
EPiC Series in Computing
Volume 51, 2017, Pages 11–15

ARCADE 2017. 1st International Workshop
on Automated Reasoning: Challenges, Appli-
cations, Directions, Exemplary Achievements

Making Automatic Theorem Provers more Versatile

Simon Cruanes

University of Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Abstract

We argue that automatic theorem provers should become more versatile and should
be able to tackle problems expressed in richer input formats. Salient research directions
include (i) developing tight combinations of SMT solvers and first-order provers; (ii) adding
better handling of theories in first-order provers; (iii) adding support for inductive proving;
(iv) adding support for user-defined theories and functions; and (v) bringing to the provers
some basic abilities to deal with logics beyond first-order, such as higher-order logic.

Much effort has been spent on developing Automatic Theorem Provers for first-order logic,
most notably with superposition [3,22,24], and Satisfiability Modulo Theories (SMT) [4,5,16].
Other domains of research have made extensive use of such automatic provers. Domains of
application include powering software verification tools such as F? [25] and Why3 [7]; discharging
proofs in proof assistants such as Isabelle/HOL with Sledgehammer [20] and TLAPS [13];
synthesizing functions from specifications [1]; etc. (see Voronkov’s study [26] for more details).

However, in many cases, the current technologies are limiting factors in their applications,
and need to be complemented by user intervention. In Why3, some proofs must be discharged
manually in Coq [14]; in ACL2, the user is expected to provide some inductive lemmas; in
Isabelle/HOL, Sledgehammer does not succeed in the majority of cases. Even SMT solvers,
very successful on ground problems, are often called on quantified formulas — where they are
incomplete — to express frame conditions or axiomatize theories they do not handle natively.
Automatic inductive provers do exist, but they are usually not good on general first-order logic
(a notable exception is CVC4 [21]).

Even then, some use cases involve formulas that lie completely outside the scope of all
existing systems. Sledgehammer needs to tackle problems containing higher-order formulas
(even constructs as basic as sets are represented by predicates α → bool), (co)datatypes (and
therefore (co)induction), polymorphic types, choice operators, etc. Because even state of the
art automatic provers are unable to process such rich problems, Sledgehammer relies on costly
encodings which tend to add a lot of overhead, making problems much harder. An equivalent
tool for Coq would, in addition, need to deal with dependent types, but many first-order provers
still do not support even simple types. In software verification, tools often need to perform
induction themselves, because the SMT solvers they call are unable to do so; and theorem
proving in higher-order logic is still very difficult to automate.

Therefore, we reckon that the limited scope of individual automatic proof systems is a critical
limitation to their applicability. However, the decades of theoretical research and practical
implementation, both in SMT and first-order theorem proving, should not be lost. Extending
the scope of existing provers and techniques should therefore be an important direction of

G. Reger and D. Traytel (eds.), ARCADE 2017 (EPiC Series in Computing, vol. 51), pp. 11–15



Making Automatic Theorem Provers more Versatile Simon Cruanes

research: it is more useful to have provers that are good on a wide range of problems, than
provers which are excellent for a narrow set of constructs that are not sufficiently expressive
for applications. We list a few salient scope extensions that are already required in many use
cases.

Handling Theories by Combining SMT and Superposition A part of the success of
SMT solvers in software and hardware verification is their reliable support for multiple theories,
such as arithmetic (for integers, rationals, reals), arrays, bitvectors, etc. First-order provers have
been historically more limited in this area. It is only in the last few years, with refinements
of hierarchic superposition [6], AVATAR [27], or Tableaux with constraints [23] that first-order
that some provers with support for arithmetic have appeared. In some cases, Superposition
provers can be used as SMT solvers [2]. A challenging, but rewarding, direction of research
should be to combine more tightly superposition-based provers — which have been dominating
FO logic — and SMT solvers. Such an endeavour should spark cooperation between the first-
order and SMT communities. Indeed, the former excel in quantified formulas with equality and
function symbols, whereas the latter are good on ground problems with theories but use heuristic
techniques for quantified formulas. Some already existing techniques for solving this problem
are AVATAR and hierarchic superposition, both implemented in theorem provers; additional
theoretical work include DPLL(Γ+T) [8] and speculative inferences [9], but it remains to be
seen whether practical implementations can be devised.

User-defined Theories with Deduction Modulo If a prover does not support a particular
theory, the user’s only recourse if generally to add (quantified) axioms. Each axiom can have
a significant impact on the search space, the number of formulas, and therefore on the time
needed to discharge a goal. In superposition, the axioms might interact with one another,
creating many clauses that do not contribute to refuting the goal; in SMT solvers with trigger-
based instantiation, each axiom can yield many ground formulas that will slow the solver down.
Some axioms, such as associativity and commutativity of a symbol, are known to be extremely
harmful to provers that lack specific mechanisms to handle them.

A solution to that issue might be Deduction Modulo [17], in which theories are specified
by a set of rewrite rules. The rewrite rules act on terms, but also on (atomic) formulas. For
example, the theory of typed sets can be encoded into rewrite rules such as x ∈ (A∪B) ; (x ∈
A ∨ x ∈ B); this helps solving proofs obligations stemming from the B method [12].

A related issue is that automated provers usually lack the notion of (recursive) defined func-
tion that is pervasively used in proof assistants or inductive theorem provers such as ACL2 [19].
Efficient processing of such functions is still beyond the reach of provers; deduction modulo and
rewriting might be a solution.

Induction Users of Sledgehammer might be surprised to realize that Sledgehammer cannot
show ∀x y : nat. x + y = y + x. Proof assistants such as Coq and Isabelle/HOL make heavy
use of datatypes and induction in their standard library as well as in many developments. In
hardware verification, because state spaces are huge, proving a property might involve finding
an inductive strengthening of the property, rather than exploring every state [10]. In software
verification, loop invariants or function invariants abound.

Still, to the best of our knowledge, the intersection of inductive provers and generalist
automatic provers contains only CVC4 [21]. The vast majority of automatic provers are unable
to perform even the simplest inductive proof. For simple induction, it suffices to generate
each case in some other tool and call the automatic prover on each case. However, it is often

12



Making Automatic Theorem Provers more Versatile Simon Cruanes

necessary to analyze why subgoals failed, to strengthen the property, and to produce and
prove intermediate lemmas [11, 19]. This can only be done from within the prover. Successful
automatic induction requires tight cooperation between the procedure that proves each case
(e.g., to show p(n) ⇒ p(n+1)) and the procedure responsible for applying the induction schema
in nested induction or to show intermediate lemmas. A classic example of such cooperation is
the Boyer-Moore waterfall [19].

Beyond First-order Logic First-order logic occupies a sweet spot between expressiveness
and computational properties — its semi-decidability, and the ability to rely on unification to
guide proofs. Alas, sometimes its expressiveness is not quite sufficient for the task at hand.
Properties involving sets, comprehensions, sums and integrals, as often expressed in proof as-
sistants, are difficult to express with first-order constructs. Sometimes, a single higher-order
formula is enough to prevent Sledgehammer from finding a proof.

Mixing terms and formulas is already possible in SMT solvers and in Vampire [18]. However,
higher-order provers have difficulties coping with the search space and perform poorly on first-
order logic, suggesting that there is room for improvement here. The Matryoshka project is an
ongoing effort to remediate to this issue, but it seems that going towards richer logics will likely
continue to be a challenge.

The Current Situation Some proof systems have been making progress in the directions
listed above, as hinted by the following (non-exhaustive) list:

CVC4 [4] is a comprehensive SMT solver, featuring many theories, including strings, bitvec-
tors, (co)datatypes, and floating point numbers; moreover, it can perform inductive rea-
soning on datatypes and generate inductive lemmas. It also performs quite well on first-
order logic and has been entering the arithmetic track of CASC; CVC4 is possibly the
most versatile automatic prover to date.

Vampire [22] has started participating in the SMT competition with good results, in addition
to its excellent results in most categories of CASC. It now supports arithmetic via an
extension of AVATAR, and boolean formulas occurring in terms.

Zipperposition [15] is our superposition prover, extended with integer linear arithmetic, de-
duction modulo, and inductive reasoning; we are currently implementing support for
higher-order logic.

References

[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. In Formal Methods in Computer-Aided Design (FMCAD), 2013, pages 1–8.
IEEE, 2013.

[2] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan Schulz. New results on
rewrite-based satisfiability procedures. ACM Transactions on Computational Logic (TOCL), 2009.

[3] Leo Bachmair and Harald Ganzinger. On Restrictions of Ordered Paramodulation with Simplifi-
cation. In Mark E. Stickel, editor, 10th International Conference on Automated Deduction, volume
449 of Lecture Notes in Computer Science, pages 427–441. Springer, 1990.

[4] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim
King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, CAV 2011, volume 6806 of LNCS, pages 171–177. Springer, 2011.

13



Making Automatic Theorem Provers more Versatile Simon Cruanes

[5] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting on demand in
SAT modulo theories. In International Conference on Logic for Programming Artificial Intelligence
and Reasoning, pages 512–526. Springer, 2006.

[6] Peter Baumgartner and Uwe Waldmann. Hierarchic superposition with weak abstraction. In
Automated Deduction–CADE-24. Springer, 2013.

[7] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Why3: Shep-
herd Your Herd of Provers. In Boogie 2011: First International Workshop on Intermediate Veri-
fication Languages, pages 53–64, Wroc law, Poland, August 2011.

[8] Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura. On deciding satisfiability
by DPLL(Γ+T) and unsound theorem proving. Proceedings of the Twenty-second International
Conference on Automated Deduction (CADE), pages 35–50, 2009.

[9] Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura. On deciding satisfiability
by theorem proving with speculative inferences. 2011.

[10] Aaron R Bradley. SAT-based model checking without unrolling. In International Workshop on
Verification, Model Checking, and Abstract Interpretation, pages 70–87. Springer, 2011.

[11] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, and Alan Smaill. Rippling:
A heuristic for guiding inductive proofs. Artificial Intelligence, 62(2):185 – 253, 1993.

[12] Guillaume Bury, David Delahaye, Damien Doligez, Pierre Halmagrand, and Olivier Hermant.
Automated Deduction in the B Set Theory using Typed Proof Search and Deduction Modulo. In
LPAR (short papers), pages 42–58, 2015.

[13] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. Verifying safety prop-
erties with the TLA+ proof system. In International Joint Conference on Automated Reasoning,
pages 142–148. Springer, 2010.

[14] The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr/.

[15] Simon Cruanes. Extending Superposition with Integer Arithmetic, Structural Induction, and Be-
yond. PhD thesis, École polytechnique, September 2015.

[16] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 4963 of Lecture Notes in Computer Science, chapter 24, pages 337–340. Springer, Berlin,
Heidelberg, 2008.

[17] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem Proving Modulo. Journal of
Automated Reasoning, 2003.

[18] Evgenii Kotelnikov, Laura Kovács, Giles Reger, and Andrei Voronkov. The Vampire and the
FOOL. In Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs,
pages 37–48. ACM, 2016.

[19] J Strother Moore and Claus-Peter Wirth. Automation of Mathematical Induction as part of the
History of Logic. arXiv preprint arXiv:1309.6226, 2013.

[20] Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience with Sledge-
hammer, a practical link between automatic and interactive theorem provers. In Geoff Sutcliffe,
Stephan Schulz, and Eugenia Ternovska, editors, IWIL 2010. EasyChair, 2012.

[21] Andrew Reynolds and Viktor Kuncak. Induction for SMT solvers. In Verification, Model Checking,
and Abstract Interpretation (VMCAI), 2015.

[22] Alexandre Riazanov and Andrei Voronkov. Vampire 1.1 (system description). In Proceedings of
the First International Joint Conference on Automated Reasoning, IJCAR ’01, pages 376–380,
London, UK, UK, 2001. Springer-Verlag.

[23] Philipp Rümmer. A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arith-
metic. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, volume 5330 of Lecture Notes in Computer Science, pages
274–289. Springer Berlin Heidelberg, 2008.

14

http://coq.inria.fr/


Making Automatic Theorem Provers more Versatile Simon Cruanes

[24] Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15, 2002.

[25] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean
Yang. Secure distributed programming with value-dependent types. In Manuel M. T. Chakravarty,
Zhenjiang Hu, and Olivier Danvy, editors, Proceeding of the 16th ACM SIGPLAN international
conference on Functional Programming, pages 266–278. ACM, 2011.

[26] Andrei Voronkov. Automated reasoning: Past story and new trends. In IJCAI, pages 1607–1612,
2003.

[27] Andrei Voronkov. AVATAR: the architecture for first-order theorem provers. In CAV 2014, pages
696–710, 2014.

15


