
Kalpa Publications in Computing
Volume 3, 2017, Pages 71–80

RV-CuBES 2017. An International Workshop on
Competitions, Usability, Benchmarks, Evaluation,

and Standardisation for Runtime Verification Tools

DANA - Description and Analysis of Networked

Applications

Christian Drabek1 and Gereon Weiss2

1 Fraunhofer ESK, Munich, Germany
christian.drabek@esk.fraunhofer.de
2 Fraunhofer ESK, Munich, Germany
gereon.weiss@esk.fraunhofer.de

Abstract

We introduce the DANA platform for specifying and analyzing networked applications.
DANA was originally created targeting the automotive domain for the verification and
validation of software interface behavior in new infotainment and advanced driver assistant
systems that are integrated on a single hardware platform. The messages in these interfaces
can contain complex data, e.g., playlists with images. Therefore, valid behavior is described
as a layered reference model. The platform can use the model to generate test cases,
code for simulation, and to verify a live or recorded trace. Exchangeable resumption
algorithms enable DANA to resume runtime verification after a deviation using the original
state machine without manual changes. A generic input model allows quick integration
of new sources for messages. Therefore, DANA can easily be applied to other domains
where interactive behavior can be observed. In this paper, we present the tool, its layered
reference model, and show its application for runtime verification.

1 Introduction

Automotive systems are an example for the increasing complexity of software services in net-
worked embedded systems. Common basic architectures are utilized to enable faster develop-
ment cycles, reuse, and shared development of non-differentiating functionality. Interoperable
standards enable the integration of software components from multiple vendors into one plat-
form. However, the integration of such services remains a challenge, since not only static
interfaces have to be compatible but also the interaction behavior.

Model-based techniques used during the design and integration phase of new automotive
infotainment applications play also a major role in the process of validation and verification
[12]. In this paper, we introduce the DANA platform1, an open and modular environment based
on Eclipse for specifying and analyzing networked applications. In addition to monitoring, it
supports various transformations of its behavior models, e.g., for generating test cases or code for
running simulations. Static analyses are available to check conformance to modeling guidelines,
metrics for interfaces and compatibility of behavior models. It was originally created to face
the various challenges [6] in the infotainment domain:

1An evaluation version and more information is available at http://s.fhg.de/DANA

G. Reger and K. Havelund (eds.), RV-CuBES 2017 (Kalpa Publications in Computing, vol. 3), pp. 71–80

http://s.fhg.de/DANA

DANA - Description and Analysis of Networked Applications C. Drabek and G. Weiss

1. Evolving technologies: A plethora of middlewares and hardware interfaces are used
and regularly replaced. The modeling approach should separate the components’ interface
behavior and abstract from these technical details.

2. State explosion: Manifold software-based features are assembled and executed in par-
allel with partially interdependent interfaces. The many potential system states and
interactions cannot be modeled individually.

3. Non-functional requirements: Infotainment is not a safety-critical domain, but the
meeting of timing requirements is essential for orchestrating interactive components.

4. Deviation detection: The verification should reliably detect an abnormal operation
and encircle the actual fault leading to the erroneous functionality.

5. Incomplete specifications: Specification models can be incomplete and only define
important parts of a system’s behavior. A verification mechanism must be able to resume
verification after detecting the presence of unexpected behavior.

6. Distributed development: The specification may be interpreted by multiple vendors.
To ensure compatibility, it should not be misinterpreted. For model-based specifications
this can be achieved with executable semantics.

Within this paper, we focus on DANA’s approach for model-based runtime verification of com-
munication behavior in distributed systems considering the above characteristics. We present
a layered reference model which specifies interactions between components at syntactical and
behavioral level. Further, we show how DANA uses such models for runtime verification.

The remainder of this paper is organized as follows: Section 2 introduces layered reference
models. We describe the method of resumption in Section 3. Section 4 presents DANA’s
runtime verification framework. In Section 5, the usage of the platform is demonstrated in
various case studies and discussed. Section 6 compares DANA to related work. We conclude
the paper with future work in Section 7.

2 Layered Reference Model

Several challenges of interface verification in automotive infotainment systems are addressed by
the modeling approach. A so-called layered reference model is derived from the requirements.
We introduced the main concepts in [6] and [12], and provide an updated description in the
following. A layered reference model comprises itself several models and describes the commu-
nication between two or more components including all involved interfaces and interactions.

The interface definition model describes the artifacts (e.g., broadcasts, methods, and types)
of the involved interfaces on a syntactical level. This layer uses Franca IDL [2] as generic de-
scription. The specifics for each employed middleware technology can be recorded in additional
deployment models. Thereby, the messages can be distinguished and their parameters become
accessible. Figure 1a shows a simple interface definition model with a single method.

The event definition model refines interface artifacts by listing associated events. Each event
consists of a label and a constraint. They describe the parameter values that are considered
semantically equivalent. A constraint is defined by basic arithmetic and logical expressions
using the parameters of the interface artifact. In turn, the behavioral model can use the simple
events and ignore the possibly complex parameters. An example of our textual language for
this task is shown in Figure 1b.

72

DANA - Description and Analysis of Networked Applications C. Drabek and G. Weiss

interface simple {

version {

major 1

minor 0

}

method message {

out {

Int8 id

}

}

}

(a) interface defi-
nition model

interface simple {

CallEvent request {

methodRef message

}

ResponseEvent replyOne {

methodRef message

constraint {id == 1}

}

ResponseEvent replyTwo {

methodRef message

constraint {id == 2}

}

}

(b) event definition
model

«communicationViewModel»
Example_Communication

initial

independent

wait1 wait2

timed
B->A::replyTwo

A->B::request

::Timeout

B->A::replyOne

A->B::request

::Timeout

B->A::replyOne B->A::replyTwo

Max:q20

(c) behavioral model

Figure 1: Example showing the parts of a layered reference model.

Stereotyped UML state machines [11] are used to specify the behavior, i.e., the possible
sequences of events in a communication relation. State machines are currently widely applied for
behavioral modeling in various domains, e.g., for automotive systems. A UML Profile restricts
the variety of UML without limiting its expressiveness. In UML state machines transitions are
annotated with triggers and guards. In our experience with real models, the guard conditions
are a powerful concept but might become complex pieces of program code. Therefore, we allow
the guard condition to be specified using the constraints of the event model only. The sender and
receiver of an event are also annotated to the transition. Restricting modeling concepts and
removing nested code snippets from the behavior description prevents the use of ambiguous
concepts and facilitates a precise description of the communication relationships. Figure 1c
shows an exemplary behavioral model for the communication between two components.

A state in our model does not denote the status of single components, but rather represents
their common communication state. A state can be annotated with a timeout event which
defines the maximum duration the state should be active. When the state has been active for
the specified amount of time, the corresponding timeout event is emitted. Triggers may reference
an event of the event model or a timeout of the behavioral model. This allows specifying timing
requirements in the model (i.e. deadlines and cyclic events).

The approach is formalized sufficiently for direct code generation of an executable statechart
for any specific middleware. The model allows describing timing as well as parallel and partially
interdependent communication. Parallel behavior is modeled by states with parallel regions. A
join element is utilized to coordinate the exit of those regions.

3 Resumption

A simple monitor only reports if a given trace conforms to a specification or not. However, it is
often of interest to identify every deviation individually. Different techniques can be applied in
order to create monitors and to find deviations beyond the first. Up to now, this is usually done
manually and requires additional design work, e.g., to add more transitions and triggers, or to
split the specification into multiple properties that can be checked separately. With DANA,
these limitations are resolved. DANA supports generic definitions for how a monitor can resume
its duty. We call this resumption [7]. Resumption enables a monitor to analyze a trace for all
deviations with respect to the same property. The monitor can resume its operation from an
unknown state, e.g., after a deviation was detected or for initialization. This is especially useful
if the system under test cannot be forced into a known state.

73

DANA - Description and Analysis of Networked Applications C. Drabek and G. Weiss

q0 q1 q2 q3

q⊥

join ack

reject

info

leave

ack

info

* * *

*

*

(a) FSM without resumption.

q0 q1 q2 q3
join ack

reject

info

leave

ack

info

* * * *

(b) FSM with waiting resumption.

q0 q1 q2 q3

qR

join ack

reject

info

leave

ack

info

*
* *

join

*

leave
reject

(c) FSM with unique-event resumption.

Figure 2: FSMs with states and transitions (dashed) added by the implicit error assumption (a)
and resumption algorithms (b)(c). Bold labels indicate an accepting verdict. The wild-card ’*’
matches all events that have no other transition in the state.

Let’s assume we use a positive specification as basis for a monitor. Now, if the monitor
observes a violation, the specification defines no transition for this event in the active state.
An automaton of a monitor may look like Figure 2a. However, this checks only the overall
conformance to the specification. Additional work is required for the monitor to report all
violations. Generally, a resumption extension completes the transition function of the automa-
tion. We suggest to define this extension using a formula that maps a set of candidate states
and an event to a set of new candidates for the active state. For example, if the application
scenario allows to ignore the deviating event, the monitor can wait in the same active state and
continue its work. This extension is demonstrated in Figure 2b and defined in (1). Figure 2c
shows the extended monitor if unique events, i.e., events that always lead to the same state in
the specification, are used for resumption (2). δL is the transition function of the specification
extended to return the set of states reachable from any of the input states. SC is the set of
all states including a resumption state qR . Various algorithms have been compared using the
DANA platform in [7]. If (and only if) deviations never influence the current state, ignoring
them works perfectly fine. In general, algorithms that identify paths are more reliable, e.g.,
(3), but handling multiple active state candidates during resumption incurs a certain runtime
overhead.

Rwait(Sin, e) = Sin (1)

Ru-e(Sin, e) =

{
δL(SC , e), if qR ∈ Sin ∧ |δL(SC , e)| = 1

{qR}, otherwise
(2)

Re-b(Sin, e) =

{
δL(Sin, e), if δL(Sin, e) 6= ∅
SC , otherwise

(3)

74

DANA - Description and Analysis of Networked Applications C. Drabek and G. Weiss

(a) DANA’s launch configuration. (b) DANA animating the results.

Figure 3: Screenshots of DANA being used for runtime verification.

4 Architecture for Runtime Verification

This section describes the platform’s architecture for runtime verification [5][6]. It is seamlessly
integrated into the Eclipse debugging framework. An Eclipse debug configuration is used to
specify the state machine for verification, the source of events, the resumption module and
other extensions (cf. Figure 3a). The modules that provide the communication stream can be
cascaded and configured using a textual description. Support for new communication media
can be provided by implementing an API to access the messages and their properties. For
example, we use the available D-Bus bindings for Java [9] to receive messages from the D-Bus
of a tested system. The messages are mapped to events using the interface and event definition
model. The behavioral model is used as core of the passive monitor for the resulting stream
of events. We use SCXML [16] as the execution semantics for the behavior model [6]. If no
transition that is reachable from an active state includes a trigger for an observed event, a
deviation has been found and is reported. For initialization and after a failure, the monitor
resumes operation with the help of a resumption extension. If the time stamp of a new event
indicates that a state remained active for a longer period than specified in its max-property,
a timeout event is injected. The timeout event is otherwise treated like any other event for a
communication message. This approach allows the detection of various kinds of failures, e.g.,
missing messages, additional messages, malformed messages, and timing violations. DANA
produces a queue of verdicts that can be presented to the user. Figure 4 shows an overview of
the execution framework for reference models used for verification.

For interactive verification, Eclipse will switch to a verification perspective that should be
familiar to anyone who already used Eclipse for debugging (cf. Figure 3b). However, a state
machine is executed and animated instead of running code. The animation highlights active
states and transitions used to enter them. It can pause on found deviations, breakpoints, or
the press of a button. While suspended, the stack trace shows the history of states passed.
The analysis of new events continues in the background. The queue concept enables to slow
down the animation, so that events received in quick succession are still visually observable.
Moreover, the animation can replay any subsequence of the queue. Found deviations are marked
in the state machine and are listed in the problem view of Eclipse.

75

DANA - Description and Analysis of Networked Applications C. Drabek and G. Weiss

Figure 4: Execution framework for reference models.

5 Use-Cases

In this section, we provide examples of applying DANA in several use cases. First, we present an
example for verifying the trace of a parking assistance service (ParkA) with waiting resumption
[6]. Figure 5a shows the interface description model of the ParkA component, Figure 5b depicts
the respective event definition model for the ParkA interface. Figure 5c shows the behavioral
model for a specification-conformant interaction with a ParkA service, next to an example for a
communication trace. These descriptions are used to decode the raw observations into events.
Figure 5c shows the behavioral model for a specification-conformant interaction with a ParkA
service and an example for an decoded communication trace. Each line lists an identifier, a
time stamp, and the event’s name. For illustration purposes, the order in which the trace is
executed is annotated next to the transitions of the behavioral model. This corresponds to how
DANA’s animation would highlight the transitions and target states.

In another use case, we successfully employ DANA to support the development of a hazard
warning application [15]. A sudden obstacle in traffic can be dangerous. Especially, if drivers
realize the obstacle too late. A hazard warning can help inform drivers in time. For example,
in Figure 6a the driver in the car on the left notices an obstacle and brakes hard. As the view of
right car’s driver is occluded by the van in the middle, she would only be able to notice this by
the reaction of the van in front. With a hazard warning message from the front car, she could
start braking immediately. However, such an application involves multiple cars, thus, multiple
systems to be considered. DANA is also capable to address such distributed networked systems,
as connected cars. We can capture the to-be-verified-behavior of all involved cars in a model
and use this for verification. Figure 6b shows a behavior model for this use case. Hooks in the
used communication stack for car-to-car communication are employed to monitor the different
communication layers. On the left side it tracks the communication stack of the sending car
from detecting the event until the radio waves are emitted to the surrounding. The middle
part of the depicted behavioral model comprises the handling of this hazard warning by the
receiving car. The right hand side of the figure encompasses a timeout for the duration from
detecting the obstacle to triggering a warning in the receiving car. By using this model for
runtime verification in DANA, deviations in the hazard warning application implementations
can be identified. For instance, the reason why a hazard warning was not displayed in the
receiving car can easily be located by monitoring the progress of the animated statechart.

Besides the automotive domain, the DANA platform can also be employed for other appli-
cation scenarios. Figure 7a shows the controllers of a small industrial plant composed of three
stations. The plant assembles cubes from two halves. The first station collects parts from two

76

DANA - Description and Analysis of Networked Applications C. Drabek and G. Weiss

interface ParkA{

method startUp{

in{Resolution res}

out{AM_Error returnValue} }

broadcast sensorValues {

out{

Int32[] front_lmr

Int32[] rear_lmr

Resolution res } }

enumeration Resolution{ cm mm }

enumeration AM_Error{ OK ERROR }

... }

(a) ParkA interface definition excerpt.

Interface ParkA {

CallEvent startUp {

methodRef startUp }

ResponseEvent startUp_response_OK {

methodRef startUp

constraint {returnValue == OK} }

ResponseEvent startUp_response_ERROR {

methodRef startUp

constraint {returnValue != OK} }

BroadcastEvent sensorValues {

methodRef sensorValues }

... }

(b) ParkA event definition excerpt.
«communicationViewModel»
Client_ParkA_Communication

initial starting

working

sendingValues
setRes

setResSent

shutdown

shutdownSent

ParkA:>Client::startUp_response_ERROR

Client:>ParkA::shutDown

ParkA:>Client::sensorValues
ParkA:>Client::setResolution_response

ParkA:>Client::shutDown_response_OK

ParkA:>Client::shutDown_response_ERROR

Client:>ParkA::startUp

Client:>ParkA::setResolution

ParkA:>Client::startUp_response_OK

unexpectedEvent

startUpvvv

startUp_response_OKvy8

sensorValuesvy5

sensorValuesvfv

sensorValuesv5y

sensorValuesv65

timeout_sendingValuesv85

setResolutionv99

sensorValues v6

setResolution_response y

shutDown y8

shutDown_response_OK z

sensorValues y 7

1

3

2

4

5

6

7

9

A

B

C

D

sync

sync

2

sensorValuesv878

E

Max:3yv

1

3

54 6

8

9

B
A C

D

E

synchronizer

decoded
communication stream

failure3logger

(c) ParkA behavioral model and example trace.

Figure 5: Reference model for the communication between the ParkA component and a client.
Additionally the decoded input communication stream is shown.

(a) Illustration of the use case. (b) Behavioral model for the use case.

Figure 6: Use case of a hazard warning application.

77

DANA - Description and Analysis of Networked Applications C. Drabek and G. Weiss

(a) A small industrial plant with 3 stations. (b) Behavioral model for the use case.

Figure 7: Use case of a small industrial plant.

magazines and checks their orientation and material. The second station joins the two halves in
a hydraulic press. The third station stores the assembled cubes. For each station, the changes
of internal sensors and actuators controlled by the respective station are reported. Even though
this information is not needed for the operation of the plant, it enables monitoring the plant’s
operation without having to alter the original control program. Further, the communication
between the stations is recorded by tapping into the switch of the Ethernet-based Modbus TCP
connection. Therefore, the behavioral model shown in Figure 7b consists of four parallel regions.
Three regions represent the top level behavior of the sensors and actors of each station, and
the fourth region includes the communication interaction between them. Actually, the model
contains much more details as it was automatically learned from observed behavior, i.e., each
of the states contains sub-states that are hidden in this example for clarity. Nevertheless, the
sub-states are still used for verification, while this diagram provides a comprehensive overview
of the plant’s overall operation.

The case-studies illustrate how DANA addresses the challenges for verifying automotive
infotainment interfaces introduced in Section 1 and how it enables the verification of many
event based systems:

1. The interface and event definition models abstract from technical details; thus, allowing
for a clear behavioral model.

2. All potential system states of parallel and partially interdependent components can be
captured by using parallel regions and multiple interfaces in the reference model.

3. The verification mechanism allows to detect timeouts during the verification, e.g., if a
message is not delivered in time, by treating timeouts of states like other events.

4. Reliable error detection is provided by logging deviations, which can later be evaluated
by the developer, in order to improve the implementation or the specification.

5. Using resumption, the verification framework can resume its operation without manually
specifying triggers for this purpose. This helps during initialization and after deviations,
i.e., when the state of the observed system is unknown.

6. The mapping of the layered reference model to SCXML provides a clear execution seman-
tic and gives a precise definition of the expected communication behavior.

78

DANA - Description and Analysis of Networked Applications C. Drabek and G. Weiss

DANA was originally designed for verifying infotainment components’ interfaces by detect-
ing deviations within the communication behavior. However, the tool and concept of layered
reference models can be applied to any system which has states and provides observable events
that can be used to identify transitions.

6 Related Work

Various areas address the problem of detecting differences between a system’s behavior and
its specification model. However, the authors are unaware of other approaches that provides
similar efficient resumption at runtime. Conformance checking compares an existing process
model with event logs of the same process to uncover where the real process deviates from the
modeled process [14]. Cook et al. [4] use a best-first search to find the necessary insertions
and deletions of events to transform the given event stream into one that exactly matches the
model. Reger [13] suggests to include the origin of an event into the analysis to find sensible edits
that are consistent for the same origin and correct the trace. Nevertheless, the computational
complexity to find an edit sequence requires this to be done offline. In contrast, resumption
does not yield precise edits, but can be performed online, in parallel to the execution of the
SUO.

Runtime verification frameworks, such as TraceMatches [1] or JavaMOP [10], preprocess
and filter the input before it is passed to a monitor instance. Thereby, each monitor only
observes relevant events. These stages utilize the first two layers of the layered reference model.
Simply keeping the monitor running after it encountered and reported a violation only works in
very specific scenarios. Nevertheless, if the properties are carefully chosen, multiple instances
of the monitor can match different slices of an input trace [1][3]. However, this requires a
secondary specification that needs to be maintained. In contrast, the presented resumption
enables the reuse of an available specification by automatically augmenting it for continuous
verification.

JavaMOP [10] allows to utilize exchangeable logic plugins to monitor behavior. Beep-
Beep [8] composes several processors in a pipe using a query language to analyze complex
events. Similar, DANA utilizes plug-able modules to transform an arbitrary input to a se-
quence of events and process them. Often needed setups like monitoring using a state machine
or generating a model are bundled into configurable extensions (cf. Figure 3a).

7 Future Work

In this paper, we have presented the modular platform DANA. While DANA was originally
designed for the verification of automotive infotainment systems, it can be easily adapted to
a wide variety of use cases. The layered reference models provide a versatile and precise,
yet clear way to describe interfaces of software components and their expected behavior. The
runtime verification framework can directly use this description to find all observable deviations
in the systems behavior, by employing the concept of resumption. Future work includes the
exploration of new applications for the platform and prototyping new algorithms which can
be applied during runtime verification, e.g., the collection of runtime statistics that need the
current state of the system. Further, we will investigate how layered reference models created
by machine learning algorithms can be employed to run regression tests or to predict failures
efficiently.

79

DANA - Description and Analysis of Networked Applications C. Drabek and G. Weiss

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Ondej
Lhotk, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. Adding Trace
Matching with Free Variables to AspectJ. In Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’05, pages 345–364, New York, NY, USA, 2005. ACM.

[2] Klaus Birken. Franca - A framework for defining and transforming interfaces. Web: http://

franca.github.io/franca/, September 2017.

[3] Mikhail Chupilko and Alexander Kamkin. Runtime Verification Based on Executable Models:
On-the-Fly Matching of Timed Traces. EPTCS, 111,:2013,pp.67–81, March 2013.

[4] Jonathan E. Cook, Cha He, and Changjun Ma. Measuring behavioral correspondence to a timed
concurrent model. In IEEE International Conference on Software Maintenance, 2001. Proceedings,
pages 332–341, Washington, DC, USA, 2001. IEEE Computer Society.

[5] Christian Drabek, Annette Paulic, and Gereon Weiss. Reducing the Verification Effort for Inter-
faces of Automotive Infotainment Software. SAE Technical Paper 2015-01-0166, 2015.

[6] Christian Drabek, Thomas Pramsohler, Marc Zeller, and Gereon Weiss. Interface Verification
Using Executable Reference Models: An Application in the Automotive Infotainment. In Proceed-
ings of the 6th International Workshop on Model Based Architecting and Construction of Embedded
Systems, ACESMB 2013, Miami, Florida, USA, 2013. CEUR-WS.

[7] Christian Drabek, Gereon Weiss, and Bernhard Bauer. Method for Automatic Resumption of Run-
time Verification Monitors. In SOFTENG 2017, The Third International Conference on Advances
and Trends in Software Engineering, pages 31–36, Venice, Italy, April 2017. ThinkMind.

[8] Sylvain Hall. When RV Meets CEP. In Proc. RV 2016, pages 68–91. Springer, September 2016.

[9] Matthew Johnson. Java D-Bus. https://dbus.freedesktop.org/doc/dbus-java/, Sep. 2017.

[10] Patrick ONeil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Rou. An overview
of the MOP runtime verification framework. International Journal on Software Tools for Technol-
ogy Transfer, 14(3):249–289, April 2011.

[11] Object Management Group (OMG). Unified Modeling Language Specification Ver. 2.5. OMG
Document Number formal/15-03-01 (http://www.omg.org/spec/UML/2.5/), 2015.

[12] Thomas Pramsohler, Mahmut Kafkas, Annette Paulic, Marc Zeller, and Uwe Baumgarten. Control
Flow Analysis of Automotive Software Components Using Model-Based Specifications of Dynamic
Behavior. SAE Int. J. Passeng. Cars - Electron. Electr. Syst., 6:425–436, April 2013.

[13] Giles Reger. Suggesting edits to explain failing traces. In Proc. RV 2015, pages 287–293. Springer,
2015.

[14] Wil van der Aalst, Arya Adriansyah, and Boudewijn van Dongen. Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2(2):182–192, 2012.

[15] Gereon Weiss and Josef Jiru. Software implementieren und absichern - Mit Modellierung zum
schnelleren Prototyping. Embedded Design, 3:42–44, 2017.

[16] World Wide Web Consortium (W3C). State Chart XML (SCXML): State Machine Notation for
Control Abstraction. W3C Recommendation 15-09-01 (https://www.w3.org/TR/scxml/), 2015.

80

http://franca.github.io/franca/
http://franca.github.io/franca/
https://dbus.freedesktop.org/doc/dbus-java/
http://www.omg.org/spec/UML/2.5/
https://www.w3.org/TR/scxml/

	Introduction
	Layered Reference Model
	Resumption
	Architecture for Runtime Verification
	Use-Cases
	Related Work
	Future Work

