
Closing the Gap Between Specification and

Programming: Vdm++ and Scala

Klaus Havelund

Jet Propulsion Laboratory
California Institute of Technology
klaus.havelund@jpl.nasa.gov

Abstract

We argue that a modern programming language such as Scala offers a level of suc-
cinctness, which makes it suitable for program and systems specification as well as for
high-level programming. We illustrate this by comparing the language with the Vdm++

specification language. The comparison also identifies areas where Scala perhaps could
be improved, inspired by Vdm++. We furthermore illustrate Scala’s potential as a spec-
ification language by augmenting it with a combination of parameterized state machines
and temporal logic, defined as a library, thereby forming an expressive but simple runtime
verification framework.

1 Introduction

Having worked with formal methods specification languages, in particular worked with a lan-
guage such as Vdm [9] and participated in the design of Rsl [17], creates a wish for better
times where programming languages look and feel like these specification languages. In this
paper we shall explore this thought by comparing the specification language Vdm++ and the
programming language Scala. We shall ask the question whether these better times have ap-
peared. We will argue that Scala is suitable for program/system specification as well as for
high-level programming. We shall also point out, that there are still steps that can be taken
which can improve Scala, inspired by Vdm.

Formal methods generally refer to “mathematically-based techniques for the specification,
development and verification of software and hardware systems” [15]. The field covers such top-
ics as specification logics, syntax and semantics, proof systems, industrial strength specification
languages, theorem proving, and model checking. Amongst one of the early contributions was
Vdm (Vienna Development Method) [9, 10, 25, 26, 40] and its associated specification language
Meta-IV [9]. The language and method was a result of work done by Dines Bjørner and Cliff
Jones at IBM’s Vienna Laboratory in the 1970s. Meta-IV is a so-called wide-spectrum speci-
fication language, including as a subset an executable language comparable to the combination
of an imperative programming language and a functional programming language; as well as
including high-level constructs from logic, such as pre/post conditions and invariants (design
by contract as later introduced in the Eiffel programming language [13]), predicate subtypes,
predicate logic (universal and existential quantification) permitted as Boolean expressions, and
built-in collections such as finite sets, lists and maps accompanied with a large set of oper-
ators and strong support for forming set, list and map comprehensions. Vdm is a so-called
model-based specification language where a model of the desired system is created; in contrast
to axiomatic specification languages, where properties of the system are specified. Indeed an
extremely impressive and forward looking language and associated method.

A Vdm language standard was subsequently produced in the form of Vdm-SL (VDM Spec-
ification Language), which combined the so-called “British style”, which focused on using only

210 A. Voronkov, M. Korovina (eds.), HOWARD-60, pp. 210–233

Vdm++ and Scala Havelund

pre/post conditions and invariants to specify functions and operations; and the “Danish style”,
which embraced the executable programming language like subset. Two more derivations were
later created in Rsl [17], a product of the Raise project [34], and Vdm++ [14]. Rsl took its
starting point in Vdm, but followed an algebraic view, where a module consists of a signature
and a set of axioms over the typed names introduced in the signature. Functions can have
side-effects and even represent processes communicating on channels. Derived syntax was in-
troduced reflecting the classical Vdm model-based style. Vdm++ took a less drastic approach,
“just” adding object-oriented constructs (classes and objects) as well as concurrency to the
more classical Vdm notation. In this sense Vdm++ is interesting since of these systems, it gets
the closest to a modern programming language.

The general experience gained by working with Vdm is that of abstraction, elegance and
convenient notation. So why are we not all using Vdm or one of its derivations? A characteristic
of Vdm, and most formal methods, is that specification fundamentally is considered different
from programming, in spite (in this case) of the great overlap with respect to language con-
structs. For example, Meta-IV contains as a subset an executable kernel, which is isomorphic
to a full blown programming language. In spite of this overlap, the typical use of Vdm is to
write a specification, and then subsequently either (re)program the system manually (observing
the specification), or translate the specification into a program using a special compiler. Such
a translation may, however, be considered a non-optimal indirection.

On the other hand, a modern programming language such as Scala [35] offers language
constructs, which makes it a healthy alternative for writing abstract high-level models. Scala
offers a uniform combination of object-oriented and functional programming. Furthermore,
it supports definition of internal DSLs (Domain Specific Languages as APIs) through a set
of innovative language constructs. Scala programs are usually very succinct compared for
example to Java programs, and have the script-like flavor that Python [33] programs have,
but with the static typing that Java offers, and compiling to the JVM. Sets, lists and maps are
part of the Scala library, as is the case in Java. However, with better notation for manipulating
these data structures. We discuss the relationship between Vdm++ and Scala, mentioning
some of those Scala library additions that would be needed in order to write Vdm++ like
models. Several of these have been suggested elsewhere, for example design by contract for
Scala [31]. This paper does not offer new insights at that level, but rather tries to make
a broader argument for the importance of investigating the relationship between specification
languages and programming languages, as also argued for in [21].

There are other similar programming languages that one could make a comparison with. One
of the more interesting in this context perhaps is Fortress [16] (under development at the time
of writing), which has many similarities with Vdm; but also more mature languages such as Sml
[29], OCaml [30], and Haskell [19]. One could also make a comparison with other specification
languages similar to Vdm/Vdm++, for example the more recent Asml [18]. However, Scala
is a rather mature and new language on the horizon, combining object-oriented programming
and functional programming in an interesting way and with support for definition of domain
specific languages; and Vdm was one of the first wide-spectrum specification languages, and
has had followers ever since, including the author. Note that although our comparison is with
Vdm++ (due to its object orientation), the essence compared to is that of the original Vdm.
Topics not discussed in this paper are concurrency and testing of models/programs. Vdm++

has interesting support for both, as does Scala. Furthermore, the presentation of Vdm++ in
[14] illustrates how Uml [11] class diagrams can be used to support specification in Vdm++,
with mappings defined between the two notations. This tight integration between textual and
graphical specification is promising and a similar approach could be taken for Scala, although

211

Vdm++ and Scala Havelund

this topic will not be discussed further in this paper.
On a slightly different note, there have been several attempts to extend programming lan-

guages with specification constructs. Eml (Extended ML) [27] is an extension of the functional
programming language Sml (Standard ML) with algebraic specification. Ecml (Extended Con-
current ML) [20] extends Cml (Concurrent ML) with a logic for specifying Cml processes in
the style of Eml. Eiffel [13] is an imperative programming language with design by con-
tract features (pre/post conditions and invariants). Spec# [36] extends C# with constructs
for non-null types, pre/post conditions, and invariants. Jml [24] is a specification language
for Java, where specifications are written in special annotation comments which start with an
at-sign (@). Finally, Jpf (Java PathFinder) [22, 23] is a model checker for Java. One of the
original motivations behind Jpf was to suggest Java as a modeling language, in addition to
offer model checking for Java and to explore the space between testing and model checking for
large programs.

The paper is organized as follows. Section 2 presents a specification of a chemical plant
alarm system written in Vdm++, adopted more or less unchanged from [14]. Section 3 presents
a model of the same problem in Scala. Section 4 discusses the two languages at a construct-
by-construct level, focusing mostly on Vdm++’s specification-oriented constructs not found
in classical programming languages. Section 5 illustrates a Scala DSL for writing behavioral
properties in a combination of parameterized state machines and temporal logic. Finally, Section
6 ends the paper with a discussion. Throughout the paper Vdm++ specifications are shown on
grey background, whereas Scala programs are shown on white background.

2 The Alarm Management System in Vdm++

In this section we shall introduce a small example specification of a chemical plant alarm
management system taken directly from [14] Chapter 2: Building a Model in Vdm++: An
Overview. In [14] this example specification is built together with a corresponding UML class
diagram to illustrate how the two techniques can co-exist. We shall not make an emphasis on
the UML aspect, except to point out that UML could be used in a similar manner for Scala.

We shall put some focus on the requirements engineering aspect of this modeling in order to
emphasize that Vdm++ is used as a specification language. The system to be developed shall
manage the calling out of experts to deal with operational faults discovered in a chemical plant.
Faulty conditions are detected with sensors positioned throughout the plant. Upon detection
of a faulty condition, an alarm is raised, and an expert on duty is assigned to handle the alarm.
Each alarm is associated with a specific qualification required to fix the causing problem, and
each expert is associated with a set of qualifications. Concretely, Figure 1 lists the requirements
that have been formulated for this system. A Vdm++ specification is composed of classes. In
our case three classes are introduced to model the requirements R1-R8 in Figure 1: Expert,
Alarm and Plant. Class Expert is shown in Listing 1.

The body of this class is divided into three sections: instance variables, types and operations.
Only entities declared public are visible from outside the class. Instance variables are mutable
variables, like fields in Java, which can be updated by operations. In this case we have a
variable quali, which has the type: set of Qualification , meaning that at any point in time it
holds as value a set of qualifications, where Qualification is defined in a separate type definition.
The operator set of is a type operator taking a type (in this case Qualification) as argument
and yielding a new type (in this case the type of all sets of qualifications). Vdm++ offers several
built-in type operators, the most important of which are sets, lists and maps. The variable quali
represents requirement R4 (Each expert has a set of qualifications).

212

Vdm++ and Scala Havelund

R1 A computer-based system is to be developed to manage the alarms
of this plant.

R2 Four kinds of qualifications are needed to cope with the alarms:
electrical, mechanical, biological, and chemical.

R3 There must be experts on duty during all periods allocated
in the system.

R4 Each expert has a set of qualifications.
R5 Each alarm reported to the system has a qualification associated

with it along with a description of the alarm that can be
understood by the expert.

R6 Whenever an alarm is received by the system an expert with the
right qualification should be found so that he or she can be paged.

R7 The experts should be able to use the system database to check
when they will be on duty.

R8 It must be possible to assess the number of experts on duty.

Figure 1: Requirements for Chemical Plant Alarm System

Listing 1: Class Expert (Vdm++)

class Expert
instance variables

quali : set of Qualification ;

types

public Qualification = <Mech> | <Chem> | <Bio> | <Elec>;

operations

public Expert: set of Qualification ==> Expert
Expert(qs) ==

quali := qs;

public GetQuali: () ==> set of Qualification
GetQuali() ==

return quali;
end Expert

Type definitions have the form: name = type expression, and simply defines the name to
stand for the type denoted by the type expression. In this case type Qualification is defined
as the union (t1 | t2 denotes the union of types t1 and t2) of four types, each of which is a so-
called quote type containing one element. For example <Mech> is a quote type containing the
single constant <Mech>. The definition of type Qualification represents requirement R2 (Four
kinds of qualifications are needed to cope with the alarms: electrical, mechanical, biological, and

213

Vdm++ and Scala Havelund

chemical).
Class Expert has two operations, Expert and GetQuali. An operation is an action that

accesses the state of an object (read or write), or in the case of Expert, which has the same
name as the class: creates an object – it is an object constructor (similar to Java’s constructors).
Each operation is defined by first giving its type and then its definition. An operation type
has the form t1 ==> t2, where t1 is the argument type and t2 is the result type. The ==>
arrow indicates that state can be accessed, in contrast to functions which we shall se examples
of later. The constructor Expert takes as argument a set of qualifications and returns an
Expert object. It creates a new object, assigning the argument set to the quali variable with
an assignment statement. Note that Vdm++ in addition to various high-level specification
constructs contains a programming language like subset. The operation GetQuali takes no
arguments (‘()’ represents the empty list of arguments) and just reads the state, returning the
contents of the quali variable. This is what is usually referred to as a getter method in Java.

Alarms are objects of the Alarm class shown in Listing 2. Since strings are not a built-in
type in Vdm++, the type String is introduced as a sequence of characters1. The class defines
two instance variables: descr is a text description of the alarm, while reqQuali contains the
qualification that it requires to fix the problem causing the alarm (it is here assumed that
there is only one such). The type Expert‘Qualification refers to the type Qualification in class
Expert. The class has a constructor and a getter method, as before. This class represents
requirement R5 (Each alarm reported to the system has a qualification associated with it along
with a description of the alarm that can be understood by the expert).

The last class Plant, shown in Listing 3 represents the rest of the requirements. It defines
two instance variables: alarms denotes the set of alarms that can be activated, and schedule
denotes the current schedule, mapping each time period to the set of experts on duty for that
period. A map is like a function, but with a finite domain in which one can look up a key (in
the domain) to get an associated value (in the range). The type Period is defined in the type
section as being a token. Tokens are atomic entities on which only equality is defined. This
reflects that we do not care about what exactly time periods are. Tokens are constructed as
follows: mk token(expr), for example mk token(”period−3”). The declaration of the two
instance variables are followed by the following invariant:

inv PlantInv(alarms,schedule);

The ‘inv boolean expression’ construct defines an invariant that always have to be true. In this
case the Boolean expression denoting the invariant is a call of the function PlantInv defined in
the functions section. The body of this function contains two sub-invariants, each a universal
quantification. The first forall-expression states that for all periods in the domain of the schedule
map, the schedule of this period should not be empty. This represents requirement R3 (There
must be experts on duty during all periods allocated in the system). The second forall-expression
states that for all alarms a in the set of alarms, and for all periods p in the domain of the
schedule, there exists an expert assigned to p, for which it holds that a’s qualification is in the
set of qualifications had by the expert p. This represents part of requirement R6 (Whenever
an alarm is received by the system an expert with the right qualification should be found so that
he or she can be paged). The invariant demonstrates the use of predicate logic.

The Plant class defines the three operations ExpertToPage, NumberOfExperts and ExpertI-
sOnDuty plus the Plant constructor. The constructor is associated with the pre-condition (as
part of the definition of the operation) that the plant invariant must be true for its arguments.

1Vdm++ uses the term sequence instead of list. We shall use the unifying term list throughout the remaining
part of the paper.

214

Vdm++ and Scala Havelund

Listing 2: Class Alarm (Vdm++)

class Alarm
types

public String = seq of char;

instance variables

descr : String;
reqQuali : Expert‘Qualification ;

operations

public Alarm: Expert‘Qualification ∗ String ==> Alarm
Alarm(quali,str) ==
(descr := str;

reqQuali := quali
);

public GetReqQuali: () ==> Expert‘Qualification
GetReqQuali() ==

return reqQuali;
end Alarm

The constructor should never be called on arguments that do not satisfy the pre-condition.
The operation ExpertToPage computes for a given alarm and a given period an expert that
has the qualifications to handle the fault causing the alarm. This represents requirement R6

(Whenever an alarm is received by the system an expert with the right qualification should be
found so that he or she can be paged). The operation illustrates how it is possible to define an
operation with a body (as before), a pre-condition, and a post-condition. The side-effect and
returned result of the body should satisfy the post condition. Any of these three concepts can
be left out. An operation can for example be defined with just a pre-post condition pair. In this
case the operation will not be executable and can therefore not be tested. The pre-condition
states that the alarm must exist and the period must be defined (in the domain of the schedule).
The post-condition states that the resulting expert returned by the operation (represented by
RESULT) should be assigned to that period, and that the alarm’s associated qualification
should be amongst the expert’s qualifications. A let-expression is used to bind the result of
an expression to an non-mutable identifier (defining a constant). The body of the operation
looks in this case very much like the post-condition. It uses a non-deterministic choice operator
reading: let expert be some member in the set schedule(p) such that a.GetReqQuali() is in the
set expert.GetQuali() and then return this expert.

The operation NumberOfExperts returns the number of experts assigned to a particular
period. The card operator returns the cardinality of a set. This represents part of requirement
R8 (It must be possible to assess the number of experts on duty). The ExpertIsOnDuty operation
returns for a given expert the periods he or she is assigned to (this is a case where there is no

215

Vdm++ and Scala Havelund

Listing 3: Class Plant (Vdm++)

class Plant
instance variables

alarms : set of Alarm;
schedule : map Period to set of Expert;

inv PlantInv(alarms,schedule);

functions
PlantInv: set of Alarm ∗ map Period to set of Expert −> bool
PlantInv(as,sch) ==

(forall p in set dom sch & sch(p) <> {}) and
(forall a in set as &

forall p in set dom sch &
exists expert in set sch(p) &

a.GetReqQuali() in set expert.GetQuali());

types
public Period = token;

operations
public ExpertToPage: Alarm ∗ Period ==> Expert
ExpertToPage(a, p) ==

let expert in set schedule(p) be st
a.GetReqQuali() in set expert.GetQuali()

in
return expert

pre a in set alarms and p in set dom schedule
post let expert = RESULT in

expert in set schedule(p) and
a.GetReqQuali() in set expert.GetQuali();

public NumberOfExperts: Period ==> nat
NumberOfExperts(p) == return card schedule(p)
pre p in set dom schedule;

public ExpertIsOnDuty: Expert ==> set of Period
ExpertIsOnDuty(ex) ==

return {p | p in set dom schedule & ex in set schedule(p)};

public Plant: set of Alarm ∗ map Period to set of Expert ==> Plant
Plant(als ,sch) ==

(alarms := als; schedule := sch)
pre PlantInv(als,sch);

end Plant

216

Vdm++ and Scala Havelund

Listing 4: Classes Qualification, Period, Expert, and Alarm (Scala)

trait Qualification
case object Mech extends Qualification
case object Chem extends Qualification
case object Bio extends Qualification
case object Elec extends Qualification

class Period(name: String)

case class Expert(quali: Set[Qualification])
case class Alarm(descr: String, reqQuali: Qualification)

pre or post condition). This represents part of requirement R7 (The experts should be able to
use the system database to check when they will be on duty). The body of this operation is
a so-called set comprehension reading: the set of periods p where p is in the (domain of the)
schedule, and the expert is scheduled for that period. Set comprehensions, as well as list and
map comprehensions form a core of the Vdm++ language.

3 The Alarm Management System in Scala

In this section the same set of requirements will be modeled as a Scala program. Listing
4 shows several class and object definitions corresponding to the Vdm++ types Qualification
and Period and the Vdm++ classes Expert and Alarm. The Vdm++ union type Qualification
is in Scala modeled using an object hierarchy. Scala has an enumeration type concept,
but the here shown approach is more general and supports variant types in general known
from functional programming languages. Qualification is modeled as an abstract class with no
contents (a trait is a form of abstract class), and each alternative qualification is modeled as
a case object that extends this class. Scala allows to define an object directly without first
defining a class and then instantiating it. In addition, defining an object as a case object allows
it to be used in pattern matching and to be printed as defined (for example println(Mech)
will print Mech), and not as for example alarm.Mech$@690da5eb had the case keyword been
omitted.

Type Vdm++ type Period is modeled as a class. Since Vdm++ tokens can be created as
follows: mk token(”period−3”), we define it as parameterized with a string, hence allowing
us to create periods as follows: new Period(”period−3”). The classes Expert and Alarm are
defined as case classes with parameters. The case keyword allows objects to be created without
the use of the keyword new, allows for pattern matching over terms of the class, allows to
access the arguments from outside the generated object, defines equality to include equality of
arguments, and supports printing of objects and their arguments in a humanly readable form.
For example an expert can be created as follows: Expert(Set(Mech,Bio)). Suppose e denotes
such an object we can access its parameter with the notation: e.quali.

The Vdm++ specification uses the same technique as suggested for Java developers, to not
expose the internal variables of a class, and to use getters and setters to read from respectively
write to these variables. For example, the Vdm++ specification of the Expert class is rather

217

Vdm++ and Scala Havelund

lengthy with a constructor defined inside the class as well as a getter method. The corresponding
Scala class definition is just one line. First of all, in Scala the arguments to a class constructor
are given as part of the class header, saving us from an explicit constructor definition inside the
body of the class. Second, the reason for using getter and setter methods is that it allows an
implementer to change the definition of the internal state, while keeping the promised getter
and setter methods. However, Scala allows to change the public variables of a class, while
keeping the same interface. This is done by allowing the implementer that changes the variables
to define new methods that when called look like accesses (reads and writes) to the old variables
existing before the change. This is possible for example since it is allowed to omit parenthesis
as part of the method name. We shall not go into this subject further here.

The main definitions are in class Plant, as shown in Listing 5. Recall from above that con-
structor parameters are written as arguments to the class definition. The Vdm++ constructor
has the pre-condition that the invariant should be satisfied. This is in Scala modeled with
an assert statement as the first line of the class (all statements at the outermost level of a
class are executed when an object is created). The PlantInv function is defined starting with
the keyword def. Scala does not have universal and existential quantification as part of the
language (they are not keywords). However, any collection, such as a set, list or map, has a
forall and an exists method defined on it. For example a Set[A] object defines a method with
the following signature:

def forall (p: A => Boolean): Boolean

The first line of the body of the PlantInv function reads as follows. The expression sched-
ule.keySet denotes the domain (set of keys) of the the schedule map. On this set the method
forall is called with the following function (predicate) as argument: ‘p => schedule(p) != Set()’.
This predicate takes as argument a period p and returns true iff. the set denoted by that period
in the schedule is non-empty. Note that in Scala a call of a method m on an object o with an
argument a, can be written as: o m a, as an alternative to the more traditional dot-notation
style: o.m(a). With this explanation the rest of the method should be understandable.

The ExpertToPage method is defined with a pre-condition, a body, and a post-condition.
The definition has the form:

def ExpertToPage(a: Alarm, p: Period): Expert = {
require(pre condition)
body
} ensuring {

result => post condition
}

It uses the two library functions require and ensuring. The pre-condition is expressed with a call
of the Scala require method, which is intended to be used as a pre-condition of a method. It
behaves as assert except that it throws an IllegalArgumentException instead of a AssertionError
exception. The post-condition is expressed using the ensuring method, the application of which
has the form:

expression ensuring predicate

which first evaluates the expression to a value v, and then behaves as: ‘assert(predicate(v));v’.
We shall in section 4 explain how this really works. The methods NumberOfExperts and Ex-
pertIsOnDuty are simple. We recall that methods, such as size (calculating the cardinality of

218

Vdm++ and Scala Havelund

Listing 5: Class Plant (Scala)

class Plant(als : Set[Alarm], sch: Map[Period, Set[Expert]]) {
var alarms: Set[Alarm] = als
var schedule: Map[Period, Set[Expert]] = sch

assert (PlantInv(alarms, schedule))

def PlantInv(alarms: Set[Alarm], schedule: Map[Period, Set[Expert]]): Boolean =
(schedule.keySet forall {p => schedule(p) != Set() }) &&

(alarms forall { a =>
schedule.keySet forall { p =>

schedule(p) exists { expert =>
a.reqQuali in expert.quali
}
}
})

def ExpertToPage(a: Alarm, p: Period): Expert = {
require((a in alarms) && (p in schedule.keySet))
schedule(p) suchthat { expert =>

a.reqQuali in expert.quali
}
} ensuring { expert =>

(a.reqQuali in expert.quali) &&
(expert in schedule(p))

}

def NumberOfExperts(p: Period): Int = {
require(p in schedule.keySet)
schedule(p) size
}

def ExpertIsOnDuty(ex: Expert): Set[Period] =
schedule.keySet filter { p => ex in schedule(p) }

}

219

Vdm++ and Scala Havelund

a set) and filter (selecting the members of a set satisfying a predicate), can be called without
dot-notation.

4 Comparison by Construct

Vdm++ as well as Scala both offer a combination of object-oriented and functional program-
ming. In Scala the integration of these two concepts was part of the initial language design
and is characterized by all values in Scala being objects, including numerical values and func-
tions. In contrast, object orientation was added to Vdm after its original design to obtain
Vdm++. Both languages offer the traditional language constructs from these two paradigms;
from object-oriented programming: classes and objects, mutable variables, assignment state-
ments, sequential statement composition, conditionals, while loops, for loops over collections2,
exceptions, and threads (concurrency); and from functional programming: higher order func-
tions, currying, lambda abstractions (anonymous functions), algebraic data types and pattern
matching. In addition to these concepts Vdm++ offers a collection of specification-oriented con-
structs that we shall discuss in more detail in this section. These are: built-in composite types
for sets, lists and maps, a special general concept of union types, type invariants, also occasion-
ally referred to as predicate subtypes, mutable state invariants and pre/post conditions (design
by contract), universal and existential quantification (predicate logic) and non-deterministic
expressions and statements. Vdm++ offers a specification language for threads, which we shall
not discuss in this paper. Threads were not part of the original Vdm specification language.

4.1 Sets and Lists

One of the original contributions of Vdm was the built-in set, list and map data types. We shall
refer to these as collections. These data types have subsequently made it into standard program-
ming languages today, either as library constructs (Java and Scala) or built-in (Python).
Most functional programming languages support lists as a built-in data type. In Vdm++ val-
ues of these types can be constructed in one of three ways: (i) by explicitly enumerating the
elements, (ii) by a comprehension from (iteration over) another collection, and (iii) by applying
operators. The following three definitions show these three forms for sets in Vdm++:

values
s1 : set of int = {1,2,3};
s2 : set of int = {x+1 | x in set s1 & x > 2};
s3 : set of int = s1 union s2;

The set s1 is constructed by explicit enumeration. The set s2 is a set comprehension and is de-
rived from the set s1, equaling {4}. The expression is of the form: {f(x) | x in set s & p(x)},
for some set s, for some some total function f : int +>int, and for some total predicate
p: int +>bool. A +>B represents the set of total functions from A to B while A −>B repre-
sents the set of partial functions from A to B. Sets can furthermore be formed by taking unions,
as set s3 which equals {1,2,3,4} , intersections, etc (a large variety of set operators are available).
Set comprehensions can also be formed by ranging over types, as in {x+1 | x : nat & x < 3}.
Such sets are not used often and they have no counterpart in Scala. Lists can be constructed

2Note that for-loops over collections, such as sets and lists, only has become standard in modern programming
languages more recently.

220

Vdm++ and Scala Havelund

in a similar manner to sets, however using square brackets instead of curly brackets, as in the
explicitly enumerated list: [1,2,3] .

Scala allows to construct values of these types in the same manner: by explicit enumera-
tion, by comprehension, and by applying operators. Concerning comprehension, however, two
approaches are possible, one using the functions filter and map, and one using the for−yield
construct. The Scala definitions of the above sets using filter and map become as follows:

val s1: Set[Int] = Set(1, 2, 3)
val s2: Set[Int] = s1 filter (x => x > 2) map (x => x+1)
val s3: Set[Int] = s1 union s2

The set s1 is constructed by explicit enumeration using an object constructor. Note that in
Scala a set is an object – there is no special syntax for sets. The set s2 is constructed
from s1 using two methods defined on collections: filter and map. An expression of the form:
‘s filter p’, where s is a collection and p is a predicate over the elements in the collection,
returns the sub-collection of s containing only the elements satisfying p. An expression of the
form ‘s map f ’, where s is a collection and f is a total function f : A =>B, returns the set of
elements f(x) for all x in s. The union of two sets is defined in the same manner as in Vdm++.
Note that since Scala allows symbols as operators, many of Vdm++’s operator syntax could
be modeled if that was desired.

The use of filter and map is the standard way to define comprehensions in functional pro-
gramming languages. Scala has a special for−yield construct:
for (x <− s if p(x)) yield f(x), that corresponds more directly to Vdm++’s comprehension:
{f(x) | x in set s & p(x)}. With this construct the set s2 can be programmed as follows in
Scala:

val s2: Set[Int] = for (x <− s1 if x > 2) yield x + 1

Lists are modeled in a similar manner to sets, but using a different constructor:

val l : List [Int] = List(1, 2, 3)

Note that the for−yield construct is collection-preserving in the sense that if the base collection
ranged over is a set it will return a set, and if it is a list it will return a list. Explicit functions
exist for converting between collection types in case this is needed.

4.2 Maps

Maps can be defined in a similar manner. The following Vdm++ example defines a set of week
days and a set of hours in a day, as well as two calendars mapping day-hour pairs to calendar
entries. cal2 is an update of cal1 with a meeting scheduled for Tuesday from 8-10.

types
String = seq of char;
Calendar = map String ∗ int to String;

values
week : set of String = {”mon”,”tue”,”wed”,”thu”,”fri”,”sat”,”sun”};
hours : set of int = {1,...,24} ;

221

Vdm++ and Scala Havelund

cal1 : Calendar =
{mk (day,hour) |−> ”empty” | day in set week, hour in set hours};

cal2 : Calendar =
cal1 ++ {mk (”tue”,hour) |−> ”meeting” | hour in set {8,...,10}};

The same definitions in Scala would become:

type Calendar = Map[(String,Int),String]

val week = Set(”mon”,”tue”,”wed”,”thu”,”fri”,”sat”,”sun”)
val hours = 1 to 24

val cal1 : Calendar =
for (day <− week; hour <− hours) yield ((day,hour) −> ”empty”)

val cal2 : Calendar =
cal1 ++ (for (hour <− 8 to 10) yield ((”tue”,hour) −> ”meeting”))

Note that cal1 is created from the sets week and hour. Since Scala’s for−yield construct,
as already mentioned, preserves collection type, the result is a set of pairs of the form
((day,hour),”empty”) – noting that an expression of the form: a −>b is equivalent to the
pair/tuple: (a,b). To turn it into a map type we would have to apply the toMap method on
this set of pairs. Alternatively, as we have done here, we can define a so-called implicit function
that converts all sets of pairs into maps:

implicit def pairs2Map[A,B](pairs: Set[(A,B)]): Map[A,B] = pairs.toMap

An implicit function in Scala is not meant to be called explicitly in the program. Rather,
calls of these functions are inserted by the compiler in places where an expression does not type
check, but where it would if one of these functions were applied in that context to one of the
sub-expressions. There has to be a unique such implicit function, otherwise the compiler will
fail to “resolve” the type error.

4.3 Record and Union Types

Vdm++ offers a construct inherited from Vdm for constructing records and a very general union
type operator. The following example illustrates these two concepts in a Vdm++ model of trees
of integers, with a function for summing up the elements in a tree.

class TreeSum
types

Tree = <Empty> | Node;
Node :: lt : Tree nval : int rt : Tree

functions
sum : Tree +> int
sum(t) ==

cases t :
<Empty> −> 0,
mk Node(l,n,r) −> sum(l) + n + sum(r)

222

Vdm++ and Scala Havelund

end
end TreeSum

The Tree type is defined as the union (denoted by ‘|’) of the quotation type <Empty>, which
only contains that value, and the type Node, which is defined as a record (indicated by the
symbol ‘ :: ’) consisting of a left tree (named lt), a right tree (named rt) and a numeric value
(named nval). The function takes a tree as argument and cases out on the two alternatives, using
the mk Node(l,n,r) pattern to match a composite tree value. Elements of type Node are created
with the mk Node constructor. That is, if left and right are trees then mk Node(left,4,right)
is a node, and consequently a tree. The Scala version of this model is shown below.

class TreeSum {
trait Tree
case object Empty extends Tree
case class Node(lt: Tree, nval: Int , rt : Tree) extends Tree

def sum(t: Tree): Int =
t match {

case Empty => 0
case Node(l, n, r) => sum(l) + n + sum(r)
}

}

In Scala there is no general un-tagged union operator, although at the time of writing it is
being explored by the Scala design team. A union type is instead modeled by declaring a
type Tree (as a trait) and by defining the various alternatives as sub-classes of this, similar to
what one would do in for example Java. There is also no special notion of record type since
classes can be used for this, and in particular case classes which allow us to: create objects of
the class without using the new keyword, do pattern matching over the constructor, rely on
equality tests based on arguments to the constructor, get access to the elements via the formal
parameter names, and print in a recognizable format. Note that the Empty alternative has to
be defined as an object since it has no parameters and we are interested in only one instance.
The defined function looks very similar to the Vdm++ version except for the different syntax
for a case construct.

4.4 Type Invariants

Vdm++ allows to define a type S as a subtype of another type T, including only members of T
that satisfy a certain predicate. For example a type Degree can be defined as a subtype of the
integers as follows, where we have also defined a function over degrees:

types
Degree = int
inv x == 0 <= x and x <= 360

functions
turn : Degree ∗ int +> Degree
turn(d,x) == (d + x) rem 360
pre x >= 0

223

Vdm++ and Scala Havelund

The semantics is that Degree denotes the set of integers in the interval 0 to 360. Predicate
subtypes also exist in other specification languages. For example in Rsl [17] one can express
the type perhaps more naturally as a set comprehension as follows, with a similar semantics:

type Degree = {| x : Int :− 0 <= x /\ x <= 360 |}

On application of the function turn we will get a type error if it is applied outside its range
0 . . . 360 on its first argument, if its second argument violates the pre-condition, or if a value
outside the degree range is returned. Note that we could constrain the second argument to be of
type nat but choose to use a pre-condition for illustration purposes. For example, the following
application should result in a type error: turn(−1,20). Of course, such type checking cannot be
fully automated in the general case. Type checking would require a call to a theorem prover.
However, such subtypes is a centralized and succinct way of expressing constraints compared to
for example scattering pre- and post-conditions throughout function definitions, and they can
be checked at runtime (with an option for switching off such checks for efficiency purposes).

Scala does not have predicate subtypes. One can, however, simulate subtypes using implicit
conversion functions as suggested in [32]. The resulting “type” definition will consist of three
Scala definitions: a case class, and two implicit function definitions, as follows.

case class Degree(x:Int) {
assert(0 <= x && x <= 360)
}
implicit def convInt2Degree(x:Int):Degree = new Degree(x)
implicit def convDegree2Int(d:Degree):Int = d.x

def turn(d: Degree, x: Int): Degree = {
require(x >= 0)
(d + x) % 360
}

The case class Degree defines the actual type. It contains an assertion in the body asserting
the subtype predicate whenever an object of this class is created. Two implicit conversion
functions convert respectively from integers to degrees and back. The compiler will based on
these conversion functions compile the definition of the turn function as follows:

def turn(d: Degree, x: Int): Degree = {
require(x >= 0)
convInt2Degree((convDegree2Int(d) + x) % 360)
}

An application of the function, as as for example: turn(−1,20), will be converted into:
turn(convInt2Degree(−1),20), which will cause the assert to fail. The Scala solution is obvi-
ously not very succinct, but offers an interesting solution to the problem.

4.5 State Invariants

Vdm++ also supports predicate “sub-typing” of state variables. The example in Listing 3
illustrates this case. We have repeated the relevant piece of Vdm++ specification below, adding
an additional method for deleting an expert from a period (which first checks the invariant on
a copy of the new schedule, and if true updates the schedule - note that this is a specification,

224

Vdm++ and Scala Havelund

and hence is allowed to be inefficient).

class Plant
instance variables

alarms : set of Alarm;
schedule : map Period to set of Expert;

inv PlantInv(alarms,schedule);
...
operations

public DeleteExpert : Period ∗ Expert ==> ()
DeleteExpert(p,e) ==

let newSchedule = schedule ++ {p |−> schedule(p) \ {e}} in
if (PlantInv(alarms,newSchedule)) then schedule := newSchedule

pre p in set dom schedule;
...
end Plant

In case an operation contains more than one statement, the invariant has to hold in between
every single statement. If one wants to avoid this, the statements must be wrapped in an
atomic(assignStmt1; . . . ; assignStmtn) construct.

We note in the Scala solution in Listing 5 that the invariant is expressed as an assertion
that is executed as the first thing when an object of class Plant is created. This works as long
as the state is never updated once created. However, with the addition of the DeleteExpert
operation, we need to come up with a better solution. Odersky in [31] suggests the following
pattern for defining invariants in Scala. We define a trait Invariant with a variable that
contains a list of invariants to be checked, and a method invariant for adding new invariants to
this list. In addition, we define a function atomic that as argument takes a fragment of code,
and executes a check of the invariants before as well as after the execution of the code. The
definition of Invariant in Scala is as follows.

trait Invariant {
private var invs: List [() => Boolean] = List()

def invariant(cond: => Boolean) {
assert (cond)
invs = (() => cond) :: invs
}

def atomic[T](body: => T): T = {
for (inv <− invs) assert(inv())
val result = body
for (inv <− invs) assert(inv())
result

}
}

Note that the argument types of the methods invariant and atomic are both of the form: ‘=>X’
for some type X. It appears as a function type but without any argument type. Such a “type”
represents a call by name argument. When one of these methods is applied to a term, the term

225

Vdm++ and Scala Havelund

is not evaluated before the method is applied, rather, it is passed on to the body. The invariant
wraps it inside a lambda abstraction (to form a closure): ‘() =>cond’, and adds it to the list
of invariants (:: adds an element to a list). We have modified the method compared to [31]
by asserting the condition before insertion in the list. The atomic method (named step in [31])
executes its argument code piece, with a check of the invariants before as well as after. We can
now formulate our plant in Scala using this trait.

class Plant(als : Set[Alarm], sch: Map[Period, Set[Expert]]) extends Invariant {
var alarms: Set[Alarm] = als
var schedule: Map[Period, Set[Expert]] = sch

invariant{PlantInv(alarms, schedule)}
...
def DeleteExpert(p:Period, e: Expert) =

atomic {
require(p in schedule.keySet)
val newSchedule = schedule + (p −> (schedule(p) − e))
if (PlantInv(alarms,newSchedule)) schedule = newSchedule

}
...

}

The Plant class adds the invariant, and the body of the DeleteExpert method is a call of the
atomic method with the code as argument.

4.6 Functions and Operations

In Scala there is no distinction between pure functions (with no side effects) and operations
with side effects as there is in Vdm++. There is only a notion of functions, with or without
side-effects. There is the notion of a method, which is a function that is a member of some
class, trait, or singleton object. Scala allows parametric polymormism (functions defined with
a type parameter) as Vdm++. In addition Scala also allows parametric polymorphism at
the class and trait level. The perhaps most explicit difference is how pre- and post-conditions
are handled. In Listing 5 we saw how pre- and post-conditions are expressed using a pair of
library functions require and ensuring. As already mentioned, the require function is like assert.
The ensuring function is more interesting. The expression: ‘expr ensuring pred ’ evaluates expr
to a value. The predicate pred is then applied to this value and if true, the value is returned,
otherwise an exception is thrown. The ensuring function is defined as follows in Scala’s Predef
object.

final class Ensuring[A](val x: A) {
def ensuring(cond: A => Boolean): A = { assert(cond(x)); x }
}

implicit def any2Ensuring[A](x: A): Ensuring[A] = new Ensuring(x)

Here a class Ensuring is defined, parameterized with a value x of a parametric type A. The
class defines the ensuring method, which takes a predicate on A, checks the assertion and
returns x if the assertion has not failed before then. The implicit function any2Ensuring con-
verts any value x to an Ensuring object. To see how this works, consider the expression:

226

Vdm++ and Scala Havelund

‘expr ensuring pred ’. The Scala compiler will treat this as ‘expr.ensuring(pred)’, which will
not type check since the method ensuring will not be defined on the value returned by expr.
The compiler will then insert a call of the implicit conversion function any2Ensuring as follows:
‘any2Ensuring(expr).ensuring(pred)’.

This Scala approach to pre- and post-conditions handles the case of pure functions well,
but does not handle functions that have side-effects. This is because we in a post-condition
cannot refer to the old value of a variable (at function entry point), as in Vdm++: x˜ (for
old value of x), and as normally allowed in pre-post condition formalisms. We would have to
explicitly store such values at function entry point.

Vdm++ furthermore allows to define a function or operation only with a pre- and post-
condition, without an implementing body. To achieve this in Scala one can, as suggested
in [31], define a function unimplemented which throws an exception and call it as part of the
body. Using this style, however, we would have to replace the call of unimplemented with
a real body once we determine what it shall be. If one wants to separate specification from
implementation one will have to replace the call of unimplemented with a call that delegates to
an implementation, for example as also described in [31].

4.7 Quantifiers, Choice

Vdm++ offers expressions which have a foundation in logic. These include universal and ex-
istential quantification and let-be-such-that expressions. These constructs can quantify/range
over infinite types as well as over finite sets, whereas in Scala their corresponding constructs
only can range over finite sets. However, usually this is sufficient in most Vdm++ models seen
in practice. We saw examples of quantifications in Scala in the definition of function PlantInv
in Listing 5. These were just functions (methods) defined on collections.

Vdm++ has, as many functional programming languages, let-expressions of the form
‘let x = exp1 in exp2’. Scala does not offer such a construct but allows you to define con-
stants with the val construct. The example would become: ‘val x = exp1; exp2’. Vdm++ also
offers a ’def x = exp1 in exp2’ construct in case ‘exp1’ has side effects. Scala does not make
this distinction just as it makes no distinction between functions and operations.

Vdm++ in addition offers a so-called let-be-such-that construct, as illustrated in the defini-
tion of the ExpertToPage operation in Listing 3. We repeat the expression here:

let expert in set schedule(p) be st
a.GetReqQuali() in set expert.GetQuali()

in
return expert

This expression is of the form: ‘let id in set exp1 be st exp2 in exp3’. That is, choose a
value id from the set exp1 such that exp2 is satisfied and then return exp3. There is a non-
deterministic choice to be made if more than one element in exp1 satisfies exp2. In the example
above, we need to select an expert in the set schedule(p) who’s set of qualifications contains
the qualification associated with the alarm in question. In Scala this can be modeled as
application of a function to the set and the predicate, which selects an element from the set (for
example the first) satisfying the predicate. Our Scala version becomes (we do not provide the
definition of the function suchthat here):

schedule(p) suchthat {expert =>
a.reqQuali in expert.quali

227

Vdm++ and Scala Havelund

}

Vdm++ offers non-determinism in the form: ‘| |(stmt1, stmt2, ..., stmtn)’. It represents the
execution of the component statements in an arbitrary (non-deterministic) order (not simulta-
neously). This parallel operator can be defined as follows in Scala.

import java.util.Random

val rand = new Random(System.currentTimeMillis())

def | | [T](statements: (Unit => T)∗) {
var stmts = statements.toList
while (!stmts.isEmpty) {

val choice = rand.nextInt(stmts.length)
val (stmts1,stmtChoice::stmts2) = stmts.splitAt(choice)
stmts = stmts1 ++ stmts2
stmtChoice()
}
}

implicit def convStmt2Lamda[T](stmt: => T): Unit => T =
((x: Unit) => stmt)

In the scope of these definitions, the following statement will execute the different println
statements in random order:

| |(println(”work”), println(”rest”), println(”sleep”))

It is obvious how one would define a non-deterministic choice operator in the same manner.

5 Temporal Specification

In the previous sections we have illustrated how Scala can be used as a modeling language in
a manner comparable with how Vdm++ is intended to be used. The modeling approach is the
classical Vdm approach of defining data structures based on sets, lists and maps, and then de-
fine operations and functions on these using programming, pre/post conditions, invariants and
elements of predicate logic. In this section we shall illustrate a Scala DSL named TraceCon-
tract [4, 5] for writing parameterized state machines, which allows anonymous states, thereby
allowing a combination of state machines, temporal logic and code. The logic is executable
in the sense that specifications can be used for monitoring an application module, either as
it executes, or for post-mortem analysis of logs produced by the module during its execution.
The solution is an internal DSL (a Scala API) in contrast to our earlier logics for monitoring,
which were external DSLs (relying on parsers) [2, 7, 6, 8, 3]. Other runtime verification systems
include [39, 38, 12, 1]. Some work has been done in the past on extending Vdm with temporal
logic, for example [28]. Such extensions usually require a substantial amount of theoretic work
and implementation effort. The extension shown here has an implementation of less than 120
lines of uncommented code.

As our example application, assume that the plant is instrumented to write events of impor-
tance to logs, and that these logs are analyzed after their creation. Assume that the events writ-

228

Vdm++ and Scala Havelund

R9 An alarm must be repaired within one hour by an expert
possessing the required qualifications.

R10 Two consecutive different alarms without a repair
of the first alarm in between must be reported.

Figure 2: Temporal Requirements for Chemical Plant Alarm System

ten to the logs are of the form AlarmOn(alarm,time) and Repair(alarm,expert,time), indicating
respectively that an alarm occurred at a certain time, and that a repair of an alarm occurred by
an expert at a certain time. Consider the two additional chemical plant alarm system require-
ments shown in Figure 2. The objective is to write a specification of these two requirements.
The first task is to specify the events AlarmOn(alarm,time) and Repair(alarm,expert,time), by
defining a trait Event and defining the two event alternatives as case classes subclassing Event:

trait Event
case class AlarmOn(alarm: Alarm, time: Int) extends Event
case class Repair(alarm: Alarm, expert: Expert, time: Int) extends Event

Note that time stamps are just modeled as data (in milliseconds). The two requirements can
now be formalized as the following TraceContract monitor:

class AlarmMonitor extends Monitor[Event] {
val oneHour = 1000 ∗ 60 ∗ 60

always {
case AlarmOn(alarm, time) => AlarmOccurred(alarm, time)
}

def AlarmOccurred(alarm: Alarm, time: Int) =
eventually {

case AlarmOn(alarm2,) if alarm != alarm2 => False
case Repair(‘alarm‘, expert, time2) =>

(alarm.reqQuali in expert.quali) && time2 − time <= oneHour
}

}

The class AlarmMonitor extends the class Monitor which is defined as part of TraceCon-
tract, and which offers all the temporal primitives needed for writing state machines and
temporal specifications. The monitor reads as follows: it is always the case, that if an Alar-
mOn(alarm, time) event is observed, the monitor transitions to the AlarmOccurred(alarm,
time) state - essentially a function call. This function in turn returns an eventually state, which
has to be exited before the end of the log is reached, otherwise an error is reported. If a Re-
pair(‘alarm‘, expert, time2) is observed (where the quotes around alarm indicate the same value
as alarm), then it is checked that that expert has the right qualifications and that the repair
occurs within one hour. If on the other hand an AlarmOn(alarm2,) event is observed before
the repair (ignoring the time stamp) where alarm2 is different from alarm, an error is reported.

The always and eventually constructs are Scala functions each of which take as argument a
so-called partial function (lambda abstraction) as argument. In Scala such a partial function

229

Vdm++ and Scala Havelund

can be defined as a block of case statements defining the values for which the partial function
is defined. In essence the monitor in these states will wait for an event that matches one of the
cases.

To illustrate the flexibility of an internal DSL compared to an external parser-based DSL,
observe that the target state AlarmOccurred(alarm, time) is a function call. This means that the
body of the function can be inserted in place of the call. The result is the following equivalent
monitor:

class AlarmMonitor extends Monitor[Event] {
val oneHour = 1000 ∗ 60 ∗ 60

always {
case AlarmOn(alarm, time) =>

eventually {
case AlarmOn(alarm2,) if alarm != alarm2 => False
case Repair(‘alarm‘, expert, time2) =>

(alarm.reqQuali in expert.quali) && time2 − time <= oneHour
}

}
}

The resulting property resembles a temporal logic property, where the intermediate state is
un-named. The monitor can be instantiated and applied to a trace as follows:

object Test extends Application {
val alarm1 = Alarm(”BrokenPipe”, Mech)
val alarm2 = Alarm(”PowerFailure”, Elec)
val expert1 = Expert(Set(Elec, Mech))
val expert2 = Expert(Set(Chem, Bio))

val m = new AlarmMonitor

val trace = List(
AlarmOn(alarm1, 1000),
AlarmOn(alarm1, 2000),
Repair(alarm1, expert1, 5000)

)

m.verify(trace)
}

6 Discussion

Scala is quite comparable to a specification language such as Vdm++. This is due to the com-
bination of object-oriented and functional programming, with convenient support for processing
collections (sets, lists, and maps), together with strong support for defining internal DSLs. At
the time of writing several interesting extensions of Scala, such as macros and union types,
are being considered. This movement will further empower the language. One can perhaps

230

Vdm++ and Scala Havelund

make an argument for writing Vdm++ and translate to Java, as argued in [14], but it is hard
to make an argument for writing Vdm++, and translate to Scala. The languages are too close
in spirit, albeit not wrt. syntax.

Some of the issues identified in Scala are the lack of proper support for design by contract.
There is indeed support for pre- and post-conditions (require and ensuring), but there is no
support for referring to the value of old variables in post conditions for functions with side-
effects. Concerning invariants, [31] suggests a very elegant mechanism for defining such, as
we have shown. It has the slight disadvantage that each function body must be wrapped in a
special function (atomic), which executes the pre- and post-conditions respectively before and
after the body’s evaluation.

Vdm++’s predicate subtypes (a type defined as a subtype of another satisfying some predi-
cate), related to invariants, also appear to be a very convenient concept, which could be adopted
in a programming language. They relieve the programmer from scattering assertions throughout
the program to check the predicates, and they support conceptual modeling. Scala’s support
for defining union types consists of defining an abstract class or trait and then defining all
alternative members as sub-classes. The notation for this is a little heavy-handed, as shown in
the TreeSum specification on page 223. The similar type definition in Rsl [17] looks as follows
(similar to what it would look like in several functional programming languages such as Sml,
OCaml and Haskell):

type Tree == Empty | Node(lt : Tree, nval : Int, rt : Tree)

A problem with this notation, however, is that it does not allow methods to be added to the
alternatives as is possible when using sub-classes. There is a conflict between object-oriented
programming and functional programming [37].

Vdm’s special syntax for sets, lists and maps is convenient, making them stand out in a
specification. Along those lines, one disadvantage of Scala’s approach to define all constructs
as library elements is that nothing stands out in a program. User-defined identifiers look like
standard library identifiers. A solution to this could be to allow user-defined coloring schemes
for library entities in Scala IDEs.

The small implementation of a very expressive internal DSL for data parameterized state
machines and temporal logic illustrates the augmented power that comes with a few language
features for defining DSLs. Integration of visualization (static of program structure and dynamic
of execution traces) as well as support for static analysis, model checking, proof support, and
testing will further strengthen a language such as Scala. Vdm is an impressive specification
language, that at its birth was decades ahead of its time. Vdm++ was an interesting refinement
adding object-oriented features. Scala is an interesting new programming language, that
brings the two worlds: specification and programming, closer together.

Acknowledgements Part of the research described in this publication was carried out at Jet
Propulsion Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. Specifically, without the support from JPL’s Labora-
tory for Reliable Software this work would not be possible. The research was also supported
in part by AFOSR Grant FA9550-09-1-0481 and NSF Grant CCF-0926190. Thanks to Dines
Bjørner and Cliff Jones for numerous discussions of Vdm, and to Dines Bjørner for having
engaged me in the Raise project. Thanks to Martin Odersky for discussions of Scala, and
for giving an invited talk at RV 2010 (1st International Conference on Runtime Verification,
Malta) on the subject of contracts in Scala, offering some of the solutions mentioned in this
paper. Thanks to Howard Barringer for our continued collaboration on runtime verification,

231

Vdm++ and Scala Havelund

our discussions of Vdm and Scala, and for having commented on this paper.

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Ondrej
Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittamplan, and Julian Tibble. Adding trace
matching with free variables to AspectJ. In OOPSLA’05. ACM Press, 2005.

[2] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime veri-
fication. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer, 2004.

[3] Howard Barringer, Alex Groce, Klaus Havelund, and Margaret Smith. Formal analysis of log files.
Journal of Aerospace Computing, Information, and Communication, 7(11):365–390, 2010.

[4] Howard Barringer and Klaus Havelund. TraceContract: A Scala DSL for trace analysis. In
17th International Symposium on Formal Methods (FM’11), Limerick, Ireland, June 20-24, 2011.
Proceedings, volume 6664 of LNCS, pages 57–72. Springer, 2011.

[5] Howard Barringer, Klaus Havelund, Elif Kurklu, and Robert Morris. Checking flight rules with
TraceContract: Application of a Scala DSL for trace analysis. In Scala Days 2011, Stanford
University, California, 2011.

[6] Howard Barringer, Klaus Havelund, David Rydeheard, and Alex Groce. Rule systems for runtime
verification: A short tutorial. In Proc. of the 9th Int. Workshop on Runtime Verification (RV’09),
volume 5779 of LNCS, pages 1–24. Springer, 2009.

[7] Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule systems for run-time moni-
toring: From Eagle to RuleR. In Proc. of the 7th Int. Workshop on Runtime Verification (RV’07),
volume 4839 of LNCS, pages 111–125. Springer, 2007.

[8] Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule systems for run-time moni-
toring: from Eagle to RuleR. J. Log. Comput., 20(3):675–706, 2010.

[9] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language,
volume 61 of LNCS. Springer, 1978.

[10] Dines Bjørner and Cliff B. Jones. Formal Specification and Software Development. Prentice Hall
International, 1982. ISBN 0-13-880733-7.

[11] Grady Booch, Ivar Jacobson, and Jim Rumbaughr, editors. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

[12] Feng Chen and Grigore Roşu. Parametric trace slicing and monitoring. In Proceedings of the 15th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’09), volume 5505 of LNCS, pages 246–261, 2009.

[13] Eiffel. http://www.eiffel.com.

[14] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Verhoef. Validated
Designs For Object-oriented Systems. Springer-Verlag TELOS, Santa Clara, CA, USA, 2005.

[15] Formal Methods Wikipedia. http://en.wikipedia.org/wiki/Formal_methods.

[16] Fortress. http://java.net/projects/projectfortress.

[17] Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert Milne, Claus Bendix Nielsen,
Soeren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner
Series, Prentice-Hall, Hemel Hampstead, England, 1992.

[18] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic essence of AsmL. Theoretical
Computer Science, 343(3):370–412, 2005.

[19] Haskell. http://www.haskell.org/haskellwiki/Haskell.

[20] Klaus Havelund. The Fork Calculus - Towards a Logic for Concurrent ML. PhD thesis, DIKU,
Department of Computer Science, University of Copenhagen, Denmark, 1994.

232

http://www.eiffel.com
http://en.wikipedia.org/wiki/Formal_methods
http://java.net/projects/projectfortress
http://www.haskell.org/haskellwiki/Haskell

Vdm++ and Scala Havelund

[21] Klaus Havelund. RAISE in perspective. In Dines Bjørner and Martin Henson, editors, Logics of
Specification Languages, pages 611–614. Springer, 2008.

[22] Klaus Havelund and Tom Pressburger. Model checking Java programs using Java PathFinder.
International Journal on Software Tools for Technology Transfer, STTT, 2(4), April 2000.

[23] Klaus Havelund and Willem Visser. Program model checking as a new trend. STTT, 4(1):8–20,
2002.

[24] JML. http://www.eecs.ucf.edu/~leavens/JML.

[25] Cliff B. Jones. Systematic Software Development using VDM. Prentice Hall, 1990. ISBN 0-13-
880733-7.

[26] Cliff B. Jones and Roger C. Shaw, editors. Case Studies in Systematic Software Development.
Prentice Hall International, 1990. ISBN 0-13-880733-7.

[27] Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended ML: A gentle
introduction. Theoretical Computer Science, 173:445–484, 1997.

[28] Cornelis Adam Middelburg. VVSL: A language for structured VDM specifications. Formal Aspects
of Computing, 1(1):115–135, 1989.

[29] Robin Milner, Mads Tofte, and Robert Harper, editors. The Definition of Standard ML. MIT
Press, 1997. ISBN 0-262-63181-4.

[30] OCaml. http://caml.inria.fr/ocaml/index.en.html.

[31] Martin Odersky. Contracts for Scala. In Runtime Verification - First Int. Conference, RV’10, St.
Julians, Malta, November 1-4, 2010. Proceedings, volume 6418 of LNCS, pages 51–57. Springer,
2010.

[32] David Pollak. Comment on Scala discussion forum.

[33] Python. http://www.python.org.

[34] RAISE project. http://en.wikipedia.org/wiki/RAISE_specification_language.

[35] Scala. http://www.scala-lang.org.

[36] Spec#. http://research.microsoft.com/en-us/projects/specsharp.

[37] Daniel Spiewak. Personal communication. March 2012.

[38] Volker Stolz and Eric Bodden. Temporal assertions using AspectJ. In Proc. of the 5th Int.
Workshop on Runtime Verification (RV’05), volume 144(4) of ENTCS, pages 109–124. Elsevier,
2006.

[39] Volker Stolz and Frank Huch. Runtime verification of concurrent Haskell programs. In Proc. of
the 4th Int. Workshop on Runtime Verification (RV’04), volume 113 of ENTCS, pages 201–216.
Elsevier, 2005.

[40] VDM. http://en.wikipedia.org/wiki/Vienna_Development_Method.

233

http://www.eecs.ucf.edu/~leavens/JML
http://caml.inria.fr/ocaml/index.en.html
http://www.python.org
http://en.wikipedia.org/wiki/RAISE_specification_language
http://www.scala-lang.org
http://research.microsoft.com/en-us/projects/specsharp
http://en.wikipedia.org/wiki/Vienna_Development_Method

	Introduction
	The Alarm Management System in Vdm++
	The Alarm Management System in Scala
	Comparison by Construct
	Sets and Lists
	Maps
	Record and Union Types
	Type Invariants
	State Invariants
	Functions and Operations
	Quantifiers, Choice

	Temporal Specification
	Discussion

