
EPiC Series in Computing

Volume 41, 2016, Pages 187–199

GCAI 2016. 2nd Global
Conference on Artificial Intelligence

A Short-Term Memory for Deliberative Agents in Everyday

Environments

Ivo Chichkov1 and Alexandra Kirsch2

1 Eberhard Karls Universität Tübingen Tübingen, Germany
ivo.chichkov@student.uni-tuebingen.de

2 Eberhard Karls Universität Tübingen Tübingen, Germany
alexandra.kirsch@uni-tuebingen.de

Abstract

Humans have the impressive capability to efficiently find near-optimal solutions to complex, multi-

step problems. AI planning can model such problems well, but is inefficient for realistic problems.

We propose to use AI planning in combination with a short-term memory, inspired by models of

human short-term memory, to structure real-world problem domains and make the planning process

more efficient, while still producing satisficing solutions. We evaluate the method in the domain of a

household robot.

1 Introduction

Machines still lack the ability to generate solutions for everyday problems that fulfill the stan-
dard of human problem solving, be it personal schedule organizers, route guidance systems, or
autonomous robots. All of these applications need some degree of goal-directed reasoning, as it
is available in existing reasoning frameworks such as AI planning, but in a typical household we
find hundreds of objects like shoes, toothbrushes, pots, plants, etc., allowing for a large number
of actions. While current AI planners can solve problems to a certain size (near-)optimally, the
state space implied by a realistic household is beyond anything that is possible today or in the
near future.

Yet humans are well capable of dealing with household tasks, even though their computa-
tional resources are restricted, possibly more than those of computers, for example in terms of
working memory capacity.

In the environments humans usually work and live in, the goal is not optimality, but rather
efficiency and flexibility. One striking restriction in human computational resources is the
limited capacity of working memory. We conjecture that this phenomenon is not just a curse,
but may (partly) be a blessing. Assuming that humans can only access the knowledge in
working memory, any search they may perform is naturally restricted to a small search space.

In this paper, we explore how available, well-developed methods of AI planning can be
combined with the concept of short-term (or working) memory from cognitive science to reduce
the search space while keeping an acceptable level of plan quality. This goal is fundamentally

C.Benzmüller, G.Sutcliffe and R.Rojas (eds.), GCAI 2016 (EPiC Series in Computing, vol. 41), pp. 187–199



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

different from the goal of developing optimal or provably near-optimal planning algorithms.
While for some domains optimality is a crucial factor, in everyday domains, such as a household,
it is not (as we can see in humans). We introduce a model called PDDLMemory that integrates a
cognitively inspired memory model with standard PDDL planning. We illustrate PDDLMemory
in a household robot domain, showing how planning times can be significantly reduced with
a short-term memory module, while still producing adequate solutions to planning problems,
even with a simple memory management strategy.

2 Memory Models

Memory has always been a widely discussed topic in the study of human cognition. Experi-
mental results have stimulated the formulation of different models of memory. The following is
a brief overview of the most influential ideas from psychology.

2.1 Organization of Memory

Some models regard memory organization as a collection of separate storage components. In
the Multi-Store Model of Atkinson and Shiffrin [4], [11, p.6], memory consists of the sensory
register, the short-term store, and the long-term store. Information first enters memory through
the sensory register. Attentional processes determine which pieces of information will enter
the short-term store. Rehearsal processes are responsible for maintaining information in the
short-term store. Finally, some piece of information maintained in the short-term store gets
transferred to the long-term store.

The idea of multiple stores has been further developed by Baddeley and Hitch [5]. In their
Multicomponent Model, the short-term store (or short-term memory) is replaced by a more
complex component called working memory. The term working memory was introduced in or-
der to emphasize the fact that this part of memory is not merely a passive storage component.
Baddeley and Hitch’s working memory consists of additional components such as the phono-
logical loop and the visuo-spatial sketchpad. These are responsible for the temporary storage
and processing of auditory and visual information.

The models presented so far assume a strict separation between the different parts of mem-
ory; memory items are transferred from one component to another.

A different type of memory organization assumes a fuzzy boundary between the different
components like short-term or long-term memory. The Embedded-Processing-Model [8] divides
memory into three layers: the long-term store, the activated memory, and the focus of attention.
The items are not transferred between different parts of memory. Instead, a part of long-term
memory resides in an activated state. In contrast to Multi-Store models, there is no limitation
on the number of items that can be activated simultaneously. However, activated memory is
subject to time limitations — if activation is not maintained, items reside in activated memory
for about 10–30 seconds. The innermost layer of the model is the focus of attention. In
Cowan’s model, the focus of attention is limited to three to four items that can be attended to
simultaneously.

2.2 Retrieval and Forgetting

Retrieval can be described as the process by which represented information from the inactive
portion of memory (i.e., the long-term store) becomes activated. Incoming stimuli play the role
of cues. These are pieces of information that are associated with knowledge in the inactive

188



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

part of memory, also called targets. As soon as the cue stimulus is observed, retrieval processes
are initiated that lead to the activation of the associated targets. Every stimulus that we are
exposed to may lead to the conscious or subconscious activation of inactive memories [8].

Forgetting can be understood as a time-based or as an event-based mechanism [23]. Another
explanation for the lost access to memories is the displacement or overshadowing of items by
other items in memory [10, p. 271].

2.3 Units of Memory and Memory Capacity

The units of information stored in memory are sometimes called memory items.

Miller [22] suggested that there is a limit on the number of items that can be stored in
short-term memory and that this limit is 7 ± 2 items. Related information can be combined
into information units (chunks), allowing for the storage of larger pieces of information.

More recent approaches [1] have suggested that there is no fixed limit on the number of
items, but there is an “information limit on working memory, which would predict a trade-off
between the number of items stored and the fidelity with which each item is stored”. Basically,
this means that more items can be stored if some of them are encoded in less detail.

2.4 Computational Models of Memory

Computational models of memory have been studied in the context of cognitive architectures
[17]. These architectures are motivated by modeling human cognitive abilities and thus contain
very detailed memory models.

For example, ACT-R [2] has different (long-term) memory stores for visual processing, goals,
and declarative knowledge. Short-term memory is modeled by buffers for each of these long-
term stores [17]. Similar to our model, ACT-R reduces the space of possible actions by matching
production rules to the contents in the short-term memory buffers.

Soar [9] differentiates between episodic and semantic memory. It comprises a working mem-
ory, where (de-)activation of items is driven by the Soar decision process and includes different
cognitive mechanisms such as temporal decay [9].

Icarus [18] uses a hierarchical, ontology-like long-term memory structure, where the assign-
ment of objects to classes is probabilistic. Whereas ACT-R and Soar use production rules as
the basic decision-making process, Icarus works with goals and plans. It uses a hierarchical
plan structure with transformational planning. Thus, it comes closest to the decision-making
method of PDDLMemory, but does not fit directly into standard AI planning based on PDDL.
Icarus stores the agent’s beliefs in short-term memory, which trigger concepts in the long-term
memory structure. The reasoning can thus use any object in long-term memory if it is accessible
via the activation of a currently held belief.

All these architectures support sophisticated models of long- and short-term memory, closely
modeling human cognitive processes. In contrast, PDDLMemory is a lightweight extension of
AI planning, making use of existing tools. In this context, we can specifically examine the effect
of a short-term memory without considering interactions with other cognitive modules.

3 The Planning Domain Definition Language

In general, a planning problem is defined by a transition system 〈S,O, γ〉, with states S, op-
erators O, and a state transition function γ : S × O → S. Given an initial state s0 and a

189



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

(define (domain apartment)

(: requirements :strips :typing)

(: types Location MovableObject Person Room - Object

Window Floor Door Lightswitch Lamp - Location

Lightbulb CleaningProducts - MovableObject)

(: predicates (own -location ?l - Location) ; Own Location

(is -at ?l - Location ?o - Object) ; Location of Object

(is -in ?r - Room ?l - Location) ; Location is in Room

(is -dirty -loc ?l - Location) ; Location is dirty

(is -dirty -mobj ?mo - MovableObject) ; Object is dirty

(is -attached ?mo - MovableObject)

; Object is not movable

(is -intact ?lb - Lightbulb) ; Lightbulb is intact

(is -working ?l - Lamp)) ; Lamp is working

...)

Figure 1: Type and predicate definitions of the household domain.

specification of a set of goal states Sg, the task is to find a plan Π = (o1, o2, . . . , on), oi ∈ O, so
that the successive application of o1, . . . on starting from s0 results in a state sf ∈ Sg.

The Planning Domain Definition Language PDDL [21] is the standard language for state-of-
the-art planners. It has been developed along with the International Planning Competition and
has been extended to incorporate sophisticated representations beyond classical planning such
as time and uncertainty. In this paper, we only use the basic deterministic version of PDDL.

In PDDL, states are represented by predicates P over typed object variables V. Operators
are defined abstractly as actions A with a type signature, and state transition function γ.
Actions are patterns of operators that are instantiated by the planner. PDDL differentiates
between domain definitions, containing the specification of types, predicates and actions, and
problem definitions, defined by a list of available objects, the initial state and a set of goal
predicates.

The following example of a household environment illustrates the components of PDDL and
will be used throughout the paper.

Figure 1 shows the definition of types and predicates from our PDDL domain definition file.
We further define the following actions:

• go (to location in room);

• move (object to location in room);

• clean (location with cleaning product);

• change-lightbulb (in lamp with lightbulb);

For the planning problem, we define an apartment with different rooms as shown in Fig-
ure 2(a). Each room has a set of distinctive locations and objects. Table 2(b) gives an overview
of the size of this problem definition.

In this domain, the robot has a set of goals such as preparing tea utensils, putting away
shoes, or cleaning the bathroom. In our trials, we assume that the robot has a given list of
chores it has to fulfill over the day, modeled as a conjunction of individual goals. But the system
is designed with the possibility in mind that a user could add or remove goals at any time.

190



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

4 Approach

We first sketch the mechanisms that differentiate planning with PDDLMemory from classical
AI planning, matching the goals described in Section 1. First, we transform the PDDL problem
description to basic units of PDDLMemory — items and chunks. The initial decomposition
into chunks is similar to the decomposition of a problem into subproblems [25] in the sense
that both approaches aim for a problem representation that corresponds to a partition of the
original problem. However, the subproblems defined by chunks are not necessarily independent.
In our implementation, solving a subproblem may involve accessing information from different
chunks.

Second, planning with PDDLMemory proceeds in iterations, each solving a different sim-
plified version of the overall problem, depending on the activated items in memory. The fact
that some of the simplified problems cannot be solved is taken into account by the iterative
procedure and the assumption that the environment is dynamic, so that changes are rather
beneficial to this approach, enabling the agent to use new information to fulfill its goals.

4.1 The PDDLMemory Module

PDDLMemory follows roughly the embedded processing model of Cowan [8], but with only
two layers of active and inactive memory. We chose this model, because we embrace the idea
that the items in short-term store are pointers (and not copies) to items in long-term store and
that the model imposes no general restriction on the size of the activated portion of memory
(whereas multi-component models rely on the 7 ± 2 rule), leaving the capacity as an open
parameter. Even though in this paper we work with a fixed memory size, the model allows
further research into the optimal capacity of the active memory.

Following the literature [6], we call basic units of knowledge that can be stored in memory
items. Several items may be combined into a chunk. The basic units of information in PDDL
are facts and goal predicates. Thus, an item in PDDLMemory corresponds to a single PDDL
fact or goal predicate. A set of facts (PDDL predicates) and a set of goals may constitute a
chunk c = 〈Pc, Gc〉. Actions are currently assumed to be known universally, but they could be
modeled as memory items as well.

The PDDL domain definition is considered as background knowledge, independent from the
knowledge in active memory, whereas the initial state and goal state of a problem are represented
by the current content of active memory. Knowledge can be activated or deactivated at the
level of chunks.

(a) Map of apartment modeled in PDDL.

Room # locations # objects

bathroom 5 9
WC 2 8
Closet 1 5
Kitchen 14 17
Corridor 3 7
Bedroom 6 12
Living room 3 19

(b) Number of defined locations and objects per
room.

Figure 2: The household domain.

191



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

Figure 3: Overview of planning approach with PDDLMemory.

4.2 Implementation of Chunks as Place Nodes

In our household domain we chose to model chunks according to places. Psychological studies
of human memory show that the environmental context plays an important role for storage and
retrieval [11, p.176]. Places do not necessarily have to represent a geographical entity. They can
include geographical information such as landmarks and directions, but can also be associated
with other sensory cues or actions that may be carried out at that place [20].

We have modeled places corresponding to the rooms in our environment. By defining con-
nections between those places, we derive a topological map, a representation that has also been
assumed to be used by humans and animals [20].

We define a PlaceNode as a subclass of a Chunk, representing a specific room in the modeled
apartment. It contains all the facts relevant to this room as well as a set of goals that affect
primarily this specific room.

4.3 The PDDLMemory Iteration Loop

Planning with PDDLMemory proceeds in three phases: a retrieval phase, a planning phase,
and a plan integration phase (Figure 3).

As input PDDLMemory needs a domain and problem description, which is introduced in
the following definition.

Definition: PDDLMemory domain and problem descripion
A PDDLMemory domain and problem description is given by a 5-tuple 〈D,Mi,Ma, ψ, c̄〉
with the following components:

• D is a traditional PDDL domain description.

• Mi = {c1 . . . cn} is the set of inactive chunks with ci = 〈Pci , Gci〉. Every chunk
is composed of a set of PDDL fact predicates, Pci , and a set of PDDL goal
predicates, Gci .

• Ma = {c̄} is the set of active chunks constituting short-term memory. Initially,
it contains the universally known chunk c̄.

• An activation function ψ.

• A universally known chunk c̄.

The domain definition is universally known, independent from the current content of the
activated memory. The same holds for some parts of the problem, e.g., the layout of the

192



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

apartment, which we model by a universally known chunk c̄. All chunks except c̄ are stored a
priori in the inactive memory Mi.

PDDLMemory is a Python program that parses the fact and goal definition files, and com-
bines them internally into chunk objects (mapping the directory structure to chunks). A chunk
object has a state — active or inactive. For the retrieval phase, all chunks are first reset to
an inactive state, and then a number of chunks corresponding to the capacity of short-term
memory are marked as active. The strategy for activating chunks is described in Section 4.4.

In the planning phase, PDDLMemory transforms the activation pattern back to PDDL files
by copying the facts and goal predicates of all activated chunks to a PDDL problem definition
generated on the fly. This problem definition is passed to an AI planner, thus only providing
globally known information and the knowledge in active memory.

If the planning is successful, the resulting plan π can directly be executed. However, in our
experiments, where we compare PDDLMemory to planning with complete knowledge, we store
the plan as a partial plan. When k partial plans have been found to fulfill all goals, the partial
plans πi are combined into a complete plan by concatenation, thus Π = π1 ◦ π2 · · · ◦ πk (plan
integration phase).

4.4 Memory Management

Memory management in our model favors the integration with deliberative architectures in
realistic everyday environments.

In a realistic environment, a robot moves through the world when trying to achieve its goals.
By moving through the environment, a robot senses the world and can use the newly acquired
sensor information to activate memory items. Recall that items in our model are clustered into
chunks, where each chunk is a PlaceNode representing a room in the appartment.

Every time a robot enters a room, the corresponding PlaceNode, i.e., the robot’s knowledge
of that room, is activated. The robot can use this knowledge during the planning phase to
solve a task in that room. There are, however, more complex multi-chunk goals, which need
knowledge from several chunks. For example, when the robot has to clean the bathroom, but
has no knowledge about where to find the cleaning products, it can either pursue some other
task or randomly explore its environment until at some point it enters the closet. This would
activate its knowledge about cleaning products and remind it of the previously suspended goal.

Due to short-term memory constraints mentioned in Section 4.1 the number of chunks that
can be activated simultaneously is limited. Thus, the contents of short-term memory has to be
managed by processes of forgetting and activation.

The forgetting process in PDDLMemory is binary – chunks are either activated or they
become part of the inactive portion of the long-term store. Unlike some cognitive architectures,
we do not implement a time-based decay mechanism. It should be noted that as a rule of
thumb we forget everything at the end of every main iteration. As a consequence, the process
of activation plays an important role in our model.

To activate chunks, we apply the activation function Ψ to the set of available chunks Mi

stored in inactive memory. Thus, the activated memory of capacity n can be represented
by a set of chunks Ma = {c̄, c1, · · · , cm}, where Ma ← Ψ(Mi),Mi ← Mi \Ma. In our current
implementation, we use the most generic option for Ψ, randomly selecting chunks for activation.
We show in Section 5 that it suffices to obtain efficient and satisficing planning results, but that
domain-specific associations can improve efficiency significantly.

A simple way of improving Ψ is by introducing a weighting factor α, with α > 1. With n
chunks, m of which are reinforced, a non-reinforced chunk has probability p = 1

n+(α−1)m of being

193



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

selected as the first chunk, while a reinforced chunk is selected with probability pr = α
n+(α−1)m .

The chunks are selected sequentially (without replacement) until the memory capacity is ex-
hausted. We have tested the applicability of the weighting factor by reinforcing chunks that
contain unfulfilled goals.

The interplay between forgetting chunks immediately and reactivating chunks based on the
weighting factor results in a rehearsal-like process that resembles the rehearsal processes found
in different models of human memory (see Section 2).

For now, we have not integrated our PDDLMemory module with an autonomous robot, in
order to easily compare the planning abilities with and without the memory module. Therefore,
we simulate the dynamic exploration of the environment by randomly activating chunks using
a generic Ψ function. Another possibility to select new chunks to be activated is by association,
which would require the knowledge base to contain some structure of associations between
chunks. We want to explore this possibility in future work and also integrate our module with
an autonomous robot making use of actual sensory information.

5 Evaluation

We compared PDDLMemory with planning without memory restrictions, measuring efficiency
by planning time and plan quality by plan length. We also investigated the number of iterations
needed to fulfill all goals with the simple probabilistic choice of chunks. For all experiments we
used the Fast-Forward planner1 [14] and a memory capacity of four.

For the following experiments, we used problem sizes of one to five randomly selected goals,
generating 20 instances per problem size. Figure 4(a) compares the planning times required by
the Fast-Forward planner with and without PDDLMemory. In both cases, the planning time
increases with the number of goals, but PDDLMemory significantly flattens the gradient, even
though it requires more iterations with an increasing number of goals. For five goals, a plan is
found about three times faster with PDDLMemory.

Figure 4(b) compares the lengths of the resulting plans. As PDDLMemory solves the goals
in isolation, we had expected an increase in plan length. However, this increase turned out to
be very slight. This may be due to our specific domain where the goals are rather independent
and the only possible synergies are the movements between places. This phenomenon seems to
be characteristic of everyday environments, so that there is practically no loss of plan quality.
But this depends on the domain and needs to be confirmed for other domains and problem
sizes.

Figure 4(b) also shows the portion of problems that were solved. For this experiment,
PDDLMemory was given a maximum of 100 iterations to solve all the goals. In some cases,
this was not sufficient and one or more goals remained unsolved, because the relevant memory
chunks were not activated in any of the iterations.

We then examined the necessary number of iterations to fulfill all five test goals. Figure 4(c)
visualizes the remaining goals against the PDDLMemory iterations. To achieve five goals, about
100 iterations were needed. This number looks quite high, but as the single planning problems
are small, the overall run time is only affected slightly (cp. Figure 4(a)).

In our domain, the chunk corresponding to the corridor (Fig. 2(a) on page 191) is necessary
for many goals, because the robot has to pass through the corridor in order to get utensils from
other rooms. To see how much this affects the needed iterations, we ran the same experiment,

1http://fai.cs.uni-saarland.de/hoffmann/2002.html

194

http://fai.cs.uni-saarland.de/hoffmann/2002.html


A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

(a) Planning times with the FF planner with and without PDDLMemory.

(b) Plan lengths with the FF planner with and without PDDLMemory. The
numbers above the bars show the portion of fully solved problems.

(c) Number of necessary iterations to fulfill five goals with PDDLMemory. The
nodes show the average values from 10 runs.

Figure 4: Experimental results. The error bars show the standard error. For PDDLMemory, we
compare only plan lenghts of fully solved problems. (In cases in which PDDLMemory fails to
solve the complete problem, it still generates partial plans for some of the subproblems. These
are usually shorter, so they are excluded from comparison.)

195



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

but with the corridor chunk having a probability of 1 to be activated (reducing the memory
capacity for other chunks to three). Now the five goals are achieved with 30–40 iterations.

This alteration of always keeping the corridor chunk in memory is very specific to our
domain. But it shows that it may be beneficial to make some knowledge universally known. An
association structure between chunks could have a similar effect, because the corridor is adjacent
to all other rooms and would thus have a high probability of being activated by association.

6 Related Work

The efficiency gain of PDDLMemory is achieved by reducing the state space, an idea that
has been used in different methods in AI planning. Hoffmann et al. [15] suggested to use
landmarks as a strategy for problem decomposition. A landmark generation graph decomposes
a planning task into smaller subgoals and iteratively determining those landmarks that are
achievable in the next step, passing them as a disjunctive goal to a base planner. The landmark
approach provides good results for some tasks; nevertheless, it often generates very long plans
and sometimes it finds no solution for solvable tasks [24].

Sebastia et al. [25] suggest an improved problem decomposition technique, STeLLa, which
is also based on landmarks. They obtain plans with similar or even better quality than plans
obtained when solving the problem without decomposition. A preprocessing step, however,
introduces additional overhead, which for some problems takes more time than solving the
original problem.

PDDLMemory is a specific, cognitively inspired case of automatic domain transformation.
For instance, Areces et al. [3] introduce a method for splitting large action definitions. In
PDDLMemory, actions are currently regarded as monolithic items that are always known. The
knowledge representation can be extended to include actions in chunks and possibly use different
versions of an action in different chunks to mirror the demands of each place and at the same
time accelerate the planning process.

Open-world planning assumes that goals and facts get known during the plan execution.
Talamadupula et al. [26] propose open world quantified goals as a means to use standard
AI planners in open worlds. In contrast, PDDLMemory supports open-world planning by
modularizing goals. When new goals or facts become known, they are added to the inactive
memory Mi and may be activated in the next iteration cycles. Thus, new or changed knowledge
is smoothly integrated into the iterative solution process. In addition, the execution is supposed
to be more reactive by executing subplans as soon as they are known. We only combined the
plans into one overall plan in this paper as a basis for comparison.

Related to open-world planning is contingent planning, in which some information has to be
actively acquired by the agent as part of the planning process [19]. PDDLMemory follows an
optimistic approach, in which the robot will sooner or later sense the necessary information and
we have shown that even a simple randomized activation scheme leads to acceptable solutions
in our apartment domain.

The Switching Planner [13, 12] combines AI planning with a decision-theoretic planner. In
this case, the AI planner is the fast processing step, abstracting from the underlying uncertain-
ties in the world. In critical situations, the decision-theoretic planner takes over to plan with
probabilistic states for a limited number of steps into the future. The size of the state space
given to the decision-theoretic planner is carefully chosen based on entropy. Here, the problem
size is actively controlled for, while in PDDLMemory the problem size is indirectly limited by
the number of available chunks and the knowledge modeled into the individual chunks.

196



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

7 Discussion and Future Work

The work presented here is a first step to better understand how the notion of a short-term
memory can be used in combination with AI techniques such as planning to enable autonomous
agents to make useful, timely decisions in everyday situations.

We have shown in a specific household domain that a cognitively inspired memory model
significantly accelerates planning without compromising plan quality. The method is aimed at
dynamic, open-world environments, where planning efficiency is important and the piecewise
fulfillment of small goals is an additional advantage. However, the domain definition requires
additional workload to structure the available knowledge into chunks. The generalizability of
our results can only be demonstrated when used with different environments, which we plan to
do in future work.

In addition, we will use PDDLMemory in a more realistic setup with a household robot that
can execute the plans in an uncertain, dynamic world and receive new goals from a user while
performing its chores.

With more experience in different domains, a more theoretical basis and analysis of the
method should be another future step. Such an analysis could contribute to a better under-
standing of the types of problems that can profit from this approach, as opposed to more
formalized problems that need optimal solutions. A deeper analysis is also necessary to deter-
mine adequate sizes and other requirements for chunks. Putting all knowledge into a single
chunk would lead to the original large planning problem, whereas disregarding chunks com-
pletely and working on the level of single predicates as independent items would increase the
number of necessary iterations. Also the definition of chunks can fulfill other roles in a sys-
tem. For example, a chunked knowledge structure could make the interaction with a user more
intuitive.

In our example domain, most of the goals were single-chunk goals. The multi-chunk goal for
cleaning the bathroom could also be handled, even with the randomized method for memory
management. But we cannot claim that this method scales to intricate domains with many and
large multi-chunk goals. However, for our purposes of acting in everyday dynamic worlds, this
seems to be acceptable. On the one hand, most everyday activities are indeed rather simple
when viewed from an AI planning perspective. For example, in a diary study about routine
actions [16], the test person performed only 6 activities (such as preparing food or cleaning the
table) in the kitchen every morning over 14 workdays and all activities were done sequentially.
On the other hand, errors in everyday activity are usually not disastrous. So in order to
achieve human-level intelligence, interference between partial plans can lead to inefficiency,
even to errors. But this is acceptable in some domains as long as the errors have no disastrous
consequences and the agent can recognize and correct them.

Studies in psychology point to a positive correlation between working memory capacity and
general fluid intelligence [7]. However, working memory capacity is very limited for all human
beings, thus a generalization to even higher capacities (let’s say, ten) could never be tested in
humans. For PDDLMemory we chose a short-term memory capacity of four, but our domain
was also rather small compared to real everyday environments. For other environments, a
higher memory capacity may be more adequate, and it does not have to be in the range of
human memory capacity. But we suggest that some limitation of short-term/ working memory
capacity has benefits for cognitive agents. For cognitive science, this means that in addition to
the available evidence, computational models may help to better understand the role of memory
capacity and possibly find indications for reasonable boundaries of it.

197



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

Acknowledgements

With the support of the Bavarian Academy of Sciences and Humanities.

References

[1] George A. Alvarez and Patrick Cavanagh. “The capacity of visual short-term memory is
set both by visual information load and by number of objects”. In: Psychological science
15.2 (2004), pp. 106–111.

[2] John R. Anderson. “ACT: A simple theory of complex cognition.” In: American Psychol-
ogist 51.4 (1996), p. 355.

[3] Carlos Eduardo Areces, Facundo Bustos, Mart́ın Dominguez, and Jörg Hoffmann. “Opti-
mizing Planning Domains by Automatic Action Schema Splitting”. In: Proceedings of the
Twenty-Fourth International Conference on Automated Planning and Scheduling. 2014.

[4] Richard C. Atkinson and Richard M. Shiffrin. “Human memory: A proposed system and
its control processes”. In: Psychology of learning and motivation 2 (1968), pp. 89–195.

[5] Alan D Baddeley and Graham J Hitch. “Working memory”. In: The psychology of learning
and motivation 8 (1974), pp. 47–89.

[6] William G. Chase and Herbert A. Simon. “Perception in chess”. In: Cognitive Psychology
4.1 (1973), pp. 55–81.

[7] Andrew R. A. Conway, Nelson Cowan, Michael F. Bunting, David J. Therriault, and
Scott R.B. Minkoff. “A latent variable analysis of working memory capacity, short-term
memory capacity, processing speed, and general fluid intelligence”. In: Intelligence 30.2
(2002), pp. 163–183.

[8] Nelson Cowan. “An embedded-processes model of working memory”. In: Models of work-
ing memory: Mechanisms of active maintenance and executive control (1999), pp. 62–
101.

[9] Nate Derbinsky and John E. Laird. “Effective and Efficient Forgetting of Learned Knowl-
edge in Soar’s Working and Procedural Memories”. In: Cognitive Systems Research 24
(2013), pp. 104–113.

[10] H. Eichenbaum. Learning & Memory. W. W. Norton & Company, 2008.

[11] Michael W. Eysenck and Michael C. Anderson. Memory. English. 1 edition. Hove England,
New York: Psychology Press, Feb. 2009.

[12] Moritz Göbelbecker, Charles Gretton, and Richard Dearden. “A switching planner for
combined task and observation planning”. In: In TwentyFifth Conference on Artificial
Intelligence. 2011.

[13] Marc Hanheide et al. “Exploiting Probabilistic Knowledge under Uncertain Sensing for
Efficient Robot Behaviour”. In: Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI’11). Barcelona, Spain, July 2011.

[14] Jörg Hoffmann and Bernhard Nebel. “The FF Planning System: Fast Plan Generation
Through Heuristic Search”. In: Journal of Artificial Intelligence Research 14 (2001),
pp. 253–302.

[15] Jörg Hoffmann, Julie Porteous, and Laura Sebastia. “Ordered landmarks in planning”.
In: J. Artif. Intell. Res.(JAIR) 22 (2004), pp. 215–278.

198



A Short-Term Memory for Deliberative Agents in Everyday Environments Chichkov and Kirsch

[16] Michael Karg and Alexandra Kirsch. “Low Cost Activity Recognition Using Depth Cam-
eras and Context Dependent Spatial Regions”. In: Workshop on Autonomous Robots and
Multirobot Systems (ARMS), Proceedings of the Ninth International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS). 2014.

[17] Pat Langley, John E. Laird, and Seth Rogers. “Cognitive architectures: Research issues
and challenges”. In: Cognitive Systems Research 10.2 (2009), pp. 141–160.

[18] Pat Langley, Kathleen B. McKusick, John A. Allen, Wayne F. Iba, and Kevin Thompson.
“A Design for the ICARUS Architecture”. In: ACM SIGART Bulletin 2.4 (July 1991),
pp. 104–109.

[19] Shlomi Maliah, Ronen Brafman, Erez Karpas, and Guy Shani. “Partially Observable
Online Contingent Planning Using Landmark Heuristics”. In: Proceedings of the Twenty-
Fourth International Conference on Automated Planning and Scheduling. 2014.

[20] Hanspeter A. Mallot and Kai Basten. “Embodied spatial cognition: Biological and artifi-
cial systems”. In: Image and Vision Computing. Cognitive Systems: Perception, Action,
Learning 27.11 (Oct. 2009), pp. 1658–1670.

[21] Drew McDermott and the AIPS-98 Planning Competition Committee. PDDL — the
planning domain definition language. Tech. rep. CVC TR-98-003/DCS TR-1165. Yale
University, 1998.

[22] George A Miller. “The magical number seven, plus or minus two: some limits on our
capacity for processing information.” In: Psychological review 63.2 (1956), p. 81.

[23] Klaus Oberauer and Stephan Lewandowsky. “Forgetting in immediate serial recall: Decay,
temporal distinctiveness, or interference?” In: Psychological Review 115.3 (2008), p. 544.

[24] Silvia Richter and Matthias Westphal. “The LAMA planner: Guiding cost-based anytime
planning with landmarks”. In: Journal of Artificial Intelligence Research 39.1 (2010),
pp. 127–177.

[25] Laura Sebastia, Eva Onaindia, and Eliseo Marzal. “Decomposition of planning problems”.
In: Ai Communications 19.1 (2006), pp. 49–81.

[26] Kartik Talamadupula, J. Benton, Subbarao Kambhampati, Paul Schermerhorn, and
Matthias Scheutz. “Planning for Human-robot Teaming in Open Worlds”. In: ACM Trans-
actions on Intelligent Systems and Technology 1.2 (Dec. 2010), 14:1–14:24.

199


	Introduction
	Memory Models
	Organization of Memory
	Retrieval and Forgetting
	Units of Memory and Memory Capacity
	Computational Models of Memory

	The Planning Domain Definition Language
	Approach
	The PDDLMemory Module
	Implementation of Chunks as Place Nodes
	The PDDLMemory Iteration Loop
	Memory Management

	Evaluation
	Related Work
	Discussion and Future Work

