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Abstract

One of the most challenging problems faced by ecologists and other biological re-
searchers today is to analyze the massive amounts of data being collected by advanced
monitoring systems like camera traps, wireless sensor networks, high-frequency radio track-
ers, global positioning systems, and satellite tracking systems being used today. It has
become expensive, laborious, and time-consuming to analyze this huge data using man-
ual and traditional statistical techniques. Recent developments in the deep learning field
are showing promising results towards automating the analysis of these extremely large
datasets. The primary objective of this study was to test the capabilities of the state-of-
the-art deep learning architectures to detect birds in the webcam captured images. A total
of 10592 images were collected for this study from the Cornell Lab of Ornithology live
stream feeds situated in six unique locations in United States, Ecuador, New Zealand, and
Panama. To achieve the main objective of the study, we studied and evaluated two con-
volutional neural network object detection meta-architectures, single-shot detector (SSD)
and Faster R-CNN in combination with MobileNet-V2, ResNet50, ResNet101, ResNet152,
and Inception ResNet-V2 feature extractors. Through transfer learning, all the models
were initialized using weights pre-trained on the MS COCO (Microsoft Common Objects
in Context) dataset provided by TensorFlow 2 object detection API. The Faster R-CNN
model coupled with ResNet152 outperformed all other models with a mean average preci-
sion of 92.3%. However, the SSD model with the MobileNet-V2 feature extraction network
achieved the lowest inference time (110ms) and the smallest memory capacity (30.5MB)
compared to its counterparts. The outstanding results achieved in this study confirm that
deep learning-based algorithms are capable of detecting birds of different sizes in differ-
ent environments and the best model could potentially help ecologists in monitoring and
identifying birds from other species.

Keywords: Deep Learning, Transfer Learning, Single-Shot Detector, Faster R-CNN,
ResNets
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1 Introduction

In the world of ecosystem preservation, domestic and wildlife animal monitoring and identi-
fication are very important areas of research as they help ecologists and conservation practi-
tioners to monitor different species especially animals on the verge of extinction, understand
species abundances and the effect of the environment on wildlife [15], and finally, formulate
conversation and management policies [27]. More than ever, improvement in animal monitor-
ing systems\methods are needed if we are to preserve the existing wildlife from the increasing
threat of climate change, human-animal poaching, resource acquisition, and endangered species
[63, 50, 60].

Due to the inefficiency of the traditional wildlife monitoring techniques, several modern tools
have been developed such as motion sensor camera traps [30], wireless sensor networks [3, 57],
high-frequency radio trackers [16], and the global positioning system (GPS) and satellite track-
ing systems [17]. These observational technological advancements have enhanced the ability to
obtain massive, long-term, cross-scale, and heterogeneous data [18]. It is also helping ecologists
to document all aspects of wildlife like feeding, movement, sleeping, and interaction with one
another, something hard to be done through physical human monitoring [48]. In some cases, it
is dangerous or even impossible for humans to physically monitor some wild (e.g predators) and
sea species. For example, in 2017, a wildlife ecologist known as Krisztian Gyongyi was attacked
and killed by a rhino while he was tracking animals in Akagera National Park in Rwanda1.
Therefore using automated tools can be very helpful to collect data on such animals.

But these new wildlife monitoring technologies have resulted in huge data sets that have
greatly outpaced the traditional manual analytical techniques as they are costly, labour inten-
sive, and time-consuming [53, 47, 2]. Even the traditional machine learning tools like Support
Vector Machine (SVM), random forest, Linear, Discriminant Analysis (LDA), K-nearest neigh-
bor (KNN), and Principal Component Analysis (PCA) are not suitable because they quickly
saturate whenever the data volume increases [44]. For example, the 225 camera traps deployed
by Snapshot Serengeti2 camera survey project across an area of 1,125km2 in the Tanzania’s
Serengeti National Park collected 1.2 million image sets, each containing 1-to-3 images in a
space of 3 years [55]. To understand how time-consuming and labour intensive this manual
process could be, it took a team of 28000 and about 40000 registered and unregistered users
respectively to annotate a 6-month batch of the Serengeti dataset [27]. This observation jus-
tifies the need to automate the process of image annotation, and species identification and
monitoring.

The most widely used automation technique has been deep learning since 2012 when it
broke accuracy records in ImageNet classification challenge [33] and speech recognition [22].
Deep Learning has continued to register tremendous success in several fields including ecology.
For example, Barré et al. used field-photographed leaves to develop an automatic plant species
identification deep learning model which registered an average classification accuracy of 97.8%
in the top-5 [6] . Several studies have also used animal sounds to build models for identifying
and monitoring different species [12, 32, 39]. Deep learning techniques have also been applied
in identifying and counting several species in camera-trap images [60, 47, 9]. A study by Ditria
et al. compared the identification speed and accuracy of deep learning methods against marine
experts and citizen scientists in determining fish abundance in image and video underwater
captured data and found that the deep learning algorithm performance was 7.1% and 13.4%
better than experts and citizen scientists respectively for the image dataset, and 1.5% and

1For more information about the story: https://news.mongabay.com/2017
2https://www.zooniverse.org/projects/zooniverse/snapshot-serengeti
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7.8% better for the video dataset [11]. As with other wild species, monitoring birds should
also be a regular ecological activity. In this paper, we propose to study and evaluate state-
of-the-art deep learning architectures to detect birds in the webcam captured images. The
main focus is to compare how well these architectures can detect birds in images captured
from different environments plus their speed and memory consumption. Apart from ecological
research and avian protection, bird detection is also important in other multiple applications
such as wind energy firms where detection systems are needed to prevent the collision of birds
with wind turbines and aviation safety. In aviation, machine learning-based systems are used
in differentiating radar signals of birds from abiotic objects [43, 10].

Although numerous studies have been carried out on the application of deep learning tech-
niques to automate the process of bird detection and counting [53, 41, 2, 7, 58], the studies have
mainly focused on the use of satellite captured, camera-trap, or unmanned aerial vehicle images.
This study uses webcam based images. And thus we propose a first attempt at contributing
towards real-time monitoring as opposed to images collected in the past (e.g. camera traps).
To the best of our knowledge this is the first study to use webcam-based images. Our study
uses the same methods as [23] but with different dataset size and the nature of images used.
Hong et al. used fewer and camera trap images [23]. Our proposed approach also provides a
broader comparison between several deep learning architectures unlike Hong et al. who stud-
ied only three architectures, ResNet-101, Inception V2, and MobileNet v2 [23]. In this study,
we used Faster R-CNN and SSD meta-architectures in combination with MobileNet, ResNet50,
ResNet101, ResNet152, and Inception ResNet feature extraction networks. Through this study,
we also managed to collect and manually verify 10592 images which was contributed to an open
source platform for other researchers to use.

The rest of the paper is planned as follows. Section 2 summarizes the main concepts of this
study and provides a theoretical background on machine learning, artificial neural networks,
and deep learning with a main focus on convolutional neural networks. The section further dis-
cusses the state-of-the-art object detection meta-architectures, feature extraction networks, and
evaluation metrics. In Section 3, we introduce the dataset, pre-processing techniques, and Ten-
sorFlow object detection API used throughout this study. It also presents the implementation
details of the models used. Section 4 presents a detailed analysis of the models’ performance
and a comparison among each other. Lastly, Section 5 summarizes the paper.

2 Material and Method

2.1 Deep Learning

Deep learning [36] is a subset of machine learning that involves the training of multi-layered
artificial neural networks. A neural network with at least two hidden layers is referred to as a
deep neural network [46]. In recent years, deep learning algorithms have become more attractive
to researchers compared to the conventional machine learning algorithms [36], and this is due
to;

1. Increase in the computation power in terms of the graphical processing unit (GPU) and
central processing unit (CPU).

2. Availability of huge, well-maintained, and public datasets like Microsoft’s common object
and context (COCO) dataset [40], ImageNet [28], MNIST handwritten digit database [37]
and many others.
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3. The development of novel state-of-the-art algorithms such as AlexNet [33], residual net-
works (ResNets) [19], GoogLeNet [8], and region-based CNN [51, 52, 19] which not only
outperformed the conventional machine learning algorithms but also surpassed humans
in the field of classification and recognition [54, 59, 61].

2.2 Convolutional neural networks

A convolutional neural network (CNN) is a deep learning algorithm that has registered state-
of-the-art results on real-world applications such as image classification [19], object detection
[49], semantic segmentation [42] and speech recognition [1]. Convolutional neural networks were
first introduced in the Kunihiko and Sei neocognitron [35] and later modified by Sackinger et al.
[38] to a LeNet-5 architecture which registered tremendous success in recognizing handwritings.
The application of CNN has been popularized in the computer vision community since the 2012
ImageNet challenge when AlexNet registered outstanding results [33]. In problems like image
classification, CNNs algorithms have even outperformed humans [19]. A typical architecture
of a CNN is divided into two parts, feature extraction layers and the classifier. The feature
extraction part is mainly made of convolutional and pooling layers while the feature mapping
is in most cases composed of fully connected layers.

2.3 Meta-architectures

2.3.1 Faster R-CNN

Faster R-CNN [49] is a two-stage CNN meta-architecture composed of a Region Proposal Net-
work (RPN) and the Fast R-CNN detector network. The first stages known as the region
proposal network (RPN) uses feature maps generated by feature extraction networks (discussed
below) to produce regions of interest (RoI) through a series of fully connected and max-pooling
layers [49]. RoIs are proposed candidate object regions that are thought to contain the ob-
ject being investigated. RPN produces many proposals with potentially a large number of
overlapping areas and these multiple detections per image are removed using a non-maximum
suppression (NMS) technique [24]. Finally, the proposed regions are fed into a second stage,
called Fast R-CNN detector, which predicts whether a bird is contained in the RoI or not.
The RPN and Fast R-CNN detector are merged into a single network through sharing their
convolutional features [45]. The combination of the two helps Faster R-CNN to achieve better
accuracy than the single-stage networks but the accuracy comes at the expense of speed [24].

2.3.2 Single Shot Detector

The Single Shot Detector (SSD) [62] is a single-stage object detection model based on a feed-
forward convolutional network that predicts the presence of an object(s) independently in im-
ages using multi-scale convolutional bounding box outputs (multi-scale feature maps). An input
image and its ground truth boxes are passed through multiple convolutional layers of the back-
bone network extracting feature maps at different points. Each location of these feature maps
is evaluated using different scale filters although the 4× 4 and 8× 8 filters are used most often
[62, 34] to judge a small set of the default boxes (equivalent to anchor boxes of the Faster
R-CNN). The default boxes are attentively selected bounding boxes based on their positions,
sizes, and aspect sizes across the targeted image [62]. For every default box, both bounding
box offsets and the confidences (or the class probabilities) are predicted. The final detection
is decided by the non-maximum suppression algorithm. The SSD network has been used in
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several object detection studies and it has produced highly competitive results [23, 29, 31]. Wei
et al. compared the performance of SSD against its object detector counterparts in terms of
accuracy and speed and found that it was favorably competitive [62].

2.4 Feature extractors

2.4.1 Residual networks

Residual networks (ResNets) were first presented by He et al. in 2015 and at the time the
authors had reported improved results on the ImageNet dataset [19]. They presented a 152
layer network that was 8 times deeper than the VGGNets. This network achieved a Top-5
error of 3.5% and this result won the 2015 ILSRVC classification challenge. The Top-5 error is
the percentage of the time that the classifier did not include the correct class among its top 5
guesses [33]. Submissions based on this deep ResNets architecture went on to win several other
challenges including: the COCO detection and segmentation, and ImageNet object detection
and localization challenges. There are three types of residual networks, namely: ResNet50,
ResNet101 and ResNet152. In this study, we are going to investigate the performance of all
three residual networks as presented by He et al. [20]

2.4.2 MobileNet

MobileNet [25] is a lightweight feature extraction network designed for use in limited memory
systems. The model is based on the depth-wise separable convolutions3 [25] and it factorizes a
standard convolution into a depth-wise convolution and a 1× 1 point-wise convolution (Conv).
All layers of the MobileNet are followed by batch normalization (BN) and ReLU activation
function apart from the fully connected layer. It is mainly used to design machine learning
mobile applications and it was the first TensorFlow computer vision model. It also reduces the
computational cost and number of parameters drastically compared to ResNets and VGGNets
but with same number of input and output channels [21].

2.4.3 Inception ResNet

At the ILSVRC competitions of 2014, Christian et al. presented a high performance deep CNN
architecture named “Inception” that demonstrated improved computational cost compared to
ResNets [8] . The original network used three different convolutions 1 × 1, 3 × 3, and 5 × 5.
In 2015, Szegedy et al. proposed several changes to the inception architecture to reduce com-
putational complexity and improve the computational speed, and accuracy [56]. The changes
included: replacing the 5 × 5 convolution with two 3 × 3 convolutions and factorizing n × n
convolutions to 1× n and n× 1 combination. Szegedy et al. [56] found out that their method
was six times cheaper computationally and used at least five times less parameters than the
best ResNet of He et al. [19].

2.5 Transfer Learning

When training deep learning networks to solve specific problems one of the two problems may
arise. The first is not having enough labeled data and the second is having to train a deep
network from scratch. Not having enough data would force us to collect and annotate large

3The depth-wise separable convolution gets its name from the fact that, it splits a kernel into 2 separate
kernels namely: the depth-wise convolution and the point-wise convolution [21]
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amounts of data but in most cases the data may not be available. Training a deep network
from scratch is a challenging problem because the process may take hours or even days since
these weights begin with random values. The optimizer takes a lot of time to converge if at all
these initialized values are far from the optimal solution [13]. One of the ways used to overcome
both problems is by utilizing the network weights from pre-trained models. This process is also
known as transfer learning. Transfer learning is a deep learning technique that allows leveraging
the knowledge generated from previous training to a new but related problem [4]. We make
an assumption that many of the factors that explain the variations in the earlier problem are
relatively similar to variations that need to be captured for learning the new problem. In
this study, we used transfer learning by repurposing weights pre-trained on MS COCO dataset
[40] to our novel dataset. MS COCO has been used as a benchmark dataset for many object
detection researchers because it has proportionately more instances per category than any other
available public datasets like PASCAL VOC [14] and also contain more objects (7.7 per image)
than the popular ImageNet and PASCAL VOC with 3 and 2.3 objects per image respectively
[40].

2.6 Evaluation protocol

In this study, all the models were evaluated using the performance evaluation tool as the MS
COCO object detection challenge [40]. The main evaluation metric of the tool is mean average
precision (mAP), which is averaged using 10 IoU thresholds, i.e. IoU = {0.50, 0.55, · · · , 0.95},
in increments of 0.5. Additionally, this MS COCO performance measure also evaluates average
precision (AP) and average recall (AR) depending on object bounding box sizes like small
(area < 322), medium (322 < area < 962), and large (area > 962), and varying AR detection
per images, i.e. AR1, AR10, AR100 representing AR given 1, 10, and 100 objects detections per
image respectively.

3 Experimental Framework

3.1 Dataset

We trained all the detection models on images collected from the live feed watcher cams (https:
//www.allaboutbirds.org/cams/) of Cornell Lab of Ornithology situated in 6 unique locations
around the world. The Cornell Lab of Ornithology is an institute dedicated to biodiversity
conversation with the main focus on birds through research, citizen science, and education.
In total, 10592 images were collected for this study and Figure 1 shows some of the collected
images. After using the dataset, it was contributed to an open source platform called Zenodo
where those who wish to use it for research purposes are free to do so and it can be accessed
at this link: https://zenodo.org/record/5172214#.YVTaQZpBxhH.

3.2 Hardware

We ran the experiments on an MSI GL75 Leopard 10SFR laptop with CUDA 11.0, cuDNN SDK
8.0.4, and Windows 10 x64. The hardware configuration of the laptop is as follows: 10th Gen
Intel Core i7-10750H, GeForce RTX 2070 8GB GDDR6 GPU card, and 32GB DDR4 RAM.
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Figure 1: Sample of images from the collected dataset. To have a dataset with different biases,
we collected images in several light conditions, captured birds of multiple sizes from a variety
of angles in different environments, as well as partially visible birds.

3.3 Experiments Details

Based on the studies discussed in introduction, we selected two meta-architectures, namely,
Faster R-CNN and SSD implemented using the following feature extractors, MobileNet,
ResNet50, ResNet101, ResNet152, and Inception ResNet v2. The choice of the feature ex-
tractors was based on the reported outstanding results in a number of studies [49, 62, 26, 19, 8].
Through transfer learning, all the feature extraction networks were initialized with weights4

pre-trained on the MS COCO dataset provided by the TensorFlow object detection API.

3.3.1 SSD Models

To achieve the best detection results on our dataset, during training and hyper-parameter
tuning of the models, we followed the experimental procedural setup as used by He et al. [20]
and Huang et al. [26] because the good performance achieved. The hyper-parameters of the
networks were configured as shown in Table 1. The models were fine-tuned until satisfactory
results (i.e. accuracy and speed) were obtained.

3.3.2 Faster R-CNN

During training and hyper-parameters fine-tuning of all the four Faster R-CNN, we followed
closely the configuration procedures of Huang et al. [26], Ren et al. [49], and He et al. [20].
The best models had hyper-parameters set as shown in Table 2. For the training time, Figure 2

4https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_

detection_zoo.md

68

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md


Automating Bird Detection using Deep Learning Mirugwe, Nyirenda and Dufourq

Parameters MobileNet ResNet50 ResNet101 ResNet152
Image size 320 × 320 320 × 320 320 × 320 320 × 320
Epochs 10 10 10 10
Kernel size 3 × 3 3 × 3 3 × 3 3 × 3
Optimizer SGD SGD SGD SGD
Momentum 0.9 0.9 0.9 0.9
Batch size 16 16 8 8
Learning rate 0.08 0.04 0.08 0.003
Iterations 50,000 30,000 27,000 120,000
Dropout probability 0.8 0.8 0.8 0.8
Weight decay 0.0004 0.0004 0.0004 0.004

Post-processing
Intersection over union 0.6 0.6 0.6 0.6
Score threshold 1 × 10−8 1 × 10−8 1 × 10−8 1 × 10−8

Table 1: The hyper-parameter tuning values for both training and post-processing of the models
trained using SSD meta-architecture in combination with MobileNet, ResNet-50, ResNet-101,
and ResNet-152 feature extractors. The batch size for ResNet-101 and ResNet-152, was reduced
to 8 due to memory constraints.

Parameters ResNet50 ResNet101 ResNet152
Inception
ResNet-V2

Image size 1024 × 1024 1024 × 1024 640 × 640 320 × 320
Epochs 100 100 100 10
Stride 2 2 2 2
Kernel size 2 × 2 2 × 2 2 × 2 2 × 2
Anchor size 16 × 16 16 × 16 16 × 16 3 × 3
Optimizer SGD SGD SGD SGD
Momentum 0.9 0.9 0.9 0.9
Batch size 2 2 2 2
Learning rate 0.004 [0.002, 0.0002] [0.004, 0.0004] [0.03, 0.003]
Iterations 20,000 [10,000 & 7,000] [20,000 & 10,000] [40,000 & 15,000]

Post-processing
Intersection
over union

0.7 0.7 0.7 0.7

Table 2: The hpyer-parameter tuning values for both training and post-processing of the Faster
R-CNN models. Initially, the ResNet-101 model was trained for 10,000 iterations at a learning
rate of 0.002, and then decreased to 0.0002 for the next 7,000 iterations. For the ResNet152
model, it trained initially for 20,000 iterations at a learning rate of 0.004 and 0.0004 for the
next 10,000 iterations. Due to memory constraints, the image size for the Inception ResNet-V2
model was reduced and the model trained for 40,000 and 15,000 iterations at a learning rate of
0.03 and 0.003 respectively.

shows that Faster R-CNN models trained faster than the SSD models except for the SSD with
MobileNet which took the shortest training time of four hours. Looking at the figure, larger
feature extractors took more time to train than the smaller ones.
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Figure 2: The time (in hours) taken to train the models with the different meta-architectures
and feature extractors.

Feature
Extractor

AP AP.50 AP.75 APS APM APL AR100 ARS ARM ARL

SSD
MobileNet 67.5 96.1 78.2 19.0 51.1 73.5 73.7 30.0 61.1 79.0
ResNet-50 73.3 97.6 84.8 39.1 58.5 78.5 78.0 40.9 66.8 82.8
ResNet-101 80.1 98.4 88.7 40.7 63.1 88.3 87.8 46.4 76.4 92.7
ResNet-152 89.4 98.5 89.0 41.3 64.7 92.1 87.9 48.5 78.0 92.6

Faster-RCNN
ResNet-50 75.2 97.8 86.3 57.9 64.3 80.3 80.5 52.0 71.2 84.1
ResNet-101 90.4 98.5 86.6 58.4 69.1 91.0 90.8 63.8 74.0 90.0
ResNet-152 92.3 98.6 88.1 60.0 70.8 93.4 93.1 64.9 75.1 92.9
Inception-V2 80.3 98.5 88.2 56.0 70.2 88.1 89.8 64.1 76.4 93.0

Table 3: The evaluation metric scores of the SSD and Faster R-CNN models built using Mo-
bileNet, ResNet50, ResNet101, ResNet152, and Inception ResNet-V2 feature extractors.The
AP50 represent average precision (AP) when IoU = 0.5 and AP75 means AP when IoU = 0.75.
APS represents AP for small birds, APM and APL stands for AP of medium and large sized
birds respectively (the same for average recall).

4 Results and Discussion

In this section we give comprehensive discussion and comparison of results achieved by all
the models. The overall results show that Faster R-CNN models achieved better results (in
terms of detection accuracy) ranging from 75.2% to 92.3% than the SSD models whose range
of detection accuracy was between 67.5% and 89.4%. The performance of the Faster R-CNN
models in detecting both large and small birds was better than that of the SSD models as shown
in Table 3. The Faster R-CNN model trained with the ResNet152 feature extractor yielded
better results across all the evaluation metrics. It achieved an overall mean average precision of
92.3% but still, the other models also registered good performances. It is also clear that across
all models the highest average precision was obtained when the IoU was set to 0.5 (AP50) as
opposed to 0.75 IoU.

In terms of speed, SSD models were remarkably faster than the Faster R-CNN models as
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Meta-architecture
Extractor Model size (MB)

Inference time
(ms/image)

SSD MobileNet 30.5 110
ResNet50 258 165
ResNet101 405 183
ResNet152 532 197

ResNet50 MobileNet 221 251
ResNet101 371 270
ResNet152 495 283
Inception ResNet-V2 469 256

Table 4: Inference time per image on each meta-architecture and the models’ parameter file
sizes.

Mobilenet
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SSD

Figure 3: Difference in speed and accuracy between the object detection models.

shown in Table 4. It is also observed in Table 4 that the deeper the backbone network, the
slower it gets to train. For example, the ResNet-50 model is faster to train than ResNet-152
in both SSD and Faster R-CNN meta-architectures. This is because deeper networks need
more parameters to learn [5]. It can also be seen that the SSD model with MobileNet feature
extractor is the smallest in terms of inference graph file size compared to all other models.
Therefore, this model can be deployed in memory-constrained systems because its light, fast
(110ms) and registered quite a fair mAP of 67.5%. These results also show that SSD models
consume more memory than the Faster R-CNN with the same feature extraction networks e.g.
SSD combined with ResNet-152 consumes 37MB more than Faster R-CNN with the same base
network.
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Figure 4: Left: Faster R-CNN predictions, right: SSD predictions. The top two images
contains 2 birds (Faster R-CNN detected both, SSD detected one), and the bottom two contains
5 birds (Faster R-CNN detected all, SSD detected 3.

Figure 3 demonstrates the trade-off in speed and accuracy. It is seen that Faster R-CNN
models, in particular Faster R-CNN with ResNet101 and ResNet152, have the highest accuracy
but their accuracy came at the expense of speed as they exhibited the worst testing time. In
terms of speed, the SSD models proved to be faster than the Faster R-CNN models.

The Faster R-CNN models also outperformed the SSD models in detecting small and over-
lapped birds in images. In the Figure 4, we show some of the examples where the Faster R-CNN
model did well in detecting the small and overlapped birds compared to the SSD.

The Faster R-CNN model with the ResNet152 feature extractor- our best performing model,
in terms of detection accuracy- was subjected to different images randomly obtained from
Google with environmental conditions not captured in the test set images. This was done to
determine how well the model would respond to these new domains. The model’s performance
was extremely good in detecting birds especially those taken at night/with dim light, images
of birds with people, and images of birds captured at different angles. Therefore, this indicates
that our model can be used to detect birds in different environment settings.

5 Conclusion

This study focused on studying, designing, and evaluating state-of-the-art deep learning ob-
ject detection algorithms that are capable of detecting birds in webcam-captured images. We
conclude that the Faster R-CNN combined with the ResNet152 feature extractor as the best
for achieving the highest mean average precision compared to other architectures, and the SSD
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with MobileNet as the best model in terms of speed and smaller memory consumption. The
state-of-the-art results obtained in this study confirm that deep learning-based algorithms are
capable of detecting birds of different sizes in different environments and we recommend that
our best overall model can be used by ecologists in monitoring and identifying birds from other
species.
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