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Abstract 

VEAS is the largest WWTP in Norway, where inflow is collected through a combined sewer system, 
i.e., storm water runoff is combined in a common conduit with wastewater from homes, businesses, and 
industry and delivered to the plant. From a process perspective this already high degree of variability is 
further compounded by return flows from the plant itself. The VEAS plant is fully located in cavern 
and is operated 24/7. Cavern location requires low footprint and consequently high surface load. The 
VEAS process features a “single-shot” sedimentation and has a record-low water retention time of 3 
hours. This highly efficient configuration is sensitive to variation in the inflow water parameters and 
internal plant recirculation flows, 25 measured parameters have been identified as impacting the 
effectiveness of the sedimentation process. Due to the high non-linearity of the parameters influence, 
even extensive use of classic non-linear statistical analysis has failed to clearly identify the main 
performance drivers of the process. 

In this paper we investigate the use of Kernel-based and Neural methods for the learning of the optimal 
control parameters in the context of industrial plants. The main objective is to define an automatic way 
to identify and tune the most relevant parameters of the plant (e.g., dosage of chemicals, sump level 
setting) to minimize the final water turbidity. The adopted machine learning framework enables the 
automatic analysis of the evolution of the plant behavior over time, i.e. exploits sensors readings stored 
for a long time period (one year), to develop a predictive model of the future behavior of the system. 

1 Introduction 
VEAS is the largest Norwegian Waste Water treatment Plant (WWTP) and its operation is essential for 
maintaining the Oslo fjord water at the requested quality level. Vestfjorden Avløpsselskap, VEAS, is 
fully owned by a consortium of municipalities (Aker, Bærum and Oslo).  

The plant and the administration services are located on the coast at Bjerkås in the municipality of 
Asker. The plant features a wide spectrum of equipment and advanced processes. Wastewater from 
more than 650’000 inhabitants in Oslo, Asker and Bærum is conveyed through the VEAS main tunnel 
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(43 km, full bore, 3 meter hydraulic diameter) from the branch-in points in each municipality to the 
WWTP at Bjerkås in Asker. The plant is entirely located in cavern and is operated 24/7. In addition to 
efficient wastewater cleaning, VEAS contributes to the re-use of organic nutrients through the 
production of stabilized, hygenized and lime-added VEAS-soil (38’000 ton/year), appreciated as soil 
integrator by the region’s farmers, together with nitrogen product supplied to the fertilizers industry 
(4’000 ton/year). VEAS produces yearly 78 GWh via biogas, used to generate electricity and heat. 

 

The process of interest consists of fine screens coagulant dosing in aerated grit chambers, also used as 
air flocculators, followed by deep sedimentation tanks for single point removal of primary, chemical 
and biological sludge. The water then flows to an up-flow biofilm nitrification and post de-nitrification. 
The sludge is extracted from the bottom of the sedimentation tanks and processed in drum thickeners 
followed by two-stage anaerobic digestion with biogas production, filter pressing and vacuum drying 
operation. The reject water with high ammonia content is exploited by air stripping yielding nitrogen 
product. See figure 1. The inlet water exhibits low concentration of solids and solute due to combined 
sewers. The temperature of the incoming sewage over the year is typically between 5 and 16 °C, +/-
2°C. The pre-precipitation starts in the grit chambers (not shown). This step retention time is 5 - 13 
minutes.  

 
Figure 1 The VEAS concept for nitrogen removal 

The mixing device for ferric chloride PIX is placed at the inlet of the channel. The PAX (polyaluminium 
chloride with high basicity) mixer, is submerged in the middle of the grit chambers. The addition of 
anionic polymer is essential for the formation and settling of flocks. The addition point of polymer is at 
the end of the channels leading to the sedimentation tanks. 

The sewage water flows from the grit chambers to the sedimentation tanks. The small surface area in 
the sedimentation tanks results in operation at high surface loads. The daily operation surface load  
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The efficiency of the sedimentation process experienced some instability over time and a more 
predictable performance is desired. A full model of the process is not available due to the large-number 
multivariate non-linear character of the involved variables (over 20 independent variables). Previous 
attempts with extensive use of classic statistical analysis have failed to clearly identify the main 
performance drivers of the process. The process is now controlled through heuristic algorithms 
delivering an adequate average performance with infrequent process divergence.  

As highlighted in [1] and [2] sedimentation and its performance has a major impact on the whole 
wastewater treatment process although no satisfying model is available, from the lack of knowledge on 
the physical phenomena to the difficulties to establish the associated partial differential equations. 

Nevertheless, the vast amount of data that can be acquired from the sensors readings suggest this is a 
big-data scenario, where huge amount of information can be acquired from the plant (millions of 
parameter measurements per year). The data can be exploited to support the optimization of the plant 
performance and, most important, to enable predictive control of the system behavior. We see mining 
this data source as the key to solving the complex problems associated with the full-scale plant control. 

In this paper, we investigate the application of data-driven methods to enable more robust strategies for 
the control parameters of the VEAS plant.  

In particular, we propose the design, implementation and evaluation of Kernel-based and Neural 
methods for the learning of the optimal control parameters in the context of industrial plants, with VEAS 
sedimentation processes as the study subject. 

The main objective is to define an automatic way to tune some of the parameters of the plant (i.e. the 
usage of chemicals) to optimize the final water turbidity. The adopted machine-learning framework 
aims at enabling the automatic analysis of the evolution of the plant behavior over time, i.e. the sensors 
readings stored in a long time period (one year), to develop a predictive model of the future behavior of 
the system in terms of (i) the prediction of future satisfactory plant status given the actual sensors 
reading, (ii) the estimation of Chemicals dosage necessary to obtain a satisfactory quality of water 
turbidity at varying plant loads and (iii) the identification of the most influential parameters and 
variables both internal and external to the plant. 

Our final aim is to support the development of robust and effective AI agents able to enhance the 
management strategy of the plant, e.g. raising warnings when problematic statuses are predicted or 
propose intervention by addressing those driving parameters, which affect the overall process. 

In the structure of this paper, Section 2 provides a formalization of the targeted problem as well as the 
adopted data-driven framework. Section 3 provides a first experimental evaluation that addresses the 
above points. Finally, Section 4 derives the conclusions and describes future research steps for a 
complete data-driven control of the plant.  

2 Data-driven Approach, Optimal WWTP Control parameters 
2.1 Modeling the parameters  
Plant parameters are monitored and logged through a Distributed Control System with a sampling 
frequency of 1 minute, the following table lists the parameters used for this study, together with their 
units of measurement and the delay from Time 0 i.e. from the time at which the water is pumped into 
the plant from the sump.  
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Type 
Parameters Physical 

Unit 

time delay from 
IPU 

(approximated 
minutes) 

Abbraviation Description low flow high 
flow 

External 
Parameter 

Water Level IPU-LT01 (ellers2,3,4) Ipu Niveau (4 ..) meters 0 0 

Chemical 
ALU_FT01 Pax Dosage liters/min 5 5 
JERN_FT01 Pix Dosage liters/min 5 5 
POL_FT02 Polymer Dosage liters/min 23 5 

Flow 

SAN_FT01 Output Of San1, To Sed 
1 & 2 

liters/sec 23 5 

PHA1-SED1-FT10 Water Input Sed1 liters/sec 23 5 

IPUR_FTB13 
Water Inlet Actiflo, 
(Bypass) Indicates High 
Rainwater 

liters/sec 0 0 

PHA1_SED1_QI11_QT Ammonium Sed 1 mg/l 215 96 
Monitoring 
Parameter 

ALCA_SED Alcalinity Sed - manual sampl. manual 
sampl. 

Termperature VVS_TT05 Process Temperature Celsius 0 0 

Intarnal 
Parameter 

combined 
recirculation 

TSP8_FB01 Washwater Return liters/sec indep. indep. 
FOR_FT01 Internal Return Sludge   liters/sec 53 42 

STR_FT01 Input Filtrate Water To 
Strip 1 

liters/sec 53 42 

STR2_FIL_FC19_FT Input Filtrate Water To 
Strip 2 liters/sec 53 42 

FOR1_LT01 Level For1 meters 53 42 
FOR2_LT01 Level For2 meters 53 42 

combined 
sludge 

extraction 

PHA2_SED2_KV51 Sludge Output Valve 
Sed2 open/close indep. indep. 

PHA2_SED1_KV51 Sludge Output Valve 
Sed1 

open/close indep. indep. 

PHA2_SED2_FI01 Sludge Flow Out Of 
Sed1/2 

liters/sec indep. indep. 

PHA2_SED2_QI02 Dry Matter % Out Of 
Sed1/2 % indep. indep. 

Driver Target PHA1_SED1_QI01_QT Turbidity In Sed1 NTU units 215 96 
Table 1 Parameters describing the Veas plant 

The time delay is pivotal in understanding the effect of the chemicals, which are added at the early 
stages of the wastewater journey, on the turbidity that is measured at the outflow from the sedimentation 
stage. The plant return flows, with their chemical content, are deemed to play an important role in the 
sedimentation process, they also appear with their specific time delay. 

Two time delays classes are used, one for the “low flow-rate” normal plant operation under “dry” i.e. 
not rainy conditions and one for “high flow-rate” during stormy weather and/or snow melting. Under 
high flow-rate the plant operates at minimum retention time. The tags, i.e. the unique variable identifier 
also used in the DCS, are grouped in the table for ease of reading, but are treated individually in the 
analysis. In this study, in order to support the prediction of future satisfactory plant status, we will 
consider as target parameter the one located the last row of the table (PHA1_SED1_QI01_QT) that 
represents the quality of water at the end process. In the following section, we will discuss how the 
above problem can be mapped into a classification task.  
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2.2 Predictive analytics via Neural Kernel methods 
Different machine learning algorithms exist in order to exploit data evidences and acquire a predictive 
model able to solve or automatize a target task, as discussed in [4][8]. These have been tailored to serve 
several and different applications, ranging from pattern recognition in images to automatic control of 
cars.  

In this work, among the existing machine learning methods, the Support Vector Machine (SVM) 
learning algorithm, discussed in [5] and [6] will be employed as it provides an efficient and scalable 
environment. SVM is a class of methods for constructing classifiers with a strong mathematical 
foundation, which guarantees good predictive performances in terms of the quality of classification on 
data processed by non-trained machine learning algorithms. The theoretical foundation of this method 
is given by statistical machine learning, discussed in [5].  

More formally, in this work the goal of a statistical learning algorithm is to construct a mapping from 
inputs x to outputs y, where y ∈ {1, … , C}, with C being the number of classes. If C = 2, this is called 
binary classification (in which case we often assume y ∈ {0, 1}); if C > 2, this is called multiclass 
classification. One way to formalize the problem is through function approximation. We assume 𝑦	 =
	𝑓(𝐱)  for some unknown hypothesis function f, and the goal of learning is to estimate the function f 
given a labeled training set, and then to make predictions using 𝑦) = 	𝑓(𝐱)*, a function estimation. Our 
main goal is to make predictions on novel instances, meaning ones that we have not seen before (this is 
called generalization), since predicting the response on the training set is trivial. So, we need data to 
acquire a prediction function, preferably a large set. We thus assume we have available a set of 
measurements (x,, y,) or (x,, g,), i = 1, …, N, known as the training data, with which to construct our 
prediction function. Given the distribution of the training dataset the SVM learning algorithm is used 
to derive a 𝑓(𝐱)* . 

In our case a satisfactory plant status has the meaning of a plant state where the water at the end of the 
first cycle of the process exhibits a turbidity less or equal to 14 Nephelometric Turbidity Units (NTU). 
At the same time, we can extract from the system all the evidences captured by sensors reported in 
Table 1. The former will be used to model our hypothesis function 𝑓(𝐱), while the latter will support 
the acquisition of a (large-scale) training dataset. We thus model our task as a classification task where 
each instance 𝐱 reflect specific snapshots of data points captured in the plant while the prediction 
function 𝑦) = 	𝑓(𝐱)* is expected to assign each instance to the set of satisfactory states (leading to a 
turbidity less than 14) or to the complementary set of states which will result in an non satisfactory 
turbidity.  

Each item is 𝐱 modeled as a multidimensional vector whose dimensions report does reflect each of the 
measures captured by the system, as shown in table 1: IPU_LT01, IPU_LT02, IPU_LT03, 
IPU_LT04, ALU_FT01, JERN_FT01, POL_FT02, SAN1_FT01, PHA1-SED1-FT10-
MM, … . Useful additional features are derived as synthesis of the system characterization: e.g., high 
flow (= true if IPUR_FTB13 > 0 ) and San Override (= true if SAN1_FT01 > 550 ) indicate 
particular plant conditions. Finally, since the plant feed is dependent from variations associated with 
the human behavior that are time dependent, e.g., the amount of water received  during Monday morning 
is different from a typical Sunday afternoon, we added the following features, Day of the week, 
Month, Hour of day. We added as many Boolean dimensions as months in a year, a day in a week 
and hours in a day. These are recorded in synch with the time-stamp of the snapshot. For example, if 
the snapshot is generated at 2018 Feb 2, at 20:30pm, the following features will be initialized: 
February, Friday, 20pm.  
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Since the different properties characterize heterogeneous physical phenomena, a standard normalization 
is applied to each dimension so that in the training dataset each property has a mean equal to zero and 
a variance equal to one.  

Finally, since water flows in the plant, appropriate time delays are taken into account so that the water 
whose turbidity is evaluated at time t is associated with the correct parameters that account for such 
flow: e.g. when a high-flow is experienced (last column of Table 1) the parameter of IPU-LT01 will 
be taken at time t – 296 minutes, or the SAN_FT01 will be taken at time t – 296 + 5 minutes.  

3 Experimental Evaluation 
In order to validate the quality of the proposed predictive methodology, we here report the empirical 
evaluation of the adopted methods applied to real data provided by VEAS. In particular, we adopted 
optimized formulation of Support Vector Machines [3,4] that allows training a classifier as discussed 
in the previous section. In a nutshell, given the sensor measurements with respect to a water flow 
transient in the plant, the classifier is trained to predict if the necessary injected chemical quantity along 
with the other parameters, will lead to a satisfactory or unsatisfactory final status of the plant, i.e., 
turbidity value T ≤ 14 . 

Percentage 
examples 

Cumulative 
Percentage 

System Prediction Real Turbidity 

84,6% 84,6% T ≤ 14 or T > 14 T ≤ 14 or T > 14 

3,4% 88,0% T > 14 13 ≤ T < 14 

1,3% 89,3% T ≤ 14 14 ≤ T < 15 

2,8% 92,1% T > 14 12 ≤ T < 13 

0,8% 92,9% T ≤ 14 16 ≤ T < 17 

3,6% 96,6% T > 14 9 ≤ T < 12 

0,5% 97,1% T > 14 4 ≤ T <   9 

1,2% 98,3% T ≤ 14 16 ≤ T < 21 

1,0% 99,3% T ≤ 14 21 ≤ T < 24 

0,7% 100,0% T ≤ 14 T > 24 
Table 2 Results, in terms of accuracy, of the prediction of satisfactory plant status 

The adopted learning methods are extremely efficient [3]. Efficiency is an important aspect to consider, 
since the overall body of evidences provided by VEAS consists of more than 220,000 observations 
(measured between 01/11/16 and 25/04/17) each reporting more than 30 sensors, leading to datasets 
consisting of millions of data points.  

We modeled the examples as discussed in Section 2, while the kernel-methods implemented within 
KeLP [7] are used. The best parameters (i.e. the kernel function underlying the learning process and the 
SVM parameter measuring the trade-off between training errors and the margin of the decision function) 
are estimated over a development set.  

Table 2 reports the results ranked in terms of accuracy, i.e., the percentage of times the system correctly 
detected a satisfactory or non-satisfactory plant status. The prediction is thus considered correct if a 
satisfactory state is assigned to the class of states with T ≤ 14 NTU while a non satisfactory state to a T 
> 14 NTU. The results are really remarkable: the simple analysis of the information gathered by the 

A Data-driven Approach for Optimal Control Parameters in WWTP: ... L. A. Piciaccia et al.

1653



 

 

sensors allowed our model to predict 84.6% of times a correct plant status within the narrowest deviation 
band. When we relaxed our constraints to industrial standard accuracy, i.e., plant conditions within the 
control capability of the plant, the 97% of predictions were correct. Only when considering plant 
departures, i.e., those predictions judged as satisfactory while the real turbidity was out of scale, as 
reported from the last three rows of Table 2, the model did not perform satisfactorily, but neither did 
the real life industrial plant that has diverged from the acceptable oscillation band, typically due to 
equipment failure. 

The same machine learning formulation is adopted to address point (ii) to support the estimation of 
Chemicals dosage. In particular, the adopted framework allows deriving very efficient and effective 
regressors that, given the readings captured with respect to a specific water flow status, suggest the 
specific amount of chemicals to inject in a timely fashion. Figure 3 shows the results of a Support Vector 
Regressor [5], trained over the same dataset used in the evaluation described so far, where the value of 
polymer POL_FT02 is removed from the set of observed features and considered as target parameter 
to be learned by the regressor. Results are impressive, given the high correlation between the predicted 
dosage (in blue) and the original injected chemical (in red).  

Figure 
3 – The machine learning prediction for the chemical injection flow (in Blue) compared to the amount 

of chemical actually dosed in the actual plant (in Red). 

Finally, in order to address the point (iii) and identify the most influential parameters, the machine 
learning predictor has also enabled the analysis of the phenomena in terms of relative influence of 
selected parameter sets through ablation analysis, i.e. running the predictor with specific features 
removed from the learning data (e.g., the information about temperature characterized by the VVS 
TT05 parameter) and evaluating the performance degradation with that specific information missing. 
These results, due to the page number constraint on this paper, will be the subject of a second 
publication. 
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4 Conclusions 
It is possible and beneficial to approach complex plant control strategies through big data technology, 
since this approach can deliver practical solution even for real time constrained applications: 

a) The predictive model achieves a narrow band accuracy of about 85% in predicting optimal 
status of the plant. This accuracy reaches more than 94% including all satisfactory but slightly 
suboptimal plant performances. 

b) A regression model acquired over the data from VEAS allows to automatically predict the 
amount of chemicals to inject in the system at any given time to obtain a satisfactory status.  

c) A first Ablative Analysis carried out over the model acquired at point a) suggests that important 
findings over the system can be automatically derived, i.e. identifying the physical parameters 
which strongly influence the plant status, previously considered entirely driven by the chemical 
parameters. 

The above results are crucial for VEAS, as the correct value of turbidity and its permanence within the 
assigned fluctuation band is essential for the optimal operation of the subsequent water treatment stages. 
Excess TOC (total organic carbon) lowers the performance of the nitrification and de-nitrification stages 
and requires costly chemicals to drive the nitrogen removal process to the expected efficiency, required 
to satisfy the plant license to operate. 

Future work will consider the implementation of closed loop control of the water treatment section of 
the plant through a more detailed evaluation of the regression model and its interaction with the 
connected plant sections and processes. Moreover, the ablative analysis results will be used for 
assessing the architecture of the future control system developments and evaluating physical 
modifications of the plant hardware taking advantage of the new awareness of parameters influence on 
the process. 
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