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Abstract

Two complementary AI methods are used to improve the strength of the AI/ATP
service for proving conjectures over the HOL Light and Flyspeck corpora. First, several
schemes for frequency-based feature weighting are explored in combination with distance-
weighted k-nearest-neighbor classifier. This results in 16% improvement (39.0% to 45.5%
Flyspeck problems solved) of the overall strength of the service when using 14 CPUs and 30
seconds. The best premise-selection/ATP combination is improved from 24.2% to 31.4%,
i.e. by 30%. A smaller improvement is obtained by evolving targetted E prover strategies
on two particular premise selections, using the Blind Strategymaker (BliStr) system. This
raises the performance of the best AI/ATP method from 31.4% to 34.9%, i.e. by 11%, and
raises the current 14-CPU power of the service to 46.9%.

1 Introduction

Methods for automated reasoning in large theories (ARLT) have started to develop in the recent
years [8,14,20,24]. The primary driving force behind this development is the growing use of such
methods for assisting ITPs like Isabelle [15] and Mizar [22, 23]. Recently, we have added HOL
Light [7] to the pool of systems linked to the large-theory ATP methods [11], and experimented
with the strongest and most orthogonal combinations of the premise-selection methods and
various ATPs over the Flyspeck corpus [6]. The experimental work, described in [10], has shown
that 39% of the 14185 Flyspeck theorems could be proved in a push-button mode (without any
high-level advice and user interaction) in 30 seconds of real time on a fourteen-CPU workstation.

The work described in this paper improves two aspects of large-theory reasoning done on
the Flyspeck corpus: (i) the premise selection methods, i.e., selecting from a large repository the
lemmas, theorems, and definitions that are most relevant for a new conjecture, and (ii) the ATP
strategies used to solve the problems after premise selection. The techniques used to achieve
these improvements are quite straightforward. In the first case (Section 2), the improvement is
obtained by better weighting (scaling) of the large number of features that are used as an input
to the machine-learning algorithms that learn premise selection from previous proofs. Such
feature weighting seems to be quite important particularly for the k-nearest-neighbor algorithm
that we initially started to try on Flyspeck in [10]. Feature weighting seems to be a reasonably
studied subject in the machine-learning community, in particular in the information-retrieval
domain, and in some sense this work is quite a straightforward application of those studies. The
result is however quite a surprising improvement over the best AI/ATP method used so far for
Flyspeck, and also quite high improvement of the joint power of all AI/ATP methods used. An
important practical advantage of using k-nearest-neighbor over the more sophisticated kernel
methods explored recently on smaller corpora [1,13] is that k-nearest-neighbor works quite fast
with the number of features and training examples that the Flyspeck corpus provides, while
scaling up the kernel methods to the Flyspeck sizes is still work in progress.
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The second improvement is obtained by a straightforward running of the newly developed
BliStr (Blind Strategymaker) strategy-evolving system [21] on two classes of ATP problems that
are created by different premise-selection methods. We have already been using for Flyspeck a
custom strategy-scheduling version (Epar) of the E [17] prover, consisting of strategies developed
by BliStr for the Mizar@Turing competition [18] on the 1000 Mizar@Turing training problems.
While that version turned out to be significantly stronger than standard E on Flyspeck, it was
still optimized on problems coming from a different corpus (Mizar). These Mizar problems
were additionally quite small in comparison to the sizes of Flyspeck problems produced by
the premise-selection methods that are most useful for Flyspeck. Section 3 shows that several
hundred runs of the BliStr’s strategy-evolving loop (slightly extended in comparison to [21],
to also evolve further SInE-based [8] premise-pruning parameters) on these Flyspeck problem
classes can again raise the performance of E quite considerably. The additional improvement
of the overall power of the system is smaller than for the first method, but it is still quite
significant, and more power can likely be added in the future by using strategy evolution also
for the remaining important classes of Flyspeck problems.

2 Better Feature Weights for Nearest Neighbor

Premise selection is an essential AI component that has in the past decade allowed the usage of
automated theorem provers (ATPs) over large corpora built with ITPs such as Mizar, Isabelle,
and HOL Light. The premise-selection methods select from the large repositories the lemmas,
theorems, and definitions (i.e., the premises) that are most relevant for a new conjecture. This is
a hard AI problem, for which various heuristics taking into account the semantics and syntax of
mathematical formulas can be considered. Such heuristics can involve (possibly approximative)
deductive reasoning components. For example, the MoMM system [19] generalizes hundreds of
thousands of existing mathematical lemmas, and using (deductively correct) type-aware ATP
indexing methods combined with limited deductive reasoning tries to find suitable lemmas for
a new conjecture. The SInE [8] heuristic is based on approximative reasoning about formulas,
using only the symbols contained in the formulas. In some sense it carves out the set of formulas
that (particularly in Horn-like ontologies) may be transitively related to the conjecture. A much
less deductive way of selecting premises is to learn (use machine learning) what is relevant for
what from the proofs contained already in the large repositories [1,13,20]. For this, the formulas
are characterized by suitably chosen features that can be purely syntactic, such as the symbols
and terms occuring in the formulas, or by more semantic/deductive features, such as models
and abstractions of the formulas and relations between them. The machine learners then try to
learn the association from such features to the premises that were most useful for proving the
theorems. The key parts of such methods are therefore the learning (generalization) algorithms
and the features used by the algorithms.

In order to get additional premise-selection power for the first large-scale AI/ATP experi-
ments done over Flyspeck, we had quickly added in [10] a custom implementation of the k-nearest
neighbor (k-NN) machine-learning method, which computes for a new example (conjecture) the
k nearest (in a given feature distance) previous examples and ranks premises by their frequency
in these examples. The motivation was that this fast (“lazy” and trivially incremental) learn-
ing method can be easily parametrized and might for some parameters behave quite differently
from the naive Bayes learner, which we had been using exclusively until then, because the
newly developed kernel-based methods [1, 13] so far do not scale to such large corpora. Our
(distance-weighted [4]) implementation weighs the contribution of the k nearest neighbors by
their feature-based similarity to the current conjecture, and computes the overall ranking of the
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available premises as a sum of the premises’ weighted contributions from these k neighbors.
The performance of this (multi-class, distance-weighted) k-NN seemed reasonable (the best

k-NN method solved 21.7% of the Flyspeck problems when combined with E) and quite comple-
mentary to premise selection based on naive Bayes. However, k-NN was weaker than the best
naive-Bayes classifier (24.1% of problems solved when combined with E). The features that we
use for characterizing Flyspeck formulas and measuring their similarity with k-NN consist of the
symbols and normalized shared terms contained in the Flyspeck formulas. To give a concrete
example (taken from Section 4.1 of [10]), the set of features characterizing the HOL theorem
DISCRETE_IMP_CLOSED:1

∀s:real^N→bool e.

&0 < e ∧ (∀x y. x IN s ∧ y IN s ∧ norm(y − x) < e =⇒ y = x)
=⇒ closed s

is the following set of strings:

"real", "num", "fun", "cart", "bool", "vector_sub", "vector_norm",

"real_of_num", "real_lt", "closed", "_0", "NUMERAL", "IN", "=", "&0",

"&0 < Areal", "0", "Areal", "Areal^A", "Areal^A - Areal^A",

"Areal^A IN Areal^A->bool", " Areal^A->bool", "_0", "closed Areal^A->bool",

"norm (Areal^A - Areal^A)", "norm (Areal^A - Areal^A) < Areal"

Here real is a type constant, IN is a term constructor, Areal^A->bool is a normalized type,
Areal^A its component type, norm (Areal^A - Areal^A) < Areal is an atomic formula, and
Areal^A - Areal^A is its normalized subterm.

The simplest way how to measure the similarity of formulas to the new conjecture is to
compute the overlap of their (sparse) feature vectors. One known property [2] of the k-NN that
was neglected by our first implementation is however the sensitivity of k-NN to feature fre-
quencies. For example, without additional weighting, the most common symbol (e.g., equality)
has in such similarity function the same weight as the most rare symbol, which is clearly not
desirable: overlap on the rarest symbol is much more significant than overlap on a symbol that
is present everywhere.

The most common way how to weight (boolean-counted) features in text retrieval with
respect to their frequency is the IDF (inverse document frequency) scheme [9]. This scheme
weights a term t in a collection of documents D using the logarithm of the inverse of the term’s
frequency in the document collection:

IDF(t,D) = log
|D|

|{d ∈ D : t ∈ d}|

For example, a term (symbol) contained only in one document (formula) will have weight
log |D|, a term contained in all of them will have weight log(1) = 0, and a term contained in
half of the documents will have weight log(2) = 1. Apart from using the standard IDF, we have
also found useful two other IDF-based weighting schemes, the (smoothed) inverse frequency:

IDF1(t,D) =
1

1 + |{d ∈ D : t ∈ d}|
and quadratically scaled (smoothed) inverse frequency:

IDF2(t,D) =
1

(1 + |{d ∈ D : t ∈ d}|)2

1http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE_IMP_CLOSED
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These three feature weighting schemes were combined with different values of k nearest
neighbors and (as usual) with ATPs run on different number of top-rated premises (using 30s
time limit and the same hardware as in [10]). Table 1 shows the performance of the best 12
methods after these experiments, together with the performance of the best previous method
(naive bayes 0154e). The precision of the logarithmically scaled IDF is clearly the best, and in
comparison with the non-logarithmic scaling, only relatively few nearest neighbors are needed.
The previously best method (last line in Table 1) is improved by 103 problems, which is a 30%
improvement. The proof data (denoted as ATP2 in Table 2) used for training the k-NNs were
by a negligible margin older (worse, i.e., containing more irrelevant proof dependencies that
we eventually prune) than the proof data (ATP3) used for the previously best method. The
feature extraction method was the same (the standard one).

Table 1: The top 12 AI/ATP methods, together with the previously best.

Method Premises Prover Theorem (%) Σ-SOTAC Processed

40-NN_IDF 128 E 446 (31.43) 4.24 1419
80-NN_IDF 512 E 445 (31.36) 4.25 1419
40-NN_IDF 512 E 443 (31.22) 4.20 1419
80-NN_IDF 128 E 436 (30.73) 4.22 1419
160-NN_IDF1 128 E 423 (29.81) 3.64 1419
300-NN_IDF1 128 E 422 (29.74) 3.50 1419
40-NN_IDF 512 V 419 (29.53) 3.09 1419
760-NN_IDF1 128 E 417 (29.39) 3.16 1419
160-NN_IDF1 128 E 417 (29.39) 3.49 1419
40-NN_IDF 128 V 416 (29.32) 3.01 1419
1200-NN_IDF1 128 E 416 (29.32) 4.29 1419
1000-NN_IDF2 128 E 415 (29.25) 3.21 1419
naive_bayes 154 E 343 (24.17) 1.97 1419

Method: 40-NN IDF means that 40 nearest neighbors are used with the standard IDF weighting.

Prover: V stands for Vampire [16].

Σ-SOTAC For each problem P solved by a system, its SOTAC for P is the inverse of the number of
systems that solved P. Σ-SOTAC is the sum of a system’s SOTAC over all problems.

Table 2 shows the newly computed 14-long greedy covering sequence, i.e., the joint per-
formance of the (greedily) best combination of 14 methods, ordered by their inclusion in the
greedy algorithm. While the logarithmic IDF scaling is obviously at the top, the linearly-scaled
IDF provided many useful complementary predictive methods. The overall 14-method coverage
went up from 39.0% (Table 14 in [10]) to 45.45%, i.e., by 16%. The frequency-scaling code in
the k-NN implementation responsible for this improvement takes about 5 lines of Perl, and the
whole sparse distance-weighted multiclass k-NN implementation takes about 200 lines of Perl
code. Some large improvements in the ARLT domain are still very easy.

3 Better Strategies for Different Premise Selections

BliStr (Blind Strategymaker) [21] is a recently developed system that automatically develops
strategies for E prover on a large set of related problems. Its main idea is to interleave (i)

90



Stronger Automation for Flyspeck Kaliszyk and Urban

Table 2: The greedy sequence including the new k-NNs.

Method Premises Prover Training data Sum % Sum

40-NN_IDF 128 E ATP2 31.43 446
760-NN_IDF1 128 V ATP2 35.09 498
naive_bayes 128 Z3 ATP4 37.27 529
760-NN_IDF1 32 Z3 ATP2 38.97 553
naive_bayes 184 E ATP3 40.31 572
naive_bayes 12 E ATP3 41.22 585
160-NN_IDF1 128 Z3 ATP2 42.07 597
naive_bayes 512 E ATP0+HOL0 42.91 609
80-NN_IDF 512 V ATP2 43.48 617
760-NN_IDF1 512 E ATP2 43.97 624
40-NN_IDF1 32 V ATP2 44.39 630
1000-NN_IDF2 740 V ATP2 44.74 635
40-NN_IDF 32 E ATP2 45.10 640
40-NN 32 Z ATP2 45.45 645

iterated low-timelimit local search for new strategies on small sets of similar easy problems
with (ii) higher-timelimit evaluation of the new strategies on all problems. The accumulated
results of the global higher-timelimit runs are used to define and evolve the notion of “similar
easy problems”, and to control the selection of the next strategy to be improved.

BliStr was used to grow a set of E strategies for the Mizar@Turing competition.2 The
final improvement of the resulting strategy-scheduler (Epar) over the E’s auto-mode was 25%
on the Mizar@Turing competition problems. Epar has already been used for practically all
AI/ATP experiments over Flyspeck, i.e., whenever we refer to E above, it was run using the
Epar strategy-scheduler.

Since the Mizar@Turing pre-competition training problems were quite small (ca. 25 premises
per problem), while the best methods in Table 2 use 128 premises, it seemed potentially re-
warding to automatically evolve E strategies on such Flyspeck problem classes instead. This has
been so far tried for the two top problem classes (i.e., classes of problems generated using the
particular premise selection method described in the table) from Table 2 that use E: 40-NN_-
IDF_128_ATP2 and naive_bayes_184_ATP3. For each of them, the set of (randomly chosen)
1419 Flyspeck problems was further randomly divided into a training part (800 problems) and
a testing part (619 problems). The 800 training problems were then used for ca. 30 hours of
parallelized strategy evolution with Blistr. Since a major factor in ATP efficiency over prob-
lems with many premises is also a good SInE pre-selection,3 the E parameters tunable by BliStr
were extended in comparison to [21] to also evolve the SInE parameters. The starting set of
strategies is the same for both problem sets. These were 15 strategies previously developed by
BliStr that were giving good performance on Mizar/MPTP problems. These strategies were
however slightly weaker than the old Epar, because SInE parameters have been heuristically
added to Epar, while the 15 strategies do not contain any SInE parameters. We left it to the
extended BliStr to develop good SInE parameters.

For 40-NN_IDF_128_ATP2, the 15 initial strategies cover (in 10s) 257 of the 800 training

2http://www.cs.miami.edu/~tptp/CASC/J6/Design.html#CompetitionDivisions
3SInE-based selection is obviously interacting in various ways with the premise selection done by naive Bayes

and k-NN. This typically turns out to be a fruitful interaction of two different ranking methods, see [13].
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problems. 12 BliStr instance were run in total (on a 32-core Intel machine), producing 353
strategies eventually covering 320 of the 800 training problems when run with a 10s time limit.
For naive_bayes_184_ATP3, the 15 initial strategies cover (in 10s) 215 of the 800 training
problems. 16 BliStr instances were run in total (on a 64-core AMD machine), producing 637
strategies, covering 253 of the 800 training problems with 10s time limit. To construct a new
set of Epar strategies, we used again greedy algorithm that chooses the 14 strategies with the
(greedily) best joint coverage. Note that using for example Minisat++ [5] for solving the set-
cover problem optimally is not easy: it takes 400s for the 353 strategies (finding an 18-cover),
and Minisat++ did not finish within one hour for the 637 strategies. The 14 new greedy
strategies for 40-NN_IDF_128_ATP2 cover 313 training problems, and the 14 naive_bayes_-

184_ATP3 strategies cover 245 training problems. The new version of Epar (marked as E2
below) was then for each problem class evaluated with 30s overall time limit on the 64-CPU
AMD machine both on the training and testing problems. The results are shown in Table 3 and
Table 4. Note that in both cases the performance of the new Epar is obviously lower than the
combined 10s performance of its underlying 14 strategies, because within its 30s overall time
limit Epar gives only 2s to each of its strategies (this could obviously be made smarter, as is
done in Vampire [16]).

Table 3: The strategy evaluation for 40-NN_IDF_128_ATP2.

40-NN_IDF_128_ATP2 OldEpar NewEpar Improvement (%)

Training 254 290 36 (14.2)
Testing 192 209 17 (8.9)
Total 446 499 53 (11.9)

Table 4: The strategy evaluation for naive_bayes_184_ATP3.

naive_bayes_184_ATP3 OldEpar NewEpar Improvement (%)

Training 173 208 35 (20.2)
Testing 132 162 30 (22.7)
Total 305 370 65 (21.3)

The tables seem to suggest that some overfitting on the training problems took place for
40-NN_IDF_128_ATP2, while the new Epar testing performance on naive_bayes_184_ATP3 is
even better than its performance on the training problems. It is interesting to note that SInE is
used in 11 of the 14 new 40-NN_IDF_128_ATP2 strategies, and 12 of the 14 new naive_bayes_-

184_ATP3 strategies. Quite often the SInE parameters in the later complementary methods are
quite severe, limiting the SInE recursion to 1 or 2. This could mean that the BliStr’s loop run
separately for the current premise-selection slice without interaction with other premise slices
causes quite a lot of incompleteness. This might however be destroying some complementarity
with the other premise-selection methods specialized in low premise numbers. An obvious
remedy would be to evolve the strategies together on merged problem classes, and only later
select the best strategies for the particular classes in a way that provides minimal overlap
between them.

Finally, the new 14-long greedy covering sequence using the new Epars for 40-NN_IDF_-

128_ATP2 and naive_bayes_184_ATP3 was computed on our main evaluation machine. The
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result is shown in Table 5. While originally the new Epar developed for naive_bayes_184_ATP3
was indeed second in the greedy sequence, in the final version it became completely redundant,
because we have also run the new strategies grown for 40-NN_IDF_128_ATP2 on the 440-NN_IDF
slices. This strengthened the 440-NN_IDF_128_ATP2 slice by 46 problems (12% improvement),
and the 440-NN_IDF_512_ATP2 slice by 102 problems (33% improvement). This improvement
was again quite unexpected, and it suggests that the overfitting suspected in Table 3 is not
really a problem. The 14 methods of the final combination solve without any user interaction
46.86% of the Flyspeck problems.

Table 5: The new greedy sequence including the new Epars.

Method Premises Prover Training data Sum % Sum

40-NN_IDF 128 E2 ATP2 34.88 495
440-NN_IDF 128 E2 ATP2 38.33 544
440-NN_IDF 512 E2 ATP2 40.02 568
760-NN_IDF1 32 Z3 ATP2 41.64 591
naive_bayes 128 V ATP2 42.84 608
40-NN 512 Z ATP2 43.55 618
1000-NN_IDF2 740 V ATP2 44.11 626
naive_bayes 64 E ATP3 44.67 634
160-NN_IDF1 512 Z3 ATP2 45.10 640
naive_bayes 32 Z3 ATP0+HOL0 45.52 646
naive_bayes 512 E ATP0+HOL0 45.94 652
40-NN 32 E ATP2 46.30 657
80-NN_IDF 512 V ATP2 46.58 661
160-NN_IDF1 128 V ATP2 46.86 665

Prover: E2 is the new Epar, while is the old Epar. Z3 is the Z3 [3] SMT solver.

Training data: ATPi is worse (older, less pruned) than ATPi+1 . ATP0+HOL0 is a combination
of proof data obtained from ATPs with the proof data extracted directly by tracking proof
dependencies inside HOL.

4 Conclusion and Future Work

It is interesting that a similar treatment of features as in processing of natural language texts
helps so significantly also for formal mathematical libraries. While mathematics in its extreme
is undecidable, and has (theoretically constructed) parts that provably behave as random, it
is clear that human-organized mathematics is very far from such randomness. While the au-
tomation that we currently have is still very far from the power of human mathematicians,
the observance of such simple statistical laws may be providing evidence that the Penrose-
style arguments about the “necessarily super-Turing” power of the human mathematical mind
might more and more look like just another case of the AI effect.4 The obvious future work
concerning feature weighting is to re-run the machine learning methods tested in [13] on the
MPTP2078 benchmark (in particular, the kernel-based MOR, and van Laarhoven’s BiLi, whose

4http://en.wikipedia.org/wiki/AI_effect
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random-projection mechanism should be quite sensitive to feature distribution) with such fea-
ture weightings.

Since ATPs are in some sense universal problems solvers, it should not be very surprising that
their parameterization matters a lot. However, some of the results, like the 33% improvement
of the 440-NN_IDF_512_ATP2 slice (which was not subject to any direct tuning), were quite
unexpected. While we have added the SInE parameters to BliStr, there are still many more
E parameters that could be further tuned. A particularly interesting challenge is to grow and
guess suitable term orderings for similar classes of problems.

In general the experimental results show that large improvements can be still achieved in
the ARLT domain by quite simple methods and simple technology transfer. It seems that this
AI domain is still wide open to a number of techniques that could further considerably improve
the strenth of automation for large-theory mathematics.
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References
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