
A Comparison of Solvers for Propositional

Dynamic Logic

Ullrich Hustadt and Renate A. Schmidt

1 Department of Computer Science, University of Liverpool, Liverpool, UK
U.Hustadt@liverpool.ac.uk

2 School of Computer Science, The University of Manchester, UK
Renate.Schmidt@manchester.ac.uk

Abstract

Calculi for propositional dynamic logics have been investigated since the introduction
of this logic in the late seventies. Only in recent years have practical procedures been
suggested and implemented. In this paper, we compare three such systems, namely, the
Tableau Workbench by Abate, Goré, and Widmann (2009), the pdlProver system by Goré
and Widmann (2009), and the MLSolver system by Friedmann and Lange (2009).

1 Introduction

Propositional dynamic logic (PDL) is an expressive logic for reasoning about programs and
actions [7]. Initially intended for program verification, it has found applications in a wide range
of areas including verification of rule-based expert systems, synthesis of composite web services,
and the formalisation of multi-agent systems.

In recent years there has been renewed interest in PDL and, in particular, in complexity
optimal calculi and implementations of theorem provers for PDL [10, 13, 15]. The aim of this
paper is to investigate the effectiveness of the current generation of PDL decision procedures.
In particular, we are interested in evaluating two features recently introduced into such systems,
namely, caching and on-the-fly eventuality checking. To this end we introduce two classes of
benchmark formulae for PDL and test the performance of three implemented PDL decision
procedures on them.

In Section 2 we give a brief definition of the syntax and semantics of PDL. In Section 3 we
discuss the earliest decision procedures for PDL while in Section 4 we do the same for the most
recent efforts to develop efficient calculi and implemented systems. In Section 5 we then describe
two classes of benchmark formulae that we have used to compare these systems. Section 6
presents the results of benchmarking the Tableau Workbench, pdlProver, and MLSolver on
these two classes.

2 Propositional dynamic logic

The language of PDL is defined over a countable set AP = {p, q, . . .} of propositional variables
and a countable set AA = {a, b, c, . . .} of atomic actions. The connectives of PDL are the
Boolean connectives ¬, ∧, ∨, the dynamic logic connectives ∨, ; ∗, ?, and the modal operators
[] and 〈 〉.

The set F of formulae and A of action formulae are the smallest sets such that (i) AA ⊆ A,
AP ⊆ F, (ii) if ϕ and ψ are formulae in F and α and β are action formulae in A then ϕ?, α∗,
α∪β, α ;β are action formulae in A and ¬ϕ, ϕ∧ψ, [α]ϕ, and 〈α〉ϕ are formulae in F. Additional
connections including ⊤, ⊥, ∨, and → are defined as usual.

R.A. Schmidt, S. Schulz, B. Konev (eds.), PAAR-2010 (EPiC Series, vol. 9), pp. 63–73 63

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

The semantics of PDL is based on Kripke structures. A frame is a pair (W,R) where
W is a non-empty set of worlds and R is a function that maps each atomic action a to a
binary relation R(a) over W . A model (W,R, I) consists of a frame (W,R) together with an
interpretation function I that maps each propositional variable p to a set I(p) of worlds. The
functions R and I can then be extended to arbitrary action formulae and formulae as follows:

I(¬ϕ) =W − I(ϕ) I(ϕ ∧ ψ) = I(ϕ) ∩ I(ψ)

I([α]ϕ) = {w | ∀v ∈ W.(w, v) ∈ R(α) → v ∈ I(ϕ)}

I(〈α〉ϕ) = {w | ∃v ∈ W.(w, v) ∈ R(α) ∧ v ∈ I(ϕ)}

R(ϕ?) = {(w,w) |w ∈ I(ϕ)} R(α ∪ β) = R(α) ∪R(β)

R(α ;β) = {(w, v) | ∃u ∈ W.(w, u) ∈ R(α) ∧ (u, v) ∈ R(β)}

R(α∗) = {(w, v) | ∃n ∈ N∃u0, . . . , un ∈W.(u0 = w ∧ un = v ∧ ∀1 ≤ i ≤ n− 1.(ui, ui+1) ∈ R(α)}

Given a model (W,R, I) and a formula ϕ, we say ϕ is true at a world w ∈ W iff w ∈ I(ϕ). A
model (W,R, I) satisfies a formula ϕ iff I(ϕ) is non-empty. In this case we also say that ϕ is
satisfiable in (W,R, I). A formula ϕ is satisfiable iff there exists a model (W,R, I) satisfying ϕ.

As is described in more detail in the following two sections, given a formula ϕ, tableau-
based decision procedures for PDL try to build a representation of a model satisfying ϕ. Such a
representation can be viewed as a directed graph whose nodes represent worlds and whose edges
represent, and are labelled with, atomic actions linking two worlds. The nodes of the graph are
not just labelled with propositional variables, but are also labelled with PDL formulae. The
intended meaning is that each of the formulae labelling a node n is true at the world represented
by n. If two nodes n and n′ are connected via a directed edge from n to n′ labelled with an
atomic action a, then we say that n′ is a-reachable from n. Given the labelling of nodes and
edges, we can extend this notion of reachability to arbitrary action formulae.

A particular problem in the construction of a model graph are so-called eventualities. Even-
tualities are formulae of the form 〈α∗〉ϕ. Suppose a node n in the model graph is labelled with
an eventuality 〈α∗〉ϕ. In order for the graph to represent a model in which 〈α∗〉ϕ is true at the
world represented by n, we need a node n′ in the graph which is α-reachable from n and which
is labelled with the formula ϕ. In the absence of such a node our model will not adhere to the
truth conditions for 〈α∗〉ϕ as set out by the semantics of PDL. In such a situation, 〈α∗〉ϕ is
also called an unfulfilled eventuality. Detecting unfulfilled eventualities as early as possible in
the construction process is a key concern for PDL decision procedures.

3 Early PDL decision procedures

Decision procedures for the satisfiability problem for PDL were first presented by Fischer and
Ladner [7] and Pratt [16]. The satisfiability problem for PDL is EXPTIME-complete and
already the decision procedure by Pratt [16] was complexity optimal.

Pratt’s procedure proceeds in stages. Given a formula, in the first stage a directed graph is
constructed with each node being labelled with a set of (labelled) formulae. The construction
ensures that there are no two nodes with the same labelling set and that the number of nodes is
at most exponential in the size of the given formula. The graph represents a class of potential
models of the given formula, but may contain nodes and subgraphs which cannot occur in
a model, for example, nodes labelled with inconsistent sets of formulae or subgraphs with
unfulfilled eventualities. In subsequent stages these are deleted from the graph. The given
formula is satisfiable iff a non-empty graph remains after all necessary deletions have been

64

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

performed. The construction stage of the procedure can be completed in exponential time in
the size of the given formula, each deletion step requires polynomial time in the size of the
graph obtained from the construction stage, and there can be at most as many deletion stages
as there are nodes in the graph. Overall, this leads to an EXPTIME decision procedure.

Pratt’s method has drawbacks which make it impractical for a lot of applications. Most
importantly, the initial construction stage can lead to a structure of exponential size even if the
satisfiability or unsatisfiability of the given formula only depends on a small subgraph of the
whole structure. This means that by the time the procedure enters the second stage, and may
detect the satisfiability or unsatisfiability relatively quickly, exponential effort has already been
expended on the construction stage.

The tableau calculus for PDL and Converse PDL by De Giacomo and Massacci [6] aims to
address this problem. It uses a more traditional approach in which a tableau tree is constructed
and explored using depth-first, left-to-right search. Each branch of the tree represents a single
candidate model. Propositionally inconsistent sets of formulae are recognised immediately while
a check for unfulfilled eventualities is conducted as soon as the construction of a candidate model
is completed. This approach leads to a NEXPTIME algorithm. De Giacomo and Massacci
claim that storing the whole tableau tree, instead of just a branch, the re-use of tableau nodes
across different branches of the tableau, and an “on-the-fly” propagation of information about
unsatisfiable sets of formulae leads to an EXPTIME algorithm. In this approach a check
for fulfilled and unfulfilled eventualities is still necessary. Important details of this check are
however missing in [6].

4 Current PDL calculi and systems

An approach combining features of both Pratt’s procedure and De Giacomo and Massacci’s
tableau calculus is the on-the-fly tableau-based decision procedure by Abate, Goré and Wid-
mann [3]. The procedure constructs a tableau tree where nodes are not only labelled with
sets of formulae but also with so-called histories and variables. Histories are used to prevent
cyclic applications of the tableau rules. Variables pass information from child nodes to parent
nodes, in particular, information about the satisfiability status of a node and information about
unfulfilled eventualities. The rules of the calculus specify how the formula sets of child nodes
are computed from the formula set of a parent node as well as how the values of variables of
a parent node are computed from the values of the corresponding variables in its child nodes.
Side conditions on the rules ensure that no infinite branches are constructed thus ensuring
termination. Since branches can be at worst exponentially long, a tableau can be of double
exponential size. Overall, this results in a 2EXPTIME algorithm. The Tableau Workbench
(TWB) [1, 2] includes an implementation of a this algorithm.

In its tableau construction the procedure by Abate, Goré and Widmann is close to that
of De Giacomo and Massacci. However, an important difference between the two is the way
the check for unfulfilled eventualities is performed. In the tableau calculus of De Giacomo
and Massacci, this check can be performed as soon as the construction of one branch of the
tableau is completed. The check takes into account information from all the nodes in that
branch. If no unfulfilled eventualities are found (and none of the nodes is labelled with an
inconsistent set of formulae), then the candidate model associated with the branch is indeed
a model for the given PDL formula. However, if the check identifies an unfulfilled eventuality,
then the construction moves to an alternative branch of the tableau and another check for
unfulfilled eventualities takes place as soon as its construction is completed. Since branches
share nodes, this means that nodes will be considered again and again in consecutive checks.

65

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

In contrast, the tableau calculus of Abate, Goré, and Widmann uses information passed from
child nodes to parent nodes through variables in order to compute whether there are unfulfilled
eventualities. The advantage is that the computation is only done once for each node. However,
the disadvantage is that the computation can only take place when the information required
for the computation is available for all child nodes. This also includes the case where the child
nodes are generated by application of a β-rule, e.g., a rule performing a case distinction for a
disjunctive formula. Consequently, the value of the variable used for the check for unfulfilled
eventualities associated with the root node can potentially only be determined once the whole
tableau has been constructed. Thus, while the check for unfulfilled eventualities is not separated
into a separate stage of the procedure, the overall behaviour is quite similar to that of Pratt’s
procedure.

The PDL decision procedure by Goré and Widmann [13] deviates from the classical tableau
approach by constructing an and-or graph instead of a tree. Again nodes are labelled by sets of
formulae plus additional attributes recording the satisfiability status of a node, information on
which eventualities present in the set of formulae associated with the node have been expanded
in the node, and which nodes might potentially be used to fulfil each of the eventualities. The
construction process ensures that there are no two nodes with the same set of formulae and the
same set of eventualities expanded in the node. That is, whenever the application of a tableau
rule generates a set of formulae and set of expanded eventualities already present in the graph,
the corresponding node is re-used, a technique also called caching. As there are at worst an
exponential number of distinct sets of formulae and sets of eventualities generated by the tableau
rules, the size of the and-or graph is at worst exponential. Just as in the tableau-based decision
procedure by Abate, Goré and Widmann [3] the value of the attributes for the satisfiability
status of a node and for the information which nodes might potentially be used to fulfil each
of the eventualities are computed taking into account information on its successor nodes. The
way in which this information is computed appears to differ in that an unsatisfiable status is
propagated earlier, but there is no detailed description of the process in [13]. The overall result
is an EXPTIME decision procedure. The pdlProver system [12] provides an implementation of
that procedure.

LoTREC 2.0 [11, 17] is a generic tableau-based system for building models of formulae in
modal and description logics. It includes a module for PDL, however, it cannot be used as a
‘black-box’ decision procedure like the other systems and is consequently not included in our
comparison.

Finally, Friedmann and Lange [10] have proposed a platform for satisfiability checking for
various modal fixpoint logics, including PDL. Given a formula their approach generates a parity
game as a product of a tableau for the formula and a deterministic automaton recognising ‘bad
branches’ in the tableau. The satisfiability of the formula is then determined by solving the
parity game. A generator for these parity games and a solver for them are implemented in the
MLSolver system [8] and the PGSolver [9] system, respectively.

5 Benchmark formulae for PDL

Benchmarking implemented systems for non-classical logics is not easy. The number of non-
classical logics far outstrips the number of available implemented decision procedures. While
each logic is usually reasonably well-motivated by potential applications, the lack of imple-
mented systems usually means that there is no motivation to formalise a large number of
problems in one of these logics. Commonly, all one can find is a small number of illustrative
formalisations of problems. In the worst case, all one can find is an axiomatisation of the logic

66

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

which allows one to use instances of the axioms to be used as test cases for an implemented
decision procedure. Neither illustrative formalisations nor instances of axioms typically turn
out to be particularly challenging and do not allow us to infer much about the properties of the
implemented systems.

As an alternative to using real world problems, Balsiger, Heuerding, and Schwendimann [5]
suggested the use of synthetic benchmarks consisting of sets of scalable formulae. The selection
of suitable benchmarks was supposed to be guided by the following principles: (i) the benchmark
sets should contain provable as well as non-provable formulae; (ii) the benchmark sets should
vary in structure; (iii) some of the benchmark sets should be hard enough for future decision
procedures; (iv) for each formula the satisfiability status should be known; (v) simple ‘tricks
should not help to solve the formulae; (vi) a ‘complete test’ should be possible in reasonable
time; and (vii) it should be possible to concisely summarise the benchmarking results.

In particular, for each of the modal logics K, KT, and S4 they proposed nine sets of scalable
satisfiable formulae and nine sets of scalable unsatisfiable formulae. These benchmark sets were
used in a comparison of decision procedures for modal logics conducted in conjunction with the
TABLEAUX conference in 1998 [4]. Based on the benchmark results obtained by the various
systems at the time, it appears that the benchmark sets have shortcomings regarding the three
most important of the seven principles, namely, (iii), (v), and (vii). In particular, it turned
out that most of the 18 sets of benchmark formulae were easily solvable. The reason seemed
to be that these benchmark formulae were amenable to techniques like Boolean constraint
propagation, non-chronological backtracking or the use of proof methods not based on tableau
calculi, e.g., translation methods and resolution methods. A few benchmark sets were hard for
all the systems involved, for example, pigeon hole formulae disguised by adding occurrences of
modal operators. Pigeon hole formulae are known to possess only exponential length refutation
in most calculi and obtaining shorter proofs requires conceptually different methods, e.g., the use
of cutting plane proof methods. Another problem is that while the results of performance tests
for the eighteen classes can be easily summarised, there is no sufficiently fine-grained metric,
which one could use to say that one system performs better than another. In general, given the
number of benchmark sets the most likely situation is that a system performs slightly better
on some and slightly worse on others. For example, in 1998 none of the systems participating
in the comparison outperformed all others on all benchmarks sets.

A consequence of these problems is that these benchmark formulae do not provide a moti-
vation for developers of modal theorem provers to further improve their systems. If the system
is already reasonably well-developed, then it will solve most of the benchmark formulae eas-
ily. Those that remain hard seem to require other methods than the automata, tableau, or
resolution methods that most modal theorem provers are based on.

In [14], we have proposed an alternative benchmarking approach, called scientific bench-

marking or hypothesis-driven benchmarking. In this approach benchmark problems are chosen
to verify a particular hypothesis concerning the decision procedures under consideration.

In the following, we want to test two hypotheses for the PDL solvers TWB, pdlProver and
MLSolver. The first hypothesis concerns the type of formulae for which the re-use of nodes in
a tableau construction is advantageous. This should be the case if the number of distinct nodes
in a tableau is rather small, but without caching the tableau would still be rather large. The
second hypothesis concerns the drawbacks of the two stage approaches or approaches which can
only determine the satisfiability of a formula once a tableau has been fully explored.

To test these hypotheses, we re-use two classes of benchmark formulae originally introduced
for propositional linear time temporal logic (PLTL) in [14], but reformulated for PDL. The first

67

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

class, C1
PDL, consists of formulae of the form

[a∗]〈a〉⊤ ∧ [a∗]([a]L1
1 ∨ . . . ∨ [a]L1

k
) ∧ . . . ∧ [a∗]([a]Lℓ

1 ∨ . . . ∨ [a]Lℓ

k
)

∧ [a∗](¬p1 ∨ 〈a∗〉p2) ∧ [a∗](¬p2 ∨ 〈a∗〉p3) ∧ . . . ∧ [a∗](¬pn ∨ 〈a∗〉p1),

while the second class, C2
PDL , consists of formulae of the form

[a∗]〈a〉⊤ ∧ (r1 ∨ L
1
1 ∨ . . . ∨ L

1
k
) ∧ . . . ∧ (r1 ∨ L

ℓ
1 ∨ . . . ∨ L

ℓ

k
) ∧ (¬r1 ∨ q1)

∧ (¬r1 ∨ ¬qn) ∧ [a∗](¬rn ∨ [a]r1) ∧ [a∗](¬rn−1 ∨ [a]rn) ∧ . . . ∧ [a∗](¬r1 ∨ [a]r2)
∧ [a∗](¬rn ∨ [a]¬qn) ∧ . . . ∧ [a∗](¬r1 ∨ [a]¬qn) ∧ [a∗](¬q1 ∨ 〈a∗〉s2)
∧ [a∗](¬s2 ∨ q2 ∨ [a]qn ∨ . . . ∨ [a]q3) ∧ . . . ∧ [a∗](¬qn−1 ∨ 〈a∗〉sn) ∧ [a∗](¬sn ∨ qn).

For benchmarking purposes, the Li
1, . . . , L

i

k
are propositional literals generated by choosing

k distinct variables randomly from a set {p1, . . . , pn} of n propositional variables and by de-
termining the polarity of each literal with probability p. The remainder of each formula only
depends on the parameter n. To use these formulae for benchmarking purposes we fix the
parameters k, n and p. Then, for each of the values of ℓ between 1 and 8n we have generated
a test set of 100 formulae, which are tested for satisfiability using the various systems under
consideration. Similar to random kSAT formulae, formulae in C1

PDL and C2
PDL are likely to be

satisfiable if the number ℓ is small and likely to be unsatisfiable if ℓ is large.

Most of the observations made in [14] about the corresponding PLTL formulae carry over to
their PDL counterparts. For example, if a formula in C1

PDL is satisfiable, then it is satisfiable in
a model with just n worlds. If a formula in C2

PDL is satisfiable, then it is satisfiable in a model
with just one world and r1 has to be false at that world.

Given these model-theoretic insights about the formulae, their satisfiability is relatively
easy to check, in particular, they are as easy to solve as propositional kSAT formulae over
n propositional variables. But the classes are constructed in such a way that PDL decision
procedures, which have to rely on proof-theoretic means, find them challenging.

In the case of C1
PDL, each formula ϕ1 in it imposes a uniform set of constraints on all worlds

of a model which gives little guidance in the search for a satisfying model. Furthermore, if the
propositional formula (L1

1 ∨ . . .∨L
1
k
)∧ . . .∧ (Lℓ

1 ∨ . . .∨L
ℓ

k
) is satisfiable, then potentially every

sequence of satisfying truth assignments for this formula could be a model M1 of ϕ1. Only
when we check whether all eventualities 〈a∗〉pi are satisfied within M1 will we know that our
search for a model has been successful. We thus expect that naive tableau-based systems and
systems, which like Pratt’s method only perform an eventuality check after some exhaustive
search for candidate models, will perform poorly. On the other hand, decision procedures which
use caching should be able to take advantage of the small number of distinct truth assignments
that exist for p1, . . . , pn.

The class C2
PDL is meant to illustrate how quickly a tableau-based system can find a model

for a formula provided it makes the right choices for disjunctive formulae and how efficiently
it can recover from making the wrong choices. Decision procedures which use a two stage
approach or which can only determine the satisfiability of a formula once a tableau has been
fully explored will always consider the part of the tableau on which the propositional variable
r1 is true. However, constructing this part of the tableau is computationally costly and fruitless
as no model can be constructed in which r1 is true. In contrast, a decision procedure which
can test candidate models one by one, and happens to first consider models in which r1 is false,
will quickly find a model for satisfiable formulae in this class. For unsatisfiable formulae we do
not expect to see a significant difference between the two types of decision procedures as both
would need to consider the two cases of r1 being true and r1 being false.

68

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

C1
PDL (n=5,k=3,p=0.5) C2

PDL (n=5,k=3,p=0.5)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

Ratio l over n

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

Ratio l over n

Figure 1: Satisfiability of formulae in C1
PDL and C2

PDL

The class can also be used to illustrate problems with transferring variable selection heuris-
tics used in SAT solvers to more complex logics. Commonly used heuristics select the variable
with the highest number of occurrences first. In C2

PDL this is the variable r1. If in addition, the
first truth assignment used is the one which maximises the number of clauses that are satisfied,
then r1 will be made true first. The fallacy here is to focus solely on a Boolean abstraction
of a modal formula. This ignores that in modal logics not all indecomposable subformulae are
‘equal’.

6 Benchmarking results

We conducted the benchmarks with the Tableau Workbench, pdlProver and MLSolver on
the two classes C1

PDL and C2
PDL. The benchmarks were performed on PCs with Intel Core 2

Duo E6400 CPU @ 2.13GHz with 3GB main memory using Fedora 11. For each individual
satisfiability test a time-limit of 1000 CPU seconds was used.

In all experiments, for both classes, the parameters k, n and p were fixed to 3, 5, and
0.5, respectively. Remember that the satisfiability problem of propositional 2SAT formula is
solvable in polynomial time. So, for k = 2, the satisfiability problem of C1

PDL and C2
PDL is

also solvable in polynomial time and k = 3 is the minimal value for k that ensures that the
satisfiability problem of C1

PDL and C2
PDL is NP-complete. The particular choice of p means that

the randomly generated literals in our formulae have an equal probability of being positive or
negative. Regarding the parameter n, the number of propositional variables we can use in our
formulae, note that for n = 3 there is only one way of choosing k = 3 distinct propositional
variables. For n = 5 there are ten different ways of choosing three distinct propositional
variables, which in turn allows us to build a sufficiently large number of distinct formulae for
our experiments.

Figure 1 shows the percentage of satisfiable formulae in C1
PDL and C2

PDL for these parameter
values. For C1

PDL we see that for ratios ℓ/n smaller than 2 almost all formulae are satisfiable
while for ratios ℓ/n greater than 5 almost all formulae are unsatisfiable. For ratios ℓ/n between
2 and 5 we see a phase transition in the satisfiability of formulae. For a ratio ℓ/n equal to 3.4
half the formulae are satisfiable. For C2

PDL we see that for ratios ℓ/n smaller than 3.5 almost all

69

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

formulae are satisfiable and only for ℓ/n greater than 8.0 almost all formulae are unsatisfiable.
Here, for the ratio ℓ/n equal to 5.7 half of the formulae are satisfiable.

Figure 2 shows the median CPU time graphs for all three procedures on C1
PDL and C2

PDL.
In each graph the vertical line indicates the ratio ℓ/n at which test sets contain 50% satisfiable
and 50% unsatisfiable formulae.

As can be seen in Figure 2, C1
PDL separates pdlProver, the only system which uses caching,

from the other two. As suggested, caching allows a prover to take advantage of the uniformity
of the constraints imposed on the worlds of a model by formulae in C1

PDL. Thus, the good
performance of pdlProver on this class was predictable. The absence of similar optimisations in
the PDL module of the Tableau Workbench and in MLSolver are the most likely explanation
for their poor performance. However, even then one might have expected both systems to be
able to solve formulae in C1

PDL with ℓ/n > 6, which are almost all unsatisfiable and have a very
constrained and limited search space for models.

For C2
PDL the ideal system has negligible median runtime for ℓ/n < 5.7, as up to this point

the majority of formulae is satisfiable and a model for a satisfiable formula can easily be found.
Only pdlProver could be ‘guided’ to behave in the expected way (by inputting formulae in the
‘right’ form, that is, exactly the form given on page 68; changing the order of conjuncts or the
order of disjuncts within each conjunction seems to lead to worse results) and to make the right
choices in the model construction up to ℓ/n ≤ 5.4 that is almost ‘optimal’. In contrast, the
Tableau Workbench and MLSolver fail to show a similar behaviour. For MLSolver we also
observe a marked difference between C1

PDL and C2
PDL. While for C1

PDL MLSolver was able to
solve the majority of formulae for each ratio ℓ/n, on C2

PDL the opposite is true and it solved not
a single formula in this class. On both classes the behaviour of the Tableau Workbench and
MLSolver is as expected.

Figure 3 shows the CPU time percentile graphs for the three systems on C1
PDL and C2

PDL.
The graphs provide additional insight into their behaviour. The x-axis indicates the ratio ℓ/n
as in previous figures. The y-axis indicates the percentile, from 10th percentile up to the
100th percentile. The 50th percentile corresponds to the median shown in Figure 2. The z-
axis indicates the CPU time. In particular, for MLSolver and pdlProver the graphs confirm
our expectations. As a two stage procedure, the performance of MLSolver does not greatly

C1
PDL (n=5,k=3,p=0.5) C2

PDL (n=5,k=3,p=0.5)

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of l over n

TWB (PDL module)
pdlProver

MLSolver

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of l over n

TWB (PDL module)
pdlProver

MLSolver

Figure 2: Performance of the decision procedures

70

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

C1
PDL (n=5,k=3,p=0.5) C2

PDL (n=5,k=3,p=0.5)

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

TWB (PDL module)

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

TWB (PDL module)

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

pdlProver

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

pdlProver

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

MLSolver

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

 0 1 2 3 4 5 6 7 8

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

MLSolver

 990

 995

 1000

 1005

 1010

Figure 3: CPU time percentile graphs

depend on whether a formula is satisfiable or unsatisfiable. Similarly, for pdlProver on C1
PDL,

there is little variation in the performance of the system. However, caching allows pdlProver to
perform much better than MLSolver. In contrast, on C2

PDL the performance of pdlProver is
closely related to whether a formula is satisfiable or not. We clearly see that in Figure 3 that as
the percentage of unsatisfiable formulae increases so does the percentage of formulae for which
pdlProver needs non-negligible time (more than 40 CPU seconds) to solve them.

Overall, pdlProver shows the best performance on these two classes of PDL formulae. The
experiments illustrate the importance of caching and of detecting satisfiability as early as pos-
sible. In addition, the experiments show that the two classes of benchmark formulae originally

71

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

devised for PLTL are also useful for ’black-box’ performance evaluations of PDL solvers.

7 Conclusion

In this paper we presented benchmarking results for three implemented system for the satis-
fiability problem in propositional dynamic logic following the hypothesis-driven benchmarking
methodology.

The benchmarks presented were intended to test two hypotheses for PDL solvers, namely,
(i) that caching is important to control the search space of a system, and (ii) that the possi-
bility of early detection of satisfiability is an essential feature of an efficient PDL solver. The
benchmark results seem to support the validity of both hypotheses.

An additional aim of the hypothesis-driven benchmarking methodology is to highlight
strengths and weaknesses of particular methods or systems and the benchmark results clearly
do so as well.

Finally, the benchmarking approach is intended to motivate implementers to improve their
systems. By using formulae for benchmarking whose satisfiability or unsatisfiability is far easier
to detect than the worst-case complexity of the satisfiability problem for PDL suggests, there
is little excuse for a system to perform badly on these.

References

[1] P. Abate and R. Goré. The Tableau Workbench (TWB). http://twb.rsise.anu.edu.au/.

[2] P. Abate and R. Goré. The Tableau Workbench. Electron. Notes Theor. Comput. Sci., 231:55–67,
2009.

[3] P. Abate, R. Goré, and F. Widmann. An on-the-fly tableau-based decision procedure for PDL-
satisfiability. Electr. Notes Theor. Comput. Sci., 231:191–209, 2009.

[4] P. Balsiger and A. Heuerding. Comparison of theorem provers for modal logics: Introduction
and summary. In Harrie de Swart, editor, Automated reasoning with analytic tableaux and re-
lated methods: international conference (TABLEAUX ’98), volume 1397 of LNAI, pages 25–26.
Springer, 1998.

[5] P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark method for the propositional
modal logics k, kt, s4. J. Autom. Reasoning, 24(3):297–317, 2000.

[6] G. De Giacomo and F. Massacci. Combining deduction and model checking into tableaux and
algorithms for converse-PDL. Info. and Comp., 162:117–137, 2000.

[7] M. J. Fischer and R. Ladner. Propositional dynamic logic of regular programs. J. Comp. and
System Sci., 18:194–211, 1979.

[8] O. Friedmann and M. Lange. MLSolver. http://www2.tcs.ifi.lmu.de/mlsolver/.

[9] O. Friedmann and M. Lange. PGSolver. http://www2.tcs.ifi.lmu.de/pgsolver/.

[10] O. Friedmann and M. Lange. A solver for modal fixpoint logics. In Prelim. Proc. M4M-6, pages
176–187. Roskilde University, Denmark, 2009.

[11] O. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREC: Logical tableaux research engineering
companion. In Proc. TABLEAUX’05, volume 3702 of LNAI, pages 318–322. Springer, 2005.

[12] R. Goré and F. Widmann. pdlProver. http://users.cecs.anu.edu.au/~rpg/PDLProvers/.

[13] R. Goré and F. Widmann. An optimal on-the-fly tableau-based decision procedure for PDL-
satisfiability. In Proc. CADE-22, volume 5663 of LNCS, pages 437–452, 2009.

[14] U. Hustadt and R. A. Schmidt. Scientific benchmarking with temporal logic decision procedures.
In Proc. KR2002, pages 533–544. Morgan Kaufmann, 2002.

72

http://twb.rsise.anu.edu.au/
http://www2.tcs.ifi.lmu.de/mlsolver/
http://www2.tcs.ifi.lmu.de/pgsolver/
http://users.cecs.anu.edu.au/~rpg/PDLProvers/

A Comparison of Solvers for Propositional Dynamic Logic Hustadt and Schmidt

[15] L. A. Nguyen and A. Szalas. Optimal tableau decision procedures for pdl. CoRR, abs/0904.0721,
2009.

[16] V. R. Pratt. A near-optiomal method for reasoning about actions. J. Comp. and System Sci.,
20:231–254, 1980.

[17] B. Said. LoTREC generic tableau prover. http://www.irit.fr/Lotrec/.

73

http://www.irit.fr/Lotrec/

	Introduction
	Propositional dynamic logic
	Early PDL decision procedures
	Current PDL calculi and systems
	Benchmark formulae for PDL
	Benchmarking results
	Conclusion

