
Kalpa Publications in Computing
Volume 3, 2017, Pages 81–88

RV-CuBES 2017. An International Workshop on
Competitions, Usability, Benchmarks, Evaluation,
and Standardisation for Runtime Verification Tools

Event Stream Processing with BeepBeep 3
Sylvain Hallé and Raphaël Khoury

Laboratoire d’informatique formelle
Université du Québec à Chicoutimi, Canada

Abstract
This paper is a short introduction to the BeepBeep 3 event stream processor. It

highlights the main design decisions that informed its development, and the features that
distinguish it from other Runtime Verification tools.

1 Introduction
This paper is a very brief introduction to the BeepBeep 3 event stream processing engine.
Although BeepBeep can be used as a Runtime Verification (RV) tool, many of its features extend
beyond classical RV, and borrow from the related field of Complex Event Processing (CEP).
A recent tutorial highlights the similarities and differences between these two domains, and
illustrates how BeepBeep 3 straddles the line that separates them [10].

Version 1 of BeepBeep was developed from 2008 to 2013 and has been the subject of numerous
papers and case studies [17–19, 23]. The main distinguishing point of this first version was
the handling of complex events with a nested structure (such as XML documents), and an
input language extending propositional Linear Temporal Logic with XML path expressions and
first-order quantifiers. BeepBeep 1 is no longer under active development and is considered
obsolete for all practical purposes. Version 2 was an attempt at implementing the same concepts
as BeepBeep 3, which has been scrapped at an early stage of development and was never officially
released. One can hence consider BeepBeep 3 as the second “real” incarnation of BeepBeep. It
benefits from a complete redesign of the platform, which includes and significantly extends most
of the 1.x features.

BeepBeep 3 has been under development since 2014, and is still actively maintained and
extended. It is freely available online under the GNU Lesser General Public License.1 Its online
code repository lists a total of more than 350 commits over a two-year span. In addition to the
aforementioned tutorial, several research papers have already covered various aspects of the
tool’s design [9, 12–15]. For detailed information about BeepBeep, including an extensive review
of related work and numerous examples, the reader is referred to a recent technical report [11]
and to BeepBeep’s online documentation.

1http://liflab.github.io/beepbeep-3

G. Reger and K. Havelund (eds.), RV-CuBES 2017 (Kalpa Publications in Computing, vol. 3), pp. 81–88

http://liflab.github.io/beepbeep-3


Event Stream Processing with BeepBeep 3 Sylvain Hallé and Raphaël Khoury

n

→

→

→

+

→

→

→

→

UI

→

→

Figure 1: A simple composition of processors, represented graphically

2 Related Work
Current event processing tools and techniques can roughly be divided into two groups. The first
group of software originates from the database community, and includes tools like Cayuga [3],
Borealis [1], TelegraphCQ [4], Esper2, LINQ3, VoltDB4 and StreamBase SQL5. While their
input languages vary, most can best be seen as special cases of database query languages, with
added support for computation of aggregate functions (average, minimum, etc.) over sliding
windows of events (e.g. all events of the last minute). The second group of software, while not
labelled specifically as such, comes from the runtime verification community. Indeed, runtime
monitors such as BeepBeep, JavaMOP [21], LARVA [5], Tracematches [2], J-Lo [22], PQL [20],
PTQL [8], SpoX [6] and PoET [7] are designed with the purpose of detecting violations of some
sequential pattern of events generated by a system in realtime.

It was observed in earlier work [16] that these two classes of systems have complementary
strengths. The handling of aggregate functions over events provided by CEP tools is notably
lacking in virtually all existing runtime monitors. Conversely, monitors generally allow the
expression of intricate sequential relationships between events, using finite-state automata or
temporal languages, that go far beyond CEP’s traditional capabilities.

3 Design Decisions
BeepBeep aims at reconciling Complex Event Processing and Runtime Verification into a
uniform, consistent and expressive query language for event streams. Its current architecture is
the result of conscious design decisions, which have informed the development of the tool since
the beginning. We list below a few of the most important decisions.

3.1 Focus on composition and modularity
The most important design decision relates to the way properties are being evaluated on an
input trace. Traditionally, RV tools (including BeepBeep 1) start from a specification language,
and implement a generic algorithm that can evaluate an expression from this language on a
given input trace. Instead, BeepBeep 3 divides the computation of a result on an input trace
into simple units, called processors.6 Roughly speaking, processors transform an input trace
into another output trace. The desired result is obtained by composing (i.e. piping) the outputs
of a processor into the inputs of another, possibly forming a complex chain.

2http://espertech.com
3http://msdn.microsoft.com/en-us/library/bb397926.aspx
4http://voltdb.com
5http://streambase.com
6Similar to the mathematical concept of transducer.

82

http://espertech.com
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://voltdb.com
http://streambase.com


Event Stream Processing with BeepBeep 3 Sylvain Hallé and Raphaël Khoury

The piping of processors can be represented graphically, as Figure 1 illustrates. In this case,
an input trace (of numbers) is duplicated into two copies; the first is sent as the first input of a
2:1 processor labelled “+”; the second is first sent to the decimation processor, whose output is
connected to the second input of “+”. The end result is that output event i will contain the
value ei + eni.

According to this modularity principle, BeepBeep is organized as a simple platform providing
the basic functionalities for creating and connecting processors and handling event buffers. The
rest of the architecture consists of a number of relatively independent, self-contained palettes,
each of which providing a toolbox of predefined processors focusing on a specific purpose. The
end result is a very modular system, where only the necessary palettes can be included by a
user, and where extensions unforeseen by the authors can easily be included in the system.

3.2 No single event type
Many existing RV and CEP tools assume a fixed structure for the events they process; in many
cases, these events are tuples, i.e. maps from names (strings) to scalar values (generally strings or
numbers). BeepBeep 1 already supported richer types of events, in the form of XML documents.
BeepBeep 3 further relaxes these restrictions, and can handle as events any descendent of Java’s
Object class. To this end, BeepBeep divides the processing of an event trace in two parts.

• Trace Manipulation Functions (TMF) are processing units that manipulate events without
accessing their content. A simple example of a TMF would be a processor that returns
every n-th event of an input trace, and discards the others. In such a case, the actual
content of each event is irrelevant.

• Event Manipulation Functions (EMF) are processing units that read or write data to/from
an individual event. Contrarily to TMFs, EMFs are specific to the type of event that is
being manipulated. BeepBeep includes EMFs to manipulate sets, XML documents, tuples,
and allows users to create their own functions for any special event object that needs to
be processed.

This separation between TMFs and EMFs presents the advantage of avoiding the “square
peg in a round hole” problem common to many other RV systems. Instead of trying to fit every
conceivable problem into the single available event type offered by the tool, BeepBeep allows
the user to choose the objects most appropriate for the situation, and use the corresponding
EMFs to access and manipulate their content. In the scenarios where BeepBeep has been used
so far, event types encountered include sets, bitmap images, two-dimensional arrays, XML
documents, Apache log entries, simple Booleans and numbers, Gnuplot input files, tuples,
and IP network packets. In contrast, TMFs are generally agnostic to the type of events they
manipulate. For example, the CountDecimate processor removes every n-th event from an input
stream, irrespective of what these events may be. In other words, TMFs can be considered as
polymorphic stream processors, as opposed to concrete type processors in EMFs.

3.3 No single input language
In the same way, BeepBeep does not impose a unique language to express the properties to be
verified on a trace. Rather, it offers multiple means of creating the desired chain of processors.
A first one is programmatically, by directly instantiating and connecting the Java objects
corresponding to each processor.

83



Event Stream Processing with BeepBeep 3 Sylvain Hallé and Raphaël Khoury

Fork f = new Fork(2);
FunctionProcessor sum =

new FunctionProcessor(Addition.instance);
CountDecimate decimate = new CountDecimate(n);
Connector.connect(fork, LEFT, sum, LEFT)

.connect(fork, RIGHT, decimate, INPUT)

.connect(decimate, OUTPUT, sum, RIGHT);

Figure 2: Java code creating the chain of processors corresponding to Figure 1.

For example, Figure 2 shows the Java code required to create the processor chain of Figure 1.
The first three lines create the three processors that appear in the figure: a Fork that duplicates
the input trace, a FunctionProcessor that computes the pairwise sum of its two inputs, and a
CountDecimate processor that keeps every n-th event (for some unspecified variable n). The
last instruction is a chained call to Connector’s static method connect(). It is responsible for
creating the “piping” between these processors, again following the illustration in Figure 1. For
example, the first (“LEFTmost”) output of the fork is connected to the first (“LEFTmost”) input
of sum. Similarly, the only OUTPUT of decimate is connected to the second (“RIGHTmost”) input
of decimate.

Another way of creating queries is by using BeepBeep’s query language, called the Event
Stream Query Language (eSQL). eSQL is the result of a careful process that went along with
the development of BeepBeep’s processors.

To this end, BeepBeep defines a top-level abstract class called Interpreter. When instanti-
ated, an interpreter is instructed to load a set of grammar rules in Backus-Naur Form (BNF),
generally from some internal text file. The interpreter must also be given a set of instances
of another class called Buildable. Such an object must implement two methods. The first,
appliesTo(), receives a node form a parse tree as an argument, and is expected to return true
if the handling of this node should be done by this instance of Buildable. The second method
is called build(). Its task is to push on the stack the object that is supposed to be built from
the current parse node. In order to do so, method build() most often needs to pop elements
from the stack that have been pushed by the previous action of other Buildable instances.

Equipped with a BNF grammar and a set of Buildable objects, the interpreter is now ready
to parse an expression contained in a text string. It first creates the parse tree corresponding
to that expression, according to the grammar that was loaded beforehand. The next step is
then to build and connect processor instances based on its contents. To this end, the interpreter
instantiates an empty stack of objects, and performs a postfix traversal of the parse tree, using
the Visitor design pattern. The end result is a set of processors that have been instantiated and
piped together through the traversal of a parse tree for a given expression. Once the processor
chain has been created, it is no different from any other group of processors created directly
with Java code.

As one can see, the eSQL grammar is entirely soft-coded. It is loaded at runtime from a
file, and the code for instantiating a chain of processors from a parse tree can be completely
overridden by the user. It allows eSQL to be extended, and ultimately re-designed from scratch,
to become a Domain-Specific Language (DSL).

84



Event Stream Processing with BeepBeep 3 Sylvain Hallé and Raphaël Khoury

3.4 Queries, not properties
Runtime Verification has mostly focused on the evaluation of properties, i.e. assertions that must
hold on a sequence of events. There do exist monitors whose specification language involves
advanced data computing capabilities (numerical aggregation functions, mostly), but they still
compute the answer to what is fundamentally a yes/no question. Yet, if one sees a monitor,
in the broader sense of the term, as a diagnostics tool for discovering and understanding bugs,
then it should provide the possibility to compute results beyond a single Boolean verdict.

In contrast, BeepBeep borrows from the field of Complex Event Processing, and generalizes
the concept of property by allowing the user to compute arbitrary queries on a trace of events.
The result of a query is not necessarily Boolean, and can be an output sequence of data elements
of an arbitrary type. Examples of queries detailed in BeepBeep’s latest technical report include
non-Boolean traces such as the average of a sequence of numerical values over a sliding window,
the detection of peaks in a numerical signal, and the generation of sets of tuples used to produce
two-dimensional plots [11].

4 A Few Use Cases
The current implementation of BeepBeep has been used in a variety of scenarios; which we
shortly describe two of them in the following.

4.1 Video Games
BeepBeep has been used to speed up the testing phase of a system, such as a video game under
development, by automating the detection of bugs when the game is being played [23]. We
take as an example the case of a game called Pingus, a clone of Psygnosis’ Lemmings game
series. The game is divided into levels populated with various kinds of obstacles, walls, and
gaps. Between 10 and 100 autonomous, penguin-like characters (the Pingus) progressively enter
the level from a trapdoor and start walking across the area. The player can give special abilities
to certain Pingus, allowing them to modify the landscape to create a walkable path to the goal.
For example, some Pingus can become Bashers and dig into the ground; others can become
Builders and construct a staircase to reach over a gap.

Equipped with processors for parsing XML events, as well as Linear Temporal Logic (LTL)
and first-order quantifiers, BeepBeep can be used to specify various properties about the expected
behaviour of each Pingu in a level. For example, one can make sure that a walking Pingu that
encounters a Blocker turns around and starts walking in the other direction. As a matter of
fact, this particular property has been the subject of a benchmark at the 2016 Competition on
Runtime Verification.

BeepBeep has been used to successfully monitor properties in a variety of video game types,
ranging from classical arcade games to first-person shooters and 2D platformers.

4.2 Signal Processing
The next scenario touches on the concept of ambient intelligence, which is a multidisciplinary
approach that consists of enhancing an environment (room, building, car, etc.) with technology
(e.g. infrared sensors, pressure mats, etc.), in order to build a system that makes decisions based
on real-time information and historical data to benefit the users within this environment. A
main challenge of ambient intelligence is activity recognition, which consists in raw data from
sensors, filter it, and then transform that into relevant information that can be associated with

85



Event Stream Processing with BeepBeep 3 Sylvain Hallé and Raphaël Khoury

a patient’s activities of daily living using Non-Intrusive Appliance Load Monitoring (NIALM).
Typically, the parameters considered are the voltage, the electric current and the power (active
and reactive). This produces a stream of power readings, where an event consists of a timestamp,
and numerical readings of each of the aforementioned electrical components.

The NIALM approach attempts to associate a device with a load signature extracted from
a single power meter installed at the main electrical panel. This signature is made of abrupt
variations in one or more components of the electrical signal, whose amplitude can be used to
determine which appliance is being turned on or off [12]. An example of query in this context
could be: “Produce a Toaster On event whenever a spike of 1,000 W is observed on Phase 1 and
the toaster is currently off.” This can be done through the use of processors for signal processing
(e.g. peak detection), mixed with finite-state machines and plain arithmetic functions.

5 The Road Ahead
BeepBeep’s goal is to occupy a currently vacant niche among event stream processing engines:
it lies somewhere in between low-level command line scripts for small trace crunching tasks, on
one end, and heavy distributed event processing platforms on the other. The variety of proposed
palettes, combined with a simple computational model, makes it suitable for the definition of
clean and readable processing chains at an appropriate level of abstraction. While top-notch
performance was not the first design goal, iin the use cases where it has been applied, BeepBeep
has shown “fast enough” performance: this means that it can evaluate the queries given to it, at
least as fast as the target system produces input events.

Rather than try to compete with commercial-grade platforms like Storm or Kinesis, BeepBeep
could best be viewed as a toolbox for creating expressive computations within these environments.
As a matter of fact, the development of (straightforward) adapters from BeepBeep to these
environments is currently under way.

Several research problems around BeepBeep’s concepts of processors and event streams are
also left unexplored. For example, BeepBeep currently does not support lazy evaluation; if the
output of an n-ary processor can be determined by looking at fewer than n inputs, all inputs
must still be computed and consumed. Implementing lazy evaluation in a stream processing
environment could provide some performance benefits, but is considered at the moment as a
non-trivial task.

Most importantly, it is hoped that BeepBeep’s palette architecture, combined with its simple
extension mechanisms, will help third-party users contribute to the BeepBeep ecosystem by
developing and distributing extensions suited to their own needs. More than a genuine runtime
monitor, BeepBeep should be seen as a platform that can accommodate a variety of monitoring
algorithms. Thanks to its generic architecture based on modularity and composition, existing
monitors could be encapsulated as special types of processors, and tap into BeepBeep’s broad
range of palettes for upstream and downstream event processing tasks. In time, it is hoped
that BeepBeep will be adopted as a modular framework under which multiple event processing
techniques can be developed and coexist, and that their potential for composition will make the
sum greater than its parts.

References
[1] Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lindner, W.,

Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design of the borealis
stream processing engine. In: CIDR. pp. 277–289 (2005)

86



Event Stream Processing with BeepBeep 3 Sylvain Hallé and Raphaël Khoury

[2] Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative runtime verification
with Tracematches. J. Log. Comput. 20(3), 707–723 (2010)

[3] Brenna, L., Gehrke, J., Hong, M., Johansen, D.: Distributed event stream processing with
non-deterministic finite automata. In: Gokhale, A.S., Schmidt, D.C. (eds.) DEBS. ACM (2009)

[4] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W.,
Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous
dataflow processing for an uncertain world. In: CIDR (2003)

[5] Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time Java programs
(tool paper). In: Seventh IEEE International Conference on Software Engineering and Formal
Methods (SEFM). pp. 33–37. IEEE Computer Society (November 2009)

[6] Erlingsson, Ú., Pistoia, M. (eds.): Proceedings of the 2008 Workshop on Programming Languages
and Analysis for Security, PLAS 2008, Tucson, AZ, USA, June 8, 2008. ACM (2008)

[7] Erlingsson, Ú., Schneider, F.B.: IRM enforcement of Java stack inspection. In: IEEE Symposium
on Security and Privacy. pp. 246–255 (2000)

[8] Goldsmith, S., O’Callahan, R., Aiken, A.: Relational queries over program traces. In: OOPSLA.
pp. 385–402 (2005)

[9] Hallé, S.: A declarative language interpreter for CEP. In: Kolb, J., Weber, B., Hallé, S., Mayer,
W., Ghose, A.K., Grossmann, G. (eds.) 19th IEEE International Enterprise Distributed Object
Computing Workshop, EDOC Workshops 2015, Adelaide, Australia, September 21-25, 2015. pp.
156–159. IEEE Computer Society (2015), http://dx.doi.org/10.1109/EDOCW.2015.19

[10] Hallé, S.: When RV meets CEP. In: Falcone, Y., Sánchez, C. (eds.) Runtime Verification - 16th
International Conference, RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings. Lecture
Notes in Computer Science, vol. 10012, pp. 68–91. Springer (2016), http://dx.doi.org/10.1007/
978-3-319-46982-9_6

[11] Hallé, S.: From complex event processing to simple event processing. CoRR abs/1702.08051 (2017),
http://arxiv.org/abs/1702.08051

[12] Hallé, S., Gaboury, S., Bouchard, B.: Activity recognition through complex event processing: First
findings. In: Bouchard, B., Giroux, S., Bouzouane, A., Gaboury, S. (eds.) Artificial Intelligence
Applied to Assistive Technologies and Smart Environments, Papers from the 2016 AAAI Workshop,
Phoenix, Arizona, USA, February 12, 2016. AAAI Workshops, vol. WS-16-01. AAAI Press (2016),
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12561

[13] Hallé, S., Gaboury, S., Bouchard, B.: Towards user activity recognition through energy usage
analysis and complex event processing. In: Proceedings of the 9th ACM International Conference
on PErvasive Technologies Related to Assistive Environments, PETRA 2016, Corfu Island, Greece,
June 29 - July 1, 2016. p. 3. ACM (2016), http://dl.acm.org/citation.cfm?id=2910707

[14] Hallé, S., Gaboury, S., Khoury, R.: A glue language for event stream processing. In: Joshi,
J., Karypis, G., Liu, L., Hu, X., Ak, R., Xia, Y., Xu, W., Sato, A., Rachuri, S., Ungar, L.H.,
Yu, P.S., Govindaraju, R., Suzumura, T. (eds.) 2016 IEEE International Conference on Big
Data, BigData 2016, Washington DC, USA, December 5-8, 2016. pp. 2384–2391. IEEE (2016),
http://dx.doi.org/10.1109/BigData.2016.7840873

[15] Hallé, S., Khoury, R.: Runtime monitoring of stream logic formulae. In: García-Alfaro, J., Kranakis,
E., Bonfante, G. (eds.) Foundations and Practice of Security - 8th International Symposium,
FPS 2015, Clermont-Ferrand, France, October 26-28, 2015, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 9482, pp. 251–258. Springer (2015), http://dx.doi.org/10.1007/
978-3-319-30303-1_15

[16] Hallé, S., Varvaressos, S.: A formalization of complex event stream processing. In: Reichert, M.,
Rinderle-Ma, S., Grossmann, G. (eds.) 18th IEEE International Enterprise Distributed Object
Computing Conference, EDOC 2014, Ulm, Germany, September 1-5, 2014. pp. 2–11. IEEE Computer
Society (2014), http://dx.doi.org/10.1109/EDOC.2014.12

[17] Hallé, S., Villemaire, R.: Runtime verification for the web - A tutorial introduction to interface

87

http://dx.doi.org/10.1109/EDOCW.2015.19
http://dx.doi.org/10.1007/978-3-319-46982-9_6
http://dx.doi.org/10.1007/978-3-319-46982-9_6
http://arxiv.org/abs/1702.08051
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12561
http://dl.acm.org/citation.cfm?id=2910707
http://dx.doi.org/10.1109/BigData.2016.7840873
http://dx.doi.org/10.1007/978-3-319-30303-1_15
http://dx.doi.org/10.1007/978-3-319-30303-1_15
http://dx.doi.org/10.1109/EDOC.2014.12


Event Stream Processing with BeepBeep 3 Sylvain Hallé and Raphaël Khoury

contracts in web applications. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K.,
Lee, I., Pace, G.J., Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Runtime Verification - First
International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings. Lecture
Notes in Computer Science, vol. 6418, pp. 106–121. Springer (2010), http://dx.doi.org/10.1007/
978-3-642-16612-9_10

[18] Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts with data. IEEE
Trans. Services Computing 5(2), 192–206 (2012), http://dx.doi.org/10.1109/TSC.2011.10

[19] Khoury, R., Hallé, S., Waldmann, O.: Execution trace analysis using LTL-FO+. In: Margaria,
T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation:
Discussion, Dissemination, Applications - 7th International Symposium, ISoLA 2016, Imperial,
Corfu, Greece, October 10-14, 2016, Proceedings, Part II. Lecture Notes in Computer Science, vol.
9953, pp. 356–362 (2016), http://dx.doi.org/10.1007/978-3-319-47169-3_26

[20] Martin, M.C., Livshits, V.B., Lam, M.S.: Finding application errors and security flaws using PQL:
a program query language. In: OOPSLA. pp. 365–383 (2005)

[21] Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP runtime
verification framework. International Journal on Software Techniques for Technology Transfer
(2011), to appear

[22] Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electr. Notes Theor. Comput. Sci.
144(4), 109–124 (2006)

[23] Varvaressos, S., Lavoie, K., Gaboury, S., Hallé, S.: Automated bug finding in video games: A
case study for runtime monitoring. Computers in Entertainment 15(1), 1:1–1:28 (2017), http:
//doi.acm.org/10.1145/2700529

88

http://dx.doi.org/10.1007/978-3-642-16612-9_10
http://dx.doi.org/10.1007/978-3-642-16612-9_10
http://dx.doi.org/10.1109/TSC.2011.10
http://dx.doi.org/10.1007/978-3-319-47169-3_26
http://doi.acm.org/10.1145/2700529
http://doi.acm.org/10.1145/2700529

	Introduction
	Related Work
	Design Decisions
	Focus on composition and modularity
	No single event type
	No single input language
	Queries, not properties

	A Few Use Cases
	Video Games
	Signal Processing

	The Road Ahead

