.

Its usage is advantageous when inputs have multiple acceptable outputs—e.g. in image col-
orization from grayscale images.

As for probabilistic autoencoders, the main contribution in the literature is represented by
the variational autoencoder (VAE) [10]. Both the encoder and the decoder are now probabilistic.
One advantage is that sampling new data can be performed with a VAE. Moreover, VAEs can
be used in clustering when a mixture of distributions is applied on the encoder’s output [8]
or can leverage the 2D structure in images via a matrix normal distribution on the encoder’s
output [13]. Conditional VAEs [18] take as input also a label corresponding to the instance.
If we use an autoencoder instead and set the encoder’s output distribution to a normalizing
flow [14, sec. 19.3.6.3], then a probabilistic autoencoder [3] is created. When the encoder is
deterministic, and additional regularization is introduced, the autoencoder becomes a Gaussian
autoencoder [5]. Conditional probabilities are encountered in discriminative autoencoders which
combine autoencoders with classification [16, 17, 12]. With this list of autoencoders, we wanted
to emphasize that we are aware of the existence of those algorithms and that their link to our
model is only at a high level, being represented by the probabilistic perspective.

3 Method and Experiments

3.1 Method

We start from a bottleneck autoencoder and replace the loss with the negative log-likelihood of
our data using different probabilistic distributions in the following structure:

X
(i)
reconstructed|x

(i) ∼ Distribution(parameters = f(x(i))),∀i ∈ {1, . . . , n}.

We call the resulting model Vanilla Probabilistic Autoencoder. It spans the following scenarios
for Distribution:

• MSE = mean squared error

• Nµ = multivariate normal distribution with the covariance matrix set to the identity
matrix:

N (µ = f(x(i)),Σ = I); this is mathematically equivalent to MSE

• Nµ,diag(Σ) = multivariate normal distribution with a diagonal covariance matrix:

N (µ = f(x(i))block 1,Σ = diag(f(x(i))block 2))

73



Vanilla Probabilistic Autoencoder Ciobanu

• Nµ,Σ = multivariate normal distribution:

N (µ = f(x(i))block 1,Σ = f(x(i))block 2)

• tdf,µ = multivariate t-distribution with the scale matrix set to the identity matrix:

t(df = f(x(i))block 1, µ = f(x(i))block 2,Σ = I)

• tdf,µ,diag(Σ) = multivariate t-distribution with a diagonal scale matrix:

t(df = f(x(i))block 1, µ = f(x(i))block 2,Σ = diag(f(x(i))block 3))

• tdf,µ,Σ = multivariate t-distribution:

t(df = f(x(i))block 1, µ = f(x(i))block 2,Σ = f(x(i))block 3)

• MAF = masked autoregressive flow [15] with a 10-unit hidden layer with ReLU [6]
activations—i.e. a normalizing flow:

MAF(parameters = f(x(i)))

• MN µ = matrix normal distribution with the scale matrices set to the identity matrix:

MN (µ = f(x(i)),U = I,V = I); this is mathematically equivalent to MSE

• MN µ,diag(U,V) = matrix normal distribution with diagonal scale matrices:

MN (µ = f(x(i))block 1,U = diag(f(x(i))block 2),V = diag(f(x(i))block 3))

• MN µ,U,V = matrix normal distribution:

MN (µ = f(x(i))block 1,U = f(x(i))block 2,V = f(x(i))block 3)

• Tdf,µ = matrix t-distribution with the scale matrices set to the identity matrix:

T (df = f(x(i))block 1, µ = f(x(i))block 2,U = I,V = I)

• Tdf,µ,diag(U,V) = matrix t-distribution with diagonal scale matrices:

T (df = f(x(i))block 1, µ = f(x(i))block 2,U = diag(f(x(i))block 3),V = diag(f(x(i))block 4))

• Tdf,µ,U,V = matrix t-distribution:

T (df = f(x(i))block 1, µ = f(x(i))block 2,U = f(x(i))block 3,V = f(x(i))block 4),

where diag(·) receives a vector as input and returns a diagonal matrix with its diagonal set to
the input vector.

Furthermore, we also employed a VAE with the following distributions:

Z(i) ∼ N (µ = 0,Σ = I)

Z(i)|x(i) ∼ N (µ = e(x(i))block 1,Σ = diag(e(x(i))block 2))

X
(i)
reconstructed|z

(i) ∼ N (µ = d(z(i))block 1,Σ = diag(d(z(i))block 2))

where X
(i)
reconstructed is the random variable associated with the reconstruction x

(i)
reconstructed of

the input x(i), Z(i) is the random variable associated with the encoder’s output, z(i) is usually
a sample from Z(i)|x(i), e(·) is the encoder, and d(·) is the decoder.

74



Vanilla Probabilistic Autoencoder Ciobanu

Distribution K FID↓ L2↓ param. s/epoch FID↓ L2↓ param. s/epoch

- - 485.073 - - - 586.867 - - -
MSE 1 520.167 1.585 50992 2.563 689.622 1.451 50992 3.228
Nµ 1 521.217 1.587 51025 4.325 694.058 1.525 51025 4.331

Nµ,diag(Σ) 1 507.615 5.299 76897 4.667 731.704 4.481 76897 4.715
Nµ,Σ 1 447.789 9.808 10205785 60.116 726.986 16.419 10205785 61.522
tdf,µ 1 523.926 1.623 51058 5.83 695.567 1.61 51058 7.713

tdf,µ,diag(Σ) 1 496.185 5.037 76930 7.655 718.657 3.26 76930 7.738
tdf,µ,Σ 1 544.819 4.303 10205818 57.132 711.698 3.541 10205818 57.981
MAF 1 524.118 1.869 76090 93.599 699.586 1.609 76090 93.015
MN µ 1 521.807 1.668 51025 2.601 696.012 1.526 51025 2.602

MN µ,diag(U,V) 1 619.038 5.685 52873 3.503 782.027 4.169 52873 3.369
MN µ,U,V 1 553.959 6.207 77821 4.824 675.001 14.303 77821 4.902
Tdf,µ 1 524.907 1.706 51058 5.749 695.669 1.609 51058 7.227

Tdf,µ,diag(U,V) 1 558.429 4.571 52906 6.459 739.747 3.519 52906 6.483
Tdf,µ,U,V 1 585.251 5.61 77854 7.938 746.244 6.307 77854 8.071

VAE 1 444.135 5.412 101984 4.394 652.201 5.608 101984 4.383
MSE 10 - - - - - - - -
Nµ 10 500.474 1.163 284170 4.968 667.922 1.046 284170 5.382

Nµ,diag(Σ) 10 465.341 4.575 542890 10.643 686.931 2.708 542890 10.398
Nµ,Σ 10 - - - - - - - -
tdf,µ 10 528.223 7.671 284500 51.911 600.937 15.082 284500 51.834

tdf,µ,diag(Σ) 10 518.133 4.975 543220 56.917 621.738 16.377 543220 57.293
tdf,µ,Σ 10 - - - - - - - -
MAF 10 - - - - - - - -
MN µ 10 501.229 1.208 284170 9.067 667.476 1.043 284170 9.067

MN µ,diag(U,V) 10 547.99 4.795 302650 17.817 688.749 2.331 302650 17.909
MN µ,U,V 10 596.754 5.98 552130 33.195 709.975 10.797 552130 34.137
Tdf,µ 10 496.058 7.953 284500 53.088 603.4 16.101 284500 44.607

Tdf,µ,diag(U,V) 10 544.661 5.149 302980 62.859 612.295 14.122 302980 62.599
Tdf,µ,U,V 10 578.372 5.677 552460 79.59 683.051 9.389 552460 78.134

VAE 10 - - - - - - - -︸ ︷︷ ︸ ︸ ︷︷ ︸
MNIST F-MNIST

Table 1: MLP architecture: FID [7] score on 1000 reconstructed test images, mean squared L2
error (in percentages) between the 1000 test images and the reconstructed ones, the number
of parameters of the model, and time measured in seconds per epoch; K is the number of
distributions in the mixture. The second row refers to the FID of the actual test images.

3.2 Experiments

We implemented the model in TensorFlow probability [4], a library well-suited for our purpose
of working with neural networks and probabilities. The algorithm is a gradient descent version
using Adam [9] with the parameters set to the default values in TensorFlow [1].

We used two neural network architectures for the autoencoder:

• MLP with one 32-unit hidden layer, ReLU activation from the input layer to the hidden
one, uniform Glorot initialization [14, sec. 13.4.5.1]

• CNN with a convolutional layer with 320 filters of dimension 3× 3, same padding, ReLU
activation from the input layer to the hidden one, uniform Glorot initialization, then max
pooling of size 2 × 2, followed by a similar convolutional layer with a suitable number
of filters, and then an upsampling layer of dimension 2 × 2; applied only for MN µ,

75



Vanilla Probabilistic Autoencoder Ciobanu

Distribution K FID↓ L2↓ param. s/epoch FID↓ L2↓ param. s/epoch

- - 485.073 - - - 586.867 - - -
MN µ 1 519.134 8.047 8962 11.24 523.88 8.477 8962 11.287

MN µ,diag(U,V) 1 560.765 8.778 8962 11.881 567.215 11.444 8962 11.968
MN µ,U,V 1 480.298 9.825 11843 13.468 531.369 18.608 11843 13.481
Tdf,µ 1 528.973 8.074 8962 12.419 537.943 8.521 8962 12.435

Tdf,µ,diag(U,V) 1 521.917 8.192 8962 13.013 527.625 8.67 8962 13.052
Tdf,µ,U,V 1 483.51 47.054 11843 14.601 477.678 15.92 11843 14.555
MN µ 10 623.764 8.498 34891 16.566 561.376 10.983 34891 16.621

MN µ,diag(U,V) 10 531.622 9.503 34891 27.402 578.51 14.677 34891 27.167
MN µ,U,V 10 566.882 9.907 63701 43.742 517.706 18.78 63701 42.675
Tdf,µ 10 642.189 8.682 34891 26.821 585.616 12.052 34891 26.72

Tdf,µ,diag(U,V) 10 373.631 11.093 34891 35.38 568.583 17.183 34891 35.742
Tdf,µ,U,V 10 563.388 17.739 63701 51.653 551.389 14.428 63701 52.031︸ ︷︷ ︸ ︸ ︷︷ ︸

MNIST F-MNIST

Table 2: CNN architecture: FID score on 1000 reconstructed test images, mean squared L2
error (in percentages) between the 1000 test images and the reconstructed ones, the number
of parameters of the model, and time measured in seconds per epoch; K is the number of
distributions in the mixture. The second row refers to the FID of the actual test images.

MN µ,diag(U,V), MN µ,U,V, Tdf,µ, Tdf,µ,diag(U,V), Tdf,µ,U,V; in this context, there are no
Dense1 layers.

We implement the parameter constraints as follows:

• strictly positive p: p = 10−6 + softplus(p) [14, sec. 2.6.3];

• positive definite matrix A: A = FillScaleTriL(A)2.

Given a distribution, we obtain an image by returning the mean—for the normal
distributions—, a mode or an approximation of it—for the t distributions—, or an approx-
imation of the mean—for the MAF model by averaging 50 samples. The returned image is
post-processed by clipping its values such that all the pixels are in the interval [0, 1].

The number of epochs is 20, the batch size is set to 128, and the shuffle buffer size is 1024.
If the result is not a number (nan), then other runs are executed.

We applied this approach on the following image datasets:

• MNIST [11]: 60000 training + 10000 testing grayscale images, 28 × 28 or 784 pixels, 10
classes, pixel value ∈ [0, 1]

• Fashion-MNIST (F-MNIST) [20]: 60000 training + 10000 testing grayscale images, 28 ×
28 or 784 pixels, 10 classes, pixel value ∈ [0, 1].

Since these datasets are grouped into 10 classes, we also set the output of the autoencoder
to be a mixture of 10 distributions, as we will see in the results.

Since the results contain time data, we include below the specifications of the machine that
carried out the experiments: Windows 10 OS, Lenovo Legion Y720 Laptop, NVIDIA GeForce
GTX 1060 6 GB GPU, Intel(R) Core(TM) i7-7700HQ CPU @ 2.80Hz, 32.0 GB RAM.

1https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
2https://www.tensorflow.org/probability/api_docs/python/tfp/bijectors/FillScaleTriL

76

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://www.tensorflow.org/probability/api_docs/python/tfp/bijectors/FillScaleTriL


Vanilla Probabilistic Autoencoder Ciobanu

Figure 1: Reconstructing images using different models (1). Where possible, we included the
variances which were also clipped to be in [0, 1], although dividing all the variances by the max-
imum variance is an alternative; we computed the variance in the case of matrix distributions
by multiplying the row and column variances: this is mathematically correct for the normal
matrix distribution, but just an approximation for the matrix t-distribution; low variances are
darker and high variances are lighter; if the variance is nan, then the covariance matrix of the
corresponding distribution does not exist.

3.3 Results

We present the results in Tables 1–2 and Figures 1–4. The figures reflect only the F-MNIST
dataset for brevity. Our analysis is twofold.

Firstly, we take into consideration the mutual characteristics of our models, of the MSE au-
toencoder, and of the VAE. Tables 1 and 2 contain information on the number of parameters,
fitting time expressed in seconds per epoch, the Fréchet inception distance (FID) scores of the
reconstruction of 1000 new/test images which hopefully express the visual quality of the recon-
structions, and the mean squared L2 reconstruction error for the 1000 test images. The best
FID scores are obtained for the VAE, Nµ,diag(Σ), tdf,µ, MN µ,U,V, Tdf,µ,U,V, and Tdf,µ,diag(U,V)

models. Some of those scores even surpass the FID scores of the real data, but the reconstruc-
tions in Figures 1–2 suggest that the reconstructions may not truly reproduce the input and
they still look natural—e.g. see tdf,µ in the first row in Figure 2—or not—e.g. see MN µ,U,V

in the last row in Figure 2. Figures 1–2 also reflect that the mixture with 10 distributions
can obtain the best visual results among the models. As a result, for the chosen datasets the
FID scores do not necessarily express image quality. The best L2 errors are obtained for the

77



Vanilla Probabilistic Autoencoder Ciobanu

Figure 2: Reconstructing images using different models (2). Where possible, we included the
variances which were also clipped to be in [0, 1], although dividing all the variances by the max-
imum variance is an alternative; we computed the variance in the case of matrix distributions
by multiplying the row and column variances: this is mathematically correct for the normal
matrix distribution, but just an approximation for the matrix t-distribution; low variances are
darker and high variances are lighter.

MSE autoencoders—or their equivalents: Nµ and MN µ—in the non-mixture models; this is
as expected because those models use the L2 loss at the training stage. Even in the mixture
setup, the equivalents of the MSE autoencoders usually obtain the lowest L2 scores.

The CNN architecture cannot learn significant reconstructions—we also tried with 32 hidden
filters and the results were approximately the same—, probably because the output of the neural
network contains extra numbers that are not used in the loss—we did not use Dense layers, so
we adjusted the number of output filters to obtain a number of outputs greater than or equal to
the required number of values to be fed into the probabilistic distribution. The Nµ,Σ and tdf,µ,Σ

models have the greatest number of parameters, and this could create problems if there is not
enough memory available. Moreover, the MSE autoencoder is the fastest, and the MAF model
is the slowest. The running time for the mixtures is usually less than 10 times the training time
of fitting the corresponding distribution alone. Figure 3 includes two ways of sampling new
data points. The first row seems better than the second one. The third row contains t-SNE
representations which do not manage to perfectly separate the dataset into the initial classes
in the latent space, but it tries to; the t-SNE plots are relatively similar.

Secondly, we highlight the unique features of our models. Specifically, we focus on displaying
also the variance in an image and creating new data instances from the mixture models. Figures

78



Vanilla Probabilistic Autoencoder Ciobanu

Figure 3: Six MLP models, three rows: row 1 contains samples by sampling from the standard
normal distribution in the space of the encoder’s output—or latent space—and propagating
them through the decoder; row 2 contains sampled images from the returned distribution when
given an input image; row 3 contains t-SNE [19] 2D representations of the latent features of
the testing data, and the color represents the label of the data point.

1–2 also contain variances associated with the output image; these are computed from the output
distribution. These could be informative when deciding if the pixels in the reconstructed image
are those that were present in the initial image. Given an input image, if the output distribution
is a mixture, one can compute the means/modes of each distribution in the mixture. This idea
is presented in Figure 4. Most of these images have high visual quality and therefore can be
used to augment the dataset if needed. Obviously, one can select only those images whose
log-probability/log-density passes a preset threshold. We should however remember that the
mixture models take a longer time to train than the non-mixture counterparts.

4 Conclusion and Future Work

We proposed to replace the usual losses—i.e. MSE and CH—in the autoencoder with negative
log-likelihood losses. Those likelihood losses depend on a specific distribution. The range of the
distributions we chose spans from multivariate normal, multivariate t, matrix normal, and ma-
trix t, each with different settings, to mixtures and a normalizing flow. The results suggest that
our mixture models can be taken into account as augmentation techniques. The models with
full scale/covariance matrices have more parameters and require more memory/epochs than
those with diagonal scale/covariance matrices, and this may represent a good reason to choose
the diagonal case. In the mixture setting, even with constant scale/covariance matrices, good
visual results can be obtained. Pixelwise variances can also be visualized when scale/covariance
matrices exist.

As for future work, we can convert a mixture of normal distributions to a value via a
mode—not the mean—, we can assess the quality of images via other metrics than FID or L2,
we can apply our method to RGB images and non-image datasets. The list of distributions
may also include the factor analysis model [14, sec. 20.2]. One can extend our idea to other

79



Vanilla Probabilistic Autoencoder Ciobanu

Figure 4: Four mixture models (MLP): given the input image at the top, the mean of each
distribution in the mixture and its mixture log-density are represented.

image-to-image translation tasks—e.g. image segmentation. Bottleneck autoencoders can be
replaced with denoising autoencoders. Moreover, other hyperparameter values can be further
explored.

References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. TensorFlow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Christopher M Bishop. Mixture density networks. 1994.

[3] Vanessa Böhm and Uroš Seljak. Probabilistic auto-encoder. arXiv preprint arXiv:2006.05479,
2020.

[4] Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. TensorFlow distributions. arXiv
preprint arXiv:1711.10604, 2017.

[5] Jarek Duda. Gaussian autoencoder. arXiv preprint arXiv:1811.04751, 2018.

[6] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pages
315–323. JMLR Workshop and Conference Proceedings, 2011.

80



Vanilla Probabilistic Autoencoder Ciobanu

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Advances in
Neural Information Processing Systems, 30, 2017.

[8] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep em-
bedding: An unsupervised and generative approach to clustering. arXiv preprint arXiv:1611.05148,
2016.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[10] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[11] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database, 2010.

[12] Hung-Shin Lee, Yu-Ding Lu, Chin-Cheng Hsu, Yu Tsao, Hsin-Min Wang, and Shyh-Kang Jeng.
Discriminative autoencoders for speaker verification. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5375–5379. IEEE, 2017.

[13] Jinghua Li, Huixia Yan, Junbin Gao, Dehui Kong, Lichun Wang, Shaofan Wang, and Baocai Yin.
Matrix-variate variational auto-encoder with applications to image process. Journal of Visual
Communication and Image Representation, 67:102750, 2020.

[14] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2021.

[15] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. arXiv preprint arXiv:1705.07057, 2017.

[16] Angshuman Paul, Angshul Majumdar, and Dipti Prasad Mukherjee. Discriminative autoencoder.
In 2018 25th IEEE International Conference on Image Processing (ICIP), pages 3049–3053. IEEE,
2018.

[17] Sebastien Razakarivony and Frédéric Jurie. Discriminative autoencoders for small targets detec-
tion. In 2014 22nd International Conference on Pattern Recognition, pages 3528–3533. IEEE,
2014.

[18] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. Advances in Neural Information Processing Systems, 28:3483–
3491, 2015.

[19] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(11), 2008.

[20] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

81


	Introduction
	Related Work
	Method and Experiments
	Method
	Experiments
	Results

	Conclusion and Future Work

