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Abstract

We develop a theorem proving strategy for Partial Classical Logic (PCL) that is based on geometric

logic. The strategy first translates PCL theories into sets of Kleene formulas. After that, the Kleene

formulas are translated into 3-valued geometric logic. The resulting formulas can be refuted by an

adaptation of geometric resolution.

1 Introduction

Partial Classical Logic (PCL) was introduced by the author in [6] with the aim of being able
to express rich type systems and partial functions. In order to allow type systems of arbitrary
complexity, one can use relativization. This means that (1) ordinary formulas are used for
expressing type conditions: +:N ×N → N can be expressed by ∀n1, n2 N(n1) ∧ N(n2) →
N(n1 + n2). (2) Universal quantifiers use implication to include type conditions: ∀n:N n ≥ 0
becomes ∀n N(n) → n ≥ 0, and (3) existential quantifiers use conjunction to include type
conditions: ∃n:N n ≥ 0 becomes ∃n N(n) ∧ n ≥ 0. The advantage of relativization is the fact
that it is flexible: Every property that can be expressed in logic can be used as type condition.
The disadvantage is the fact that the type system looses its possibility to pre-check formulas,
and to discard meaningless formulas. Using relativization, an ill-typed formula will become
either true or false. As a theorem, the formula becomes either too hard to too easy to prove.
As an assumption, it will be either too strong or too weak. The dangerous cases, which are an
easy theorem, and a strong assumption, may go undetected for long time.

In order to model undefinedness, it has been proposed to use three-valued Kleene logic. In
Kleene logic, the set of Booleans is extended with a third truth-value u, which denotes unknown.
Ill-typed formulas are treated as underspecified. The truth values are assumed to be ordered by
f < u < t. Disjunction ⊕ is defined by picking the rightmost truth-value from its arguments.
Conjunction ⊗ picks the leftmost truth-value from its arguments. One has u ⊕ t = t, which
reflects the fact that u can be interpreted as underspecified. If one of the arguments of a
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disjunction is t, then the other argument does not matter. Kleene logic has been proposed for
modeling partial functions in [9, 11, 10, 13] and [5].

In our view, Kleene logic does not capture the way in which types are intuitively used: Kleene
logic is designed in such a way that one can derive as much as possible from underspecified
formulas. The fact that ⊕ ignores u when the other argument is t, (the same happens when
one of the arguments of ⊗ is f) reflects this. As a consequence, it is possible to assume an ill-
typed formula. The formula will be assumed true, and it will be possible to derive consequences
from it. If the formula is ill-typed, its type correctness is assumed together with the truth of
the formula, so that an assumed formula may implicitly declare symbols.

PCL in contrast has type strictness: Nothing can be done with a formula when it is ill-
typed at the point where it is used. In order to ensure this, contexts in PCL are ordered, and
implication and conjunctions are both separated into two operators: the strict operators→ and
∧, and the lazy operators [ ] and 〈 〉. The strict operators are used in formulas in the usual way.
A strict operator is well-typed only if both of its arguments are well-typed. The lazy operators
are used in relativizations. A lazy operator is well-typed if its left argument is false, or its left
argument is true, and its right argument is well-typed.

The goal of the current paper is to sketch a theorem proving procedure for PCL. The
procedure is based on geometric logic. The current paper is a shortened version of [7], which
contains a more detailed discussion of PCL, and all the proofs. We will define the syntax
and semantics of PCL, give examples, and explain how PCL contexts can be decomposed into
sets of sequents. (which can be alternatively viewed as sets of formulas.) In Section 2, we
introduce the notion of widening, which is the key to obtaining theorem proving procedures for
PCL. Widening is also important for understanding the relation between PCL, Kleene logic and
classical logic, but we will not discuss this in this paper. It is discussed in [7]. In Section 3, we
sketch a theorem proving procedure, based on [8], for three-valued, Kleene logic. In Section 4,
we explain the last step of the transformation from sequents into geometric logic. We now
define the syntax, and the semantics of PCL:

Definition 1.1. We first define terms: If f is a function symbol with arity n ≥ 0, and t1, . . . , tn
are terms, then f(t1, . . . , tn) is a term as well. Using terms, we define the set of formulas as
follows:

• ⊥, E and > are formulas.

• If t1 and t2 are terms, then t1 ≈ t2 is a formula.

• If p is a predicate symbol with arity n ≥ 0, and t1, . . . , tn are terms, then p(t1, . . . , tn) is a
formula.

• If F is a formula, then ¬F and #F are formulas.

• If F and G are formulas, then F ∨G, F ∧G, F → G, and F ↔ G are formulas.

• If F and G are formulas, then 〈F 〉G and [F ]G are formulas.

• If F is a formula, and x is a variable, then ∀x F and ∃x F are formulas.

Definition 1.2. An interpretation is an object of form I = (D, [ ]). The set D is the domain of
the interpretation. The function [ ] interprets function symbols as functions from Dn to D and
predicate symbols as functions from Dn to {f , e, t} in accordance with the arity of the symbol.

Definition 1.3. Let I = (D, [ ]) be an interpretation. Starting with [ ], we define the interpre-
tation function I(), that interprets all terms and formulas.

• If f is a function symbol of arity n, and t1, . . . , tn are terms, then
I( f(t1, . . . , tn) ) = [f ](I(t1), . . . , I(tn)).

72



Theorem Proving for Logic with Partial Functions H. de Nivelle

• If p is a predicate symbol of arity n, and t1, . . . , tn are terms, then
I( p(t1, . . . , tn) ) = [p](I(t1), . . . , I(tn)).

• I(⊥) = f , I(E) = e, and I(>) = t.

• For a unary propositional operator ?, the interpretation of I(?A) is defined from the value
in the corresponding table below, using the value of I(A) in the order f , e, t :

¬ : t e f # : t f t

• For a binary propositional operator ?, the interpretation of I(A ? B) is defined from the
value in the corresponding table below. The row is determined by the value of I(A) in the
order f , e, t, and the column is determined by the value of I(B), also in the order f , e, t.

∨ :

f e t
e e e
t e t

∧ :

f e f
e e e
f e t

↔:

t e f
e e e
f e t

→:

t e t
e e e
f e t

〈 〉 :

f f f
e e e
f e t

[ ] :

t t t
e e e
f e t

• For a quantifier Q, the value of I(Qx F ) is obtained as follows: First define RF =
{Ixd (F ) | d ∈ D}. Then I(Qx F ) is obtained by selecting from RF the most preferred
value using the preference list for Q :

∀ : e > f > t, ∃ : e > t > f .

Theories are constructed in contexts. A context is a mixture of assumptions and theorems.
Assumptions are assumptions in the usual sense, and type specifications. The order of formulas
in a context is essential, because theorems must be provable from the formulas that occur before
them, and types of functions and predicates have to be specified by assumptions before they
are used.

Definition 1.4. We call an object of form ‖Γ1, . . . ,Γm‖, in which Γj (m ≥ 0) are formulas,
and in which some of the Γj are possibly marked with a ϑ, a context.

Formulas that are marked with ϑ denote theorems, which means that they must be provable
from the formulas occurring before them. Unmarked formulas are assumptions.

Example 1.5. ‖ #A, #B, A, B, (A∧B)ϑ ‖ is an example of a context. The formula (A∧B)ϑ

is marked as theorem, which is correct, because it is provable from the formulas A and B. The
formulas A and B can be assumed because #A and #B occur before them.

Definition 1.6. Let ‖Γ‖ be a context. We say that ‖Γ‖ is strongly valid if in every interpre-
tation I, for which there is an i, s.t. I(Γi) 6= t, the first such i satisfies the following condition:

• Γi is not marked as theorem and I(Γi) = f .

Strong validity captures the intuition that theorems must be provable from the formulas before
them, and assumptions must be well-defined assuming the formulas before them.
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Example 1.7. The context ‖ A, B, (A ∧ B)ϑ ‖ is not strongly valid, because Definition 1.6
is not met by I with I(A) = e, I(B) = t. The context ‖ #A, A, B, (A ∧ B)ϑ ‖ is still not
strongly valid, because it is possible that I(B) = e, which would make B with I(B) 6= f the first
formula with I(B) 6= t.

In order to obtain a context that is strongly valid, we also have to add #B, so that we get
‖ #A, #B, A, B, (A ∧B)ϑ ‖.

Example 1.8. The context ‖ G(s), ∀x G(x) → M(x), Mϑ(s) ‖ is not strongly valid, despite
the fact that G(s), ∀x G(x)→M(x) implies M(s).

In order to make the context strongly valid, one has to make sure that predicates G and
M (Greek and Mortal) are always well-defined: ‖ ∀x #G(x), ∀x #M(x), G(s), ∀x G(x) →
M(x), Mϑ(s) ‖. The predicates G and M are currently too general. In order to be more realistic,
they can be restricted to be subpredicates of a predicate H (Human):∥∥∥∥ ∀x #H(x), ∀x H(x)→ #G(x), ∀x H(x)→ #M(x)

〈H(s)〉 G(s), ∀x [H(x)] G(x)→M(x), Mϑ(s)

∥∥∥∥
If the formula 〈H(s)〉 G(s) would be replaced by H(s)∧G(s), the resulting context would be not
strongly valid anymore, because one can have I(H(s)) = f , I(G(s)) = e, while making all the
formulas before it true.

Similarly, replacing ∀x [H(x)] G(x) → M(x) by ∀x H(x) ∧ G(x) → M(x) would make
the context not strongly valid anymore, because there could exist a term t with I(H(t)) =
f , I(G(t)) = e.

We now show that a context can be decomposed into a set of sequents. An assumption
results in one sequent, representing type correctness of the assumed formula. A theorem results
in two sequents, representing type correctness and correctness of the theorem.

Definition 1.9. A sequent is an object of form S ` ⊥, in which S is a set of formulas.

Definition 1.10. Let ‖Γ‖ = ‖Γ1, . . . ,Γm‖ be a context. The sequent expansion Seq( ‖Γ‖ ) of
‖Γ‖ is defined as

⋃
1≤i≤mE( ‖Γ‖, i) ∪

⋃
1≤i≤mEϑ( ‖Γ‖, i), where

• E( ‖Γ‖, i) = { {Γ1, . . . ,Γi−1,¬(#Γi)} ` ⊥ }.
• Eϑ( ‖Γ‖, i) = { {Γ1, . . . ,Γi−1,¬Γi} ` ⊥ } if Γi is marked as theorem, and { } otherwise.

Definition 1.11. We say that a set of formulas S is strongly unsatisfiable if for every inter-
pretation I, there is a formula A ∈ S, s.t. I(A) = f .

We say that a set of sequents S1 ` ⊥, . . . , Sn ` ⊥ strongly represents a property P iff

1. P is true implies that all of the Si are strongly unsatisfiable.

2. P is false implies that (at least) one of the Si is satisfiable.

The advantage of the use of strong representation is that it makes it possible to ignore error
values during proof search. Either, it is possible to make all formulas in all sequents true, or
there always is a false formula in some sequent.

Theorem 1.12. For every context Γ, the sequent expansion Seq(‖Γ‖) strongly represents the
property that ‖Γ‖ is strongly valid.

For the proof, we refer to [7].
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Example 1.13. Suppose we want to prove that the context of Example 1.8 is strongly valid.
First define:

A0 = ∀x #H(x)
A1 = ∀x H(x)→ #G(x)
A2 = ∀x H(x)→ #M(x)
A3 = 〈H(s)〉 G(s)
A4 = ∀x [H(x)] G(x)→M(x)
G = ¬M(s)

B0 = ¬# ∀x #H(x)
B1 = ¬# ∀x H(x)→ #G(x)
B2 = ¬# ∀x H(x)→ #M(x)
B3 = ¬# 〈H(s)〉 G(s)
B4 = ¬# ∀x [H(x)] G(x)→M(x)
B5 = ¬#M(s)

The sequent expansion consists of the following sequents:

B0 ` ⊥
A0, B1 ` ⊥
A0, A1, B2 ` ⊥
A0, A1, A2, B3 ` ⊥

A0, A1, A2, A3, B4 ` ⊥
A0, A1, A2, A3, A4, B5 ` ⊥
A0, A1, A2, A3, A4, G ` ⊥

The last two sequents in the second column originate from Mϑ(s). It created two sequents because
it is a theorem.

2 Transformation to Kleene Logic

Decomposition Seq can be used to decompose a context into a set of sequents. By Theorem 1.12,
this set of sequents strongly represents strong validity of the original context. In this section, we
transform the resulting set of sequents into a set of sequents in Kleene logic, that still strongly
represents strong validity the original context.

The notion of strong representation contains a gap between the property being true and
the property being false. When the property being represented is true, every sequent always
contains a false formula. When the property is false, there is a sequent that can contain only
true formulas in some interpretation. This means that strong representation says nothing about
e, and there is no need to preserve it during transformations. As a consequence, transformations
do not need to preserve all truth-values. The following property is sufficient:

Definition 2.1. We define the widening relation � as follows: A � B if in every interpretation
I, we have I(A) = f ⇒ I(B) = f , and I(A) = t⇒ I(B) = t.

We write A ≡ B if A � B and B � A. It can be easily checked that A ≡ B iff I(A) = I(B)
in every interpretation I.

Theorem 2.2. Let {S1 ` ⊥, . . . , Sn ` ⊥} be a set of sequents that strongly represents a
property P. Let A and B be two formulas with A � B.

Let {S′1 ` ⊥, . . . , S′n ` ⊥} be obtained from {S1 ` ⊥, . . . , Sn ` ⊥} by possibly replacing
some occurrences of A by B.

Then {S′1 ` ⊥, . . . , S′n ` ⊥} strongly represents property P as well.

The proof is given in [7]. Since we have now established that one can use � in transforma-
tions, there is no need anymore to distinguish between PCL operators and Kleene operators.
As a consequence, PCL operators can be replaced by their Kleene counterparts. We will use
the notation ⊗ for Kleene conjunction, ⊕ for Kleene disjunction, Π for Kleene universal quan-
tification, and Σ for Kleene existential quantification.
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Definition 2.3. We extend the set of formulas, defined in Definition 1.1, with two binary
operators and two quantifiers as follows: If F and G are formulas, then F ⊗G and F ⊕G are
formulas as well. If F is a formula and x is a variable, then Πx F and Σx F are formulas.
We extend the interpretation of formulas, defined in Definition 1.3, as follows:

• The semantics of the binary operators ⊗ and ⊕ is defined by the following truth tables:

⊗ :

f f f
f e e
f e t

⊕ :

f e t
e e t
t t t

• The semantics of the quantifiers Π and Σ is defined by the following preferences:

Π : f > e > t, Σ : t > e > f .

The first row of Figure 1 lists the rules that replace PCL operators by their corresponding
Kleene operators. The rules in the second row can be used for pushing the #-operator inward.
Operator # is intended to be used for declaring symbols, as in ∀mn N(m)∧N(n)→ #(m ≤ n).
Because of this, we expect application of # on compound formulas to be rare, so that the rules
in the second column probably will not be used often. We included them for completeness.

Theorem 2.4 states that the replacements of Figure 1 agree with � when they are made on
top level. Theorem 2.5 states that � can be lifted into formula contexts that do not contain #,
so that replacements can be made on subformulas as well.

Theorem 2.4. For every rule of Figure 1, that is written as A � B, it is indeed the case that
A � B. For every rule that is written as A ≡ B, it is indeed the case that A ≡ B.

The propositional cases can be checked by case analysis.

Theorem 2.5. All of the logical operators of PCL and the Kleene operators, with the exception
of #, are monotone relative to � . More precisely:

• If A � B, then ¬A � ¬B.
• If A1 � B1 and A2 � B2, then

A1 ∧A2 � B1 ∧B2, A1 ∨A2 � B1 ∨B2, A1 → A2 � B1 → B2,
A1 ↔ A2 � B1 ↔ B2, [A1]A2 � [B1]B2, 〈A1〉A2 � 〈B1〉B2.

• If P [x] � Q[x], then

∀x P [x] � ∀x Q[x], ∃x P [x] � ∃x Q[x],
Πx P [x] � Πx Q[x], Σx P [x] � Σx Q[x].

It can be easily seen that # is not monotone: For example, one has E � >, but not
#E � #>.

At this point, we have established that the rules in Figure 1 can be used to rewrite a formula
into a normal form. The restriction to contexts not containing # is unproblematic, because #
can be pushed inwards down to the atoms.

Definition 2.6. For a formula A in PCL (possibly mixed with Kleene operators), we define the
Kleening of A, written as Kl(A), as the result of normalizing A using the rules for replacing
PCL operators, and the rules for # in Figure 1.
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Figure 1: Kleening Rules

Rules for replacing PCL operators (left) and NNF rules (right):

A ∧B � A⊗B
A ∨B � A⊕B
A→ B � ¬A⊕B
A↔ B � (¬A ∨B)⊗ (A ∨ ¬B)
[A]B � ¬A⊕B
〈A〉B � A⊗B
∀x F [x] � Πx F [x]
∃x F [x] � Σx F [x]

¬⊥ ≡ >
¬E ≡ E
¬> ≡ ⊥
¬¬A ≡ A
¬(A⊕B) ≡ ¬A⊗ ¬B
¬(A⊗B) ≡ ¬A⊕ ¬B
¬( Πx F [x] ) ≡ Σx ¬F [x]
¬( Σx F [x] ) ≡ Πx ¬F [x]

Rules for #:

#> ≡ >
#E ≡ ⊥
#⊥ ≡ >
#(¬A) ≡ #A
#(#A) ≡ >
#( ∀x F [x] ) ≡ Πx #F [x]
#( ∃x F [x] ) ≡ Πx #F [x]

#(A ∧B) ≡ #A ⊗ #B
#(A ∨B) ≡ #A ⊗ #B
#(A→ B) ≡ #A ⊗ #B
#(A↔ B) ≡ #A ⊗ #B
#( [A]B ) ≡ #A ⊗ ( ¬A ∨#B )
#( 〈A〉B ) ≡ #A ⊗ ( ¬A ∨#B )
#(t1 ≈ t2) ≡ >

It is possible to define Kl(A) by a single, recursive definition. Such definition is given in [7].

Theorem 2.7. For every formula A, we have A � Kl(A).

Theorem 2.7 follows from Theorem 2.4 and Theorem 2.5.

Definition 2.8. We say that a formula A is in Kleene logic if it contains only logical operators
from ⊥,>, E,¬,#,⊗,⊕,Π,Σ (and ≈), and the operator # is applied only on non-equality
atoms.

It is easily checked that Kl(A) is always in Kleene logic. The rules for Kl( A↔ B ), Kl#( 〈A〉B ),
and Kl#( [A]B ) may cause an exponential increase in size of the formula. This problem can
be avoided by using suitable subformula replacement rules.

During the rest of the tranformation, it is convenient to push negation inwards as far as
possible. This has the advantage that the polarity of non-trivial subformulas is always positive,
which will simplify the remaining transformations.

Definition 2.9. Let A be a Kleene formula. We say that A is in negation normal form (NNF)
if negation is applied only on atoms and on formulas of form #p(t1, . . . , tn).

Definition 2.10. We define the negation normal form of A, for which we write NNF(A), as
the normal form that is obtained when A is normalized using the NNF rules in Figure 1.

As with Kl, the negation normal form can be defined in a single recursive definition.

Example 2.11. We apply Kleening and compute the negation normal form of the formulas in
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Example 1.13.

A0 � Πx #H(x)
A1 � Πx (¬H(x)⊕#G(x))
A2 � Πx (¬H(x)⊕#M(x))
A3 � H(s)⊗G(s)
A4 � Πx (¬H(s)⊕

¬G(s)⊕M(s))
G � ¬M(s)

B0 � Σx ⊥
B1 � Σx (¬#H(x)⊕⊥)
B2 � Σx (¬#H(x)⊕⊥)
B3 � ¬#H(s)⊕ (H(s)⊗ ¬#G(s))
B4 � Σx (¬#H(x)⊕ (H(x) ⊗

(¬#G(x)⊕ ¬#M(x))))
B5 � ¬#M(s)

The Kleening transformation forgets type information. For example, the PCL formulas
∀x [H(x)] G(x) → M(x), ∀x [H(x) ∧ G(x)] M(x), ∀x H(x) ∧ G(x) → M(x), ∀x H(x) →
[G(x)] M(x), ∀x [H(x)] [G(x)] M(x) all have the same Kleening Πx ¬H(x)⊕¬G(x)⊕M(x).

The formulas were different in PCL, but Kleening has widened them into the same formula.
The formulas F still have different meanings in PCL, because the Kleenings of the formulas
¬#F differ, so that they will be typechecked in different ways.

The fact that Kleening removes type information can be reformulated as: Once a formula
has been type checked, its type information can be forgotten. Alternatively, one can say: A
typechecked formula can be considered equivalent to its Kleening. In the full paper [7], it is
argued that in most cases, the Kleene translation of a theorem is equivalent to its classical
translation, so that one obtains: A typechecked formula can be considered equivalent to its
relativization in classical logic. Since people tend to think of their favorite formulas, which
are always well-typed, people tend to believe that all type information can be expressed by
relativization. In practice, many formulas in applications are not particularly liked by anyone,
and for those, type checking will be very useful. The next step in the transformation is called
radicalization:

Definition 2.12. For each predicate symbol p with arity n, we define the following abbrevia-
tions: 

p∅(t1, . . . , tn) := ⊥
pf (t1, . . . , tn) := #p(t1, . . . , tn)⊗ ¬p(t1, . . . , tn)
pe(t1, . . . , tn) := ¬#p(t1, . . . , tn)
pt(t1, . . . , tn) := #p(t1, . . . , tn)⊗ p(t1, . . . , tn)
pf ,e(t1, . . . , tn) := ¬#p(t1, . . . , tn)⊕ ¬p(t1, . . . , tn)
pe,t(t1, . . . , tn) := ¬#p(t1, . . . , tn)⊕ p(t1, . . . , tn)
pf ,t(t1, . . . , tn) := #p(t1, . . . , tn)
pf ,e,t(t1, . . . , tn) := >

Theorem 2.13. For every propositional atom pλ(t1, . . . , tn), for every interpretation I, we have
I(pλ(t1, . . . , tn)) ∈ {f , t}.

Definition 2.14. Let A be a Kleene formula in NNF. We recursively define the radicalization
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Rad(A) of A as follows:

Rad( p(t1, . . . , tn) ) = pt(t1, . . . , tn)
Rad(¬p(t1, . . . , tn) ) = pf (t1, . . . , tn)
Rad(#p(t1, . . . , tn) ) = pf ,t(t1, . . . , tn)
Rad(#p(t1, . . . , tn) ) = pe(t1, . . . , tn)

Rad( t1 ≈ t2 ) = t1 ≈ t2

Rad(>) = >
Rad(E) = ⊥
Rad(⊥) = ⊥
Rad(A⊗B) = Rad(A)⊗ Rad(B)
Rad(A⊕B) = Rad(A)⊕ Rad(B)

Rad(Πx P [x]) = Πx Rad(P [x])
Rad(Σx P [x]) = Σx Rad(P [x])

Radicalization is called ‘radicalization’ because in the resulting formula, every non-atomic
subformula always has a definite truth value. This has a surprising consequence, namely there
is no need to use Kleene operators anymore. In the resulting formula, each Kleene operator can
be replaced by its corresponding classical (or PCL) operator without changing the truth value
of the formula. This implies that in the last four rules of the definition of Rad, one could have
used ∧,∨,∀,∃ instead of ⊗,⊕,Π,Σ.

Theorem 2.15. For every Kleene formula A in NNF, we have A � Rad(A).

Proof. First check (by case analysis) that

p(t1, . . . , tn) � pt(t1, . . . , tn),
¬p(t1, . . . , tn) � pf (t1, . . . , tn),
#p(t1, . . . , tn) � pf ,t(t1, . . . , tn),
¬#p(t1, . . . , tn) � pe(t1, . . . , tn),
E � ⊥.

After that, apply Theorem 2.5.

We give an example of radicalization:

Example 2.16. Radicalizing the formulas in Example 2.11 gives:

A0 = Πx Hf ,t(x)
A1 = Πx (Hf (x)⊕Gf ,t(x))
A2 = Πx (Hf (x)⊕Mf ,t(x))
A3 = Ht(s)⊗Gt(s)
A4 = Πx (Hf (s)⊕Gf (s)⊕Mt(s))
G = Mf (s)

B0 = Σx ⊥
B1 = Σx (He(x)⊕⊥)
B2 = Σx (He(x)⊕⊥)
B3 = He(s)⊕ (Ht(s)⊗Ge(s))
B4 = Σx (He(x)⊕ (Ht(x) ⊗

(Ge(x)⊕Me(x))))
B5 = Me(s)

The resulting sequents still strongly represent strong validity of the context in Example 1.8.
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At this point, we are close to classical logic, so that it would be possible to define a resolution
procedure in the standard way. One can Skolemize the radicalized sequents, factor them into
clausal normal form, and apply resolution between atoms pλ(t1, . . . , tn) and pµ(u1, . . . , un), if
λ ∩ µ = ∅, and the ti are unifiable with ui. Since we are interested in using geometric logic, for
reasons that were explained in [8], we will develop a theorem proving procedure for geometric
logic in the remaining section of this paper.

3 Three-Valued Geometric Logic

Geometric logic for theorem proving was introduced in [3]. The proof search algorithm for
geometric logic is closely related to model generation (see [12]) or to proof search based on
hyper tableaux (see [2]). In [8], we introduced a variant of geometric logic, in which function
symbols are replaced by predicates, which is able to deal directly with equality, and which
learns a lemma, whenever it closes a branch in the search tree. The search algorithm is similar
to the algorithm in [4]. Whenever the algorithm encounters an existential quantifier, it first
tries all existing domain elements as possible witness. If this does not succeed, it extends the
model with a new domain element. The difference with [4] is that our method replaces function
symbols by predicate symbols, and that it relies on lemma learning during search. In this paper,
we describe the search procedure without learning, because the learning rules for three-valued,
geometric resolution are quite involved. They are derived from the learning rules in [8]. A
detailed description can be found in [7]. We first describe the format of geometric (Kleene)
formulas:

Definition 3.1. A geometric atom is an atom of one of the following three forms:

1. An atom pλ(x1, . . . , xn), where x1, . . . , xn are variables, not necessarily distinct, and λ =
{f}, {e}, {t}, {f , e} or {f , t}.

2. An equality atom x1 ≈ x2, with x1, x2 distinct variables.

3. An existentially quantified atom Σy pλ(x1, . . . , xn), where x1, . . . , xn are variables, not
necessarily distinct, and λ = {e} or {t}. There must be at least one occurrence of y among
the xi.

We will usually write Σy pλ(x1, . . . , xn, y), even when y does not have to be at the last
position, and there can be more than one occurrence of y.

A geometric formula is a formula of form Πx A1⊕· · ·⊕Ap, where each Ai is a geometric atom
with all its free variables among x. It is not required that Ai contains all variables of x.

The term ‘geometric atom’ is slightly misleading because an object of form ∃y pλ(x1, . . . , xn, y)
is not an atom. We think that it is sufficiently close to an atom, so that it can still be called
‘atom’. The labels in the formulas play a role similar to the signs in [14]. The search procedure
is an adaptation of the procedure of [8] for classical logic. In this paper, we only describe the
simplified procedure without learning.

Definition 3.2. We assume a countably infinite set of domain elements E . A ground substitu-
tion Θ is a partial function from variables to E . If A is a geometric atom, all whose free variables
are defined in Θ, then AΘ is the result of replacing each free variable x by its corresponding
xΘ. We call the atoms that can be obtained in this way ground atoms.

As with ‘geometric atom’, the term ‘ground atom’ is not completely correct, because ‘ground
atoms’ are not always ground, and also not always atoms, but we think they are close enough.
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Definition 3.3. An interpretation is a pair (E,M) in which E ⊆ E is a set of elements, and
M is a set of ground atoms of form pλ(e1, . . . , en), s.t. λ = e or λ = t, and all ei ∈ E. It is
not allowed that M contains a conflicting pair of form pe(e1, . . . , en), pt(e1, . . . , en).

An interpretation stores the ground atoms that have truth assignments different from the default
value f . Using this semantics, one can define when a ground atom is true in an interpretation.
An atom of form pt(e) is true in M if pt(e) occurs in M. An atom of form pf (e) is true in M if
both of pe(e) and pt(e) do not occur in M. An atom of form pf ,t(e) is true in M if pe(e) does
not occur in M.

When an atom is not true in an interpretation, there are two possibilities: Either it can be
made true by extending M, or it can be made true only by making M smaller. In the second
case, we call the atom in conflict with M.

Definition 3.4. Let (E,M) be an interpretation. Let A be a ground atom with all its elements
in E. We say that A is false in (E,M) if one of the following holds:

1. A has form e1 ≈ e2 and e1 6= e2.

2. A has form p{λ}(e1, . . . , en), λ 6= f , and M does not contain pλ(e1, . . . , en).

3. A has form pλ(e1, . . . , en), f ∈ λ, and M contains an atom of form pµ(e1, . . . , en) with
µ 6∈ λ.

4. A has form Σy pλ(e1, . . . , en, y) with λ = {e}, {t}, and there is no e ∈ E, s.t.
pλ(e1, . . . , en, e) occurs in M.

We say that A is true in (E,M) if A is not false in (E,M). We say that A is in conflict with
(E,M) if one of the following holds:

1. A has form e1 ≈ e2 and e1 6= e2.

2. A has form pλ(e1, . . . , en), and M contains an atom of form pµ(e1, . . . , en) with µ 6∈ λ.

It can be seen from Definition 3.4 that an atom of form Σy pλ(e1, . . . , en, y) is never in conflict
with an interpretation. This is because it is always possible to add a new element e to E, and
add pλ(e1, . . . , en, e) to M. It is easily shown that a conflict atom is always false:

Lemma 3.5. Let (E,M) be an interpretation. Let A be a ground atom all whose elements
occur in E. If A is in conflict with (E,M), then A is false in (E,M).

It is also easy to show that the only way of repairing a conflict is by backtracking:

Lemma 3.6. Let (E,M) be an interpretation. Let A be a ground atom all whose elements
occur in E. If A is in conflict with (E,M), then A is also in conflict with every interpretation
(E′,M ′), s.t. E ⊆ E′ and M ⊆M ′.

If an atom is false in an interpretation, but not in conflict, then it can be made true by extending
the interpretation as follows:

Definition 3.7. Let (E,M) be an interpretation. Let A be a ground atom with all its elements
in E. Assume that A is false in (E,M), but not in conflict with (E,M). We say that A extends
(E,M) into (E′,M ′) if either

1. A has form pλ(e1, . . . , en) with λ = {e}, {t}, and (E′,M ′) = (E,M ∪ { pλ(e1, . . . , en) }).
2. A has form Σy pλ(e1, . . . , en, y) with λ ∈ {e}, {t}, and there exists an e ∈ E, s.t.

(E′,M ′) = ( E, M ∪ { pλ(e1, . . . , en, e) }).
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3. A has form Σy pλ(e1, . . . , en, y), and there exists an ê 6∈ E, s.t. (E′,M ′) = ( E∪{ê}, M ∪
{ pλ(e1, . . . , en, ê) }).

We write (E,M)⇒A (E′,M ′), if A extends (E,M) into (E′,M ′),

In case A is existential, the relation ⇒A is non-deterministic, because one can choose either
to use an existing e ∈ E as witness, or to create a new ê 6∈ E. In the latter case, the actual ê
chosen does not matter. We will always assume that there is a fixed way of obtaining a new
ê 6∈ E, and that only one ê will be considered.

The following lemmas states that it is always possible to extend, that atoms made true by
extension will remain true, and that extension is the smallest modification that makes an atom
true.

Lemma 3.8. Let (E,M) be an interpretation. Let A be a ground atom all whose elements are
in E. Assume that A is false in (E,M), but not in conflict with (E,M). Then the following
hold:

1. There exists an interpretation (E′,M ′), s.t. (E,M)⇒A (E′,M ′).

2. A is true in every interpretation (E′,M ′) for which (E,M) ⇒A (E′,M ′), and in every
interpretation (E′′,M ′′), s.t. E′ ⊆ E′′ and M ′ ⊆M ′′.

3. For every interpretation (E′′,M ′′) with E ⊆ E′′ and M ⊆ M ′′ in which A is true, there
exists an interpretation (E′,M ′), s.t. (E,M)⇒A (E′,M ′) and E′ ⊆ E′′, M ′ ⊆M ′′.

Note that part 3 implies that false atoms that are not in conflict, cannot be made true by
backtracking.

Definition 3.9. Let F = Πx A1 ⊕ · · · ⊕ Ap be a geometric formula. Let Θ be a ground
substitution that is defined for all variables in x. We say that F is false in (E,M) with Θ, if
all instantiated atoms AiΘ are false in (E,M).

We say that F conflicts (E,M) with Θ if each of its instantiated atoms AiΘ is in conflict
with (E,M). In that case, we call F a conflict formula of (E,M).

Using extension, we define the search algorithm. It tries to extend an interpretation (E,M)
into an interpretation (E′,M ′) that makes all formulas true with every ground substitution.

At each stage, the algorithm looks for a formula F and a substitution Θ, s.t. FΘ is false in
the current interpretation. If no F and Θ are found, then (E,M) is a satisfying interpretation.
If F is a conflict formula, then the algorithm fails, and it backtracks. If F is not a conflict
formula, then the algorithm backtracks through all possible extensions (E′,M ′), based on an
atom A of F that is false, but not in conflict with (E,M).

Definition 3.10. Algorithm St(G, E,M) is called with a set of geometric formulas G and an
interpretation (E,M). It tries to extend the interpretation into an interpretation (E′,M ′), that
makes all geometric formulas in G true. If no such interpretation exists, it returns ⊥.

If such an extension exists, it either returns an interpretation (E′,M ′) with E ⊆ E′, M ⊆
M ′, in which all G are true, or it does not terminate. St(G, E,M) is defined by case analysis:

MODEL: If for all formulas F ∈ G all ground instances FΘ that use only elements in E, are
true in (E,M), then St(G, E,M) returns (E,M).

SELECT: Otherwise, G contains at least one formula F, for which there exists a substitution
Θ, s.t. FΘ is false in (E,M). Let A1, . . . , Am be the atoms in FΘ that are not in conflict
with (E,M). Select an F and a Θ, for which m is minimal.

FAIL: If m = 0, then F is a conflict formula, and St(G, E,M) returns ⊥.
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Figure 2: Propositional Geometric Formulas

(1) Af ,t

(2) Af ⊕Bf ,t

(3) Af ⊕ Cf ,t

(4) Ae ⊕At

(5) Ae ⊕Be

EXTEND: If m > 0, then for every Ai, for every (E′,M ′) with (E,M)⇒Ai (E′,M ′), do the
following:

• Assign r = St(G, E′,M ′). If r is an interpretation, then return r.

If we reached the end, we know that all recursive calls returned ⊥. In that case, St(G, E,M)
also returns ⊥.

Example 3.11. Assume that we want to refute the sequent #[A](B∧C), ¬#[A]B ` ⊥. Kleening
the first formula results in #A⊗(¬A⊕(#B⊗#C)). Radicalization results in Af ,t⊗(Af⊕(Bf ,t⊗
Cf ,t)). This formula can be factored into the first three geometric formulas in Figure 2. Kleening
the second formula results in ¬#A⊕ (A⊗¬#B). Radicalization results in Ae⊕ (At⊗Be). This
formula can be factored into the last two formulas in Figure 2.

We try to refute the set of formulas using algorithm St. We start with interpretation (E0,M0),
defined by E0 = {} and M0 = {}. Since the example is propositional, we will ignore the ground
substitutions. All formulas are true in (E0,M0), except for the last two formulas Ae ⊕ At and
Ae ⊕Be.

Both formulas are not in conflict with (E0,M0). In the formula Ae⊕At, both atoms Ae and
At are false in (E0,M0) but not in conflict with (E0,M0). We have (E0,M0) ⇒Ae (E0,M0 ∪
{Ae}), and (E0,M0)⇒At (E0,M0 ∪ {At}).

We continue search with (E1,M1) = ({}, {Ae}). Now the first formula Af ,t is false in
(E1,M1) and it is in conflict with (E1,M1).

We backtrack and enter the other branch, which results in (E2,M2) = ({}, {At}). All for-
mulas are true in (E2,M2), except for the last formula Ae ⊕Be.

Atom Ae is in conflict with (E2,M2). The other atom Be is false in (E2,M2), but not in
conflict. We have (E2,M2)⇒Be (E2,M2 ∪ {Be}).

The resulting interpretation is (E3,M3) = ({}, {At, Be}). Now the second clause Af ⊕ Bf ,t

is false in (E3,M3), and it is in conflict with (E3,M3).

Since we have exhausted all possibilities, we have shown that the set of formulas is unsatis-
fiable.

This completes the discussion of the search algorithm. In its present form, the algorithm is
extremely inefficient, which mostly due to the fact that it backtracks through all elements of
E whenever it encounters an existential quantifier. In order to overcome these problems, the
calculus has been extended with lemma learning. Details can be found in [7]. Experiments with
the two-valued version of classical logic ([16]) have shown that by using learning, it is possible
to obtain a practical calculus.
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Figure 3: Rewriting into Geometric Formulas

A⊕ (B ⊗ C) ⇒ (A⊕B)⊗ (A⊕ C)
(A⊗B)⊕ C ⇒ (A⊕ C)⊗ (B ⊕ C)

(Πx P [x])⊕A ⇒ Πx (P [x]⊕A)
A⊕Πx P [x] ⇒ Πx (A⊕ P [x])
Πx (P [x]⊗Q[x]) ⇒ (Πx P [x])⊗ (Πx Q[x])

4 Flattening

It remains to show that sequents consisting of radicalized formulas can be transformed into
sequents of geometric formulas. The transformation is mostly straightforward, and similar
to standard transformations to clauses. (See [15]) The main difference is that, in order to
obtain geometric formulas, function symbols have to be replaced by relation symbols. The
transformations used in [1, 8] can be adopted without difficulty.

Definition 4.1. We assume a mapping that maps every n-arity function symbol f to a unique
(n+ 1)-arity predicate symbol F .

Let A be a Kleene formula that is in NNF and radicalized. An anti-Skolemization of A is a
formula that is the result of making the following replacement as long as A contains functional
terms:

Select a functional term f(x1, . . . , xn) in which all x1, . . . , xn are variables. Such a term
necessarily exists. It is possible that n = 0.

Write A in the form A[ B[ f(x1, . . . , xn) ] ], where B is a subformula of A that contains at
least one of the occurrences of f(x1, . . . , xn). Replace A[ B[ f(x1, . . . , xn) ] ] by
A[ Πz F f ,e(x1, . . . , xn, z)⊕B[z] ].

After anti-Skolemization we almost have geometric logic. First rewrite the formulas, using
the rewrite rules in Figure 3. If a formula has form A⊗B, then it can be replaced by A and B
seperately.

As long as one of the sequents contains a formula A that contains an existentially quantified
subformula Σy P [y] for which P [y] is not a geometric atom or does not contain y, write A in
the form A[ Σy P [x1, . . . , xn, y] ], where x1, . . . , xn are the other free variables of P. Replace
A[ Σy P [x1, . . . , xn, y] ] by A[ Σy pt(x1, . . . , xn, y) ] and Πx1 · · ·xn Πy pf ,e(x1, . . . , xn, y) ⊕
P [x1, . . . , xn, y], using a new predicate symbol p.

Now every formula has form Πx (A1 ⊕ · · · ⊕ Ap), where x is a set of variables, and each
element of A has one of the following five forms: (1) A geometric atom. (See Definition 3.1),
(2) a negative equality x1 6≈ x2 with x1, x2 ∈ x, (3) a positive equality of form x ≈ x with
x ∈ x, (Positive equalities with distinct variables are geometric atoms) (4) ⊥, or (5) >. For
each of these possibilities, we proceed as follows: If x ≈ x or > occurs among the Ai, then the
formula can be completely removed. If one of the Ai has form ⊥ or x 6≈ x, then Ai can be
removed from the formula. If one of the Ai is a negative equality of form x1 6≈ x2 with x1 6= x2,
it can be substituted away. The result is:

Πx\{x2} A1[x1 := x2]⊕ · · · ⊕Ai−1[x1 := x2]⊕Ai+1[x1 := x2]⊕ · · · ⊕An[x1 := x2].

When this procedure is finished, all formulas are geometric.
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Example 4.2. Consider the sequent

∀x #N(x)
N(0)
∀x N(x)→ N(s(x))
¬N(s(s(0)))

 ` ⊥
The sequent contains two function symbols 0 and s. In order to translate it into geometric
format, we introduce a predicate symbol Z with arity 1 and a predicate symbol S with arity 2.
The result is

Σy Zt(y)
Πx Σy St(x, y)

Πx Nf ,t(x)
Πz Zf ,e(z)⊕Nt(z)
Πxz Sf ,e(x, z)⊕Nf (x)⊕Nt(z)
Πz1z2z3 Zf ,e(z1)⊕ Sf ,e(z1, z2)⊕ Sf ,e(z2, z3)⊕Nf (z3)


` ⊥

5 Conclusions

We have introduced a theorem proving procedure for PCL, that is based on geometric logic.
We chose geometric logic, partially because we are used to it, and partially because we expect
that it can be tuned to terminate on sequents that originate from type checking conditions.
Experiments with Geo (an implementation of two-valued, geometric logic), have shown that
geometric logic is good at terminating on unprovable goals ([16]), and reasonably good at
proving goals. Although geometric logic for Kleene logic is more complicated than geometric
logic for two-valued logic, it is not fundamentally different. Because of this, we expect no
difficulties implementing it.
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International Joint Conference on Automated Reasoning (IJCAR) 2010, volume 6173 of LNAI,
pages 203–217. Springer Verlag, 2010.

[7] Hans de Nivelle. Theorem proving for classical logic with partial functions by reduction to Kleene
logic. Journal of Logic and Computation, pages 1–49?, 2014? (accepted for publication, a preprint
can be obtained from www.ii.uni.wroc.pl/~nivelle/publications/.

85

www.ii.uni.wroc.pl/~nivelle/publications/


Theorem Proving for Logic with Partial Functions H. de Nivelle

[8] Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure based on finite model
search. In John Harrison, Ulrich Furbach, and Natarajan Shankar, editors, International Joint
Conference on Automated Reasoning 2006, volume 4130 of Lecture Notes in Artificial Intelligence,
pages 303–317, Seattle, USA, August 2006. Springer.

[9] William M. Farmer. Mechanizing the traditional approach to partial functions. In W. Farmer,
M. Kerber, and M. Kohlhase, editors, Proceedings of the Workshop on the Mechanization of Partial
Functions (associated to CADE 13), pages 27–32, 1996.
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