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Abstract

Progress in machine learning and artificial intelligence (AI) opens the way to the devel-
opment of smart clinical-assistance systems and decision-support tools for the operating
room (OR). Yet, before deploying these algorithms in the OR, assessment of their perfor-
mances in real clinical conditions is necessary. Gathering intraoperative data for training
and testing is hard, and robustness to the challenging conditions of the OR is not always
demonstrated. In this paper we introduce a unique multi-patient dataset of images cap-
tured during Total Knee Arthroplasty (TKA) surgery. We use this dataset to compare five
deep learning-based image segmentation approaches and provide quantitative and qualita-
tive results. We hope that this work will help bringing light on the performances of AI in
a real surgical environment.

1 Introduction

State-of-the-art AI approaches have been extensively evaluated on everyday non-clinical images,
showing an increase in maturity and robustness. However, these are rarely demonstrated on
clinical datasets and it remains hard to tell how well they can generalize to the OR environment
[10]. Intraoperative data processing algorithms require curated, structured, and annotated data,
and this hinders their development and evaluation.

With the aim of generating a reference clinical dataset, we organized a clinical trial1 and
gathered intraoperative data from 62 Total Knee Arthroplasty (TKA) surgeries. The study was
approved by an ethics committee and took place over several months in France. This unique
dataset presents the inherent challenges of the OR, such as illumination, clutter, occlusions,
and patient morphology variations.

We hereby make use of a subset of our dataset to evaluate the performances of five deep
learning-based approaches for medical image segmentation, applied to the segmentation of knee
bones (femur and tibia) in RGB images. We chose this task since accurately localizing the
bones in images from the exposed knee is crucial for enabling future marker-less registration
and tracking systems [1]. Indeed, soft-tissues or surgical instruments surrounding the targeted

1Clinical trial NCT04912908
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anatomy can bias the registration result. Therefore, a prior pre-processing step is typically
applied to filter-out the target bones from the images and thus improve the robustness of any
registration algorithm that follows [7, 6, 4, 1].

To the best of our knowledge, we are the first to benchmark AI approaches for in-vivo bone
segmentation on a large multi-patient intraoperative dataset.

1.1 Related Works

[6, 4] and [1] both apply an adaptation of the U-Net[9] deep neural network for segmenting the
knee bones on depth data, looking to improve marker-less registration in the context of surgical
navigation. Images from a single cadaveric knee were captured in a controlled laboratory
setup and used both for training and testing. Hence, the proposed approaches may suffer
from overfitting and will not directly generalize well to other patient morphologies or different
experimental conditions. Also, no quantitative evaluation is performed on real OR data. It
is thus difficult to draw conclusions about the resilience of a U-Net based segmentation to
the inherent complications of a clinical environment. While [1] also shows qualitative results
on selected surgical videos found in the VuMedi library, these are hard to interpret and an
evaluation on in-vivo data is still necessary.

In [8], Mask-RCNN [3] is applied to in-vivo data captured during five TKA surgeries. How-
ever, such a small set of patients do not provide enough bone morphology variations for a
complete assessment of the method.

2 Method

2.1 In-vivo dataset description

Video sequences were recorded with a hand-held camera during 62 TKA procedures, capturing
the femur and tibia before the bone resection phases. Of the 62 patients, 33 (53.2%) were
females. The mean age of the population was 70.6 (CI 95% = [68.5; 72.7]) and the mean
BMI was 28 kg/m2 (CI 95% = [26.7; 29.3]). Both legs are equally represented (30 right
TKA). All types of arthritis are also represented in the data since this has an influence on the
bones’ morphology: 33 (53.2%) patients suffered from internal femorotibial arthritis, 14 (22.6%)
from external femorotibial arthritis, 4 (6.5%) from patellofemoral arthritis and 11 (17.7%) had
several damaged knee compartments by arthritis. The recorded surgeries were performed by
two different surgeons. For each patient, 12 images from varying points of view are extracted
from the recording: 6 for the femur and 6 for tibia. This results in a total of 744 images with a
high variability in shape, illumination conditions and viewpoint. The contour of the bones was
manually annotated in all images by an expert.

2.2 Neural networks for bone segmentation

The following networks for 2D medical image segmentation were evaluated: U-Net[9], CE-
Net[2], U-Net++[12], ResUNet[11], ResUNet++[5]. They each take as input an RGB image
and output a prediction about the pixels corresponding either to femur or tibia.

We randomly split our dataset into 65% for training, 15% for validation and 20% for testing.
Images from the same patient are present in a single split only, hence no training and testing
is done on data from the same surgery. Every image is resized to 256 × 256. We apply a
binary cross entropy loss with an Adam optimizer for training, a batch size of 2, a learning rate

46



Deep Learning-based approaches for In-vivo segmentation Dehaine, Decrouez, and Loy Rodas

Figure 1: Evaluation results (Dice similarity score, IoU, Precision and Recall) for five deep
learning-based segmentation approaches on an in-vivo dataset: Left for femur and right for
tibia.

starting at 10−4 and early stopping. Standard data augmentation steps are applied: random
horizontal flipping and rotation, along with changes in image brightness, contrast, and satura-
tion. Furthermore, among the patients included in the training set, only one image per patient
is randomly selected and used for each training epoch2. By doing so, we exploit the multiple
point of views included in our dataset and reduce any possible overfitting to the same patient.

3 Evaluation results

Overall, all evaluated networks yield good results on our dataset (see boxplots 1). The best
performance is achieved by U-Net++. ResUNet and ResUNet++ yield the lowest precision
and recall, therefore seem less adapted for an OR environment. The performances for tibia seg-
mentation are almost equivalent to femur, even if the tibia is partially occluded by surrounding
tissues in the images (see figure 2 for qualitative results). Our training strategy allows all net-
works to generalize properly and avoid overfitting, as segmentation is robust to variations in
bone morphology and set-up.

Further work will focus on including data from additional hospitals to add more variations
to the images and also adding an inter-annotator variations’ study.

4 Conclusions

In this paper, we present comparative results of five state-of-the-art deep-learning approaches
applied to the segmentation of bony structures in in-vivo images during TKA surgery. Previous
works [7, 6, 4, 1] provide quantitative results from ex-vivo data only and thus models that would
not directly generalize to intraoperative data. Hence, we introduced a unique multi-patient
dataset of RGB images captured during 62 surgeries and used it for this benchmark study.

2Training and testing was performed on a Dell XPS 15 with a GTX 1650 Ti GPU.
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Data-driven approaches capable of interpreting and extracting knowledge from real-life in-
traoperative data are crucial for future computer-assisted systems. These can be applied for
suggesting patient-specific intervention strategies, quantify bone resections or blood loss, help
prevent medical errors, and overall increase both quality of care and physician experience. Yet,
there still is a need to better understand how AI-based algorithms behave in real-life environ-
ment. This work provides useful insights about the performances of state-of-the-art approaches
in challenging OR conditions.
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Figure 2: Qualitative results for all five evaluated approaches for femur and tibia segmentation
on intraoperative RGB images.
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