
EPiC Series in Computer Science

Volume 36, 2015, Pages 137–150

GCAI 2015. Global Conference on Artificial Intelligence

EPR-based k-induction with Counterexample Guided
Abstraction Refinement

Zurab Khasidashvili, Konstantin Korovin, and Dmitry Tsarkov
1 Intel Israel Development Center, Haifa 31015, Israel

zurabk@iil.intel.com
2 The University of Manchester, UK
{korovin|tsarkov}@cs.man.ac.uk

Abstract
In recent years it was proposed to encode bounded model checking (BMC) into the effectively

propositional fragment of first-order logic (EPR). The EPR fragment can provide for a succinct rep-
resentation of the problem and facilitate reasoning at a higher level. In this paper we present an
extension of the EPR-based bounded model checking with k-induction which can be used to prove
safety properties of systems over unbounded runs. We present a novel abstraction-refinement ap-
proach based on unsatisfiable cores and models (UCM) for BMC and k-induction in the EPR setting.
We have implemented UCM refinements for EPR-based BMC and k-induction in a first-order auto-
mated theorem prover iProver. We also extended iProver with the AIGER format and evaluated it over
the HWMCC’14 competition benchmarks. The experimental results are encouraging. We show that
a number of AIG problems can be verified until deeper bounds with the EPR-based model checking.

1 Introduction
SAT-based bounded and unbounded model checking [1, 2] is widely used in the industry for verification
of hardware and software systems. Our focus in this paper, both theoretical and experimental, is on
hardware verification, which is an important problem where the scalability and performance remain the
challenge. To scale this approach further, two basic approaches are (1) extending SAT-based model
checking to word level [3, 4], and (2) performing automatic abstraction refinement, as in the CEGAR
approach [5], so that the verification problems become smaller with each iteration, and verification
remains both sound and complete (no spurious counter-examples are reported).

For safely critical systems, often full correctness proofs are required. While BMC [1] is in principle
a full-proof method (for finite-state systems), in practice it would require unrolling to unrealistically high
bounds to achieve full proofs. Induction [6] is a basic technique that enables full proof for industrial-
sized designs (still limited to modules with one or a few functional blocks). See, e.g., [7] for a successful
application of an induction scheme to software verification. A number of advanced methods based on
automatic generation of induction invariants exist that drastically increase the class of problems that can
be fully verified [2, 8]. In this paper we develop an induction algorithm for EPR-based model checking,
at word level.

The EPR fragment, also called the Bernays-Schönfinkel-Ramsey fragment, is a universal fragment
of first-order logic where all function symbols are constants. The first encoding of BMC into EPR was

G.Gottlob, G.Sutcliffe and A.Voronkov (eds.), GCAI 2015 (EPiC Series in Computer Science, vol. 36), pp. 137–150

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

proposed in [9]. This bit-level encoding was extended to word level in [10, 11]. Experimental results
reported in these papers regarding EPR-based BMC versus SAT and SMT-based approaches showed
the promising potential of EPR-based BMC on industrial hardware model checking and equivalence
checking problem instances with memories, which were the driving industrial examples for developing
the EPR-based word-level BMC. The EPR fragment is NEXPTIME complete, and recent research has
also shown that it can be used to encode bit-vectors exponentially more succinctly [12, 13].

The advantage of encoding the BMC and induction algorithms into EPR is that the rich expressive
power of EPR enables a very concise representation of the problem, which, combined with the decid-
ability of the EPR fragment, opens the door for an efficient implementation of BMC where unrolling is
somewhat implicit and on-demand. Indeed, the EPR-based BMC in [11] works with a single copy of
the transition relation, and the on-demand unrolling is ”built-in” in the solving of the problem instances
arising with the EPR encoding. For this reason, the BMC algorithm in [11] is called BMC1 (to indicate
that unlike the regular SAT-based BMC, the circuit is not copied at each unrolling bound). In the case of
bit-level verification, this approach is related in idea with QBF-based model checking, e.g., in [14, 15].
Despite multiple efforts, QBF-based BMC has not yet been able to extend the state of the art of BMC on
large real-life examples. And similarly, in the past, the EPR-based BMC could only improve the state
of the art on verification problems with large memories represented at word level. This confirms that
taking advantage of the conciseness of the encoding by solving through a subtle abstraction-refinement
procedure is a very challenging problem. This challenge of defining smart abstraction-refinement ap-
proaches is very relevant to subsequent discussions in this paper and we will clarify it farther for the
case where instantiation based theorem provers like iProver [16] are used as the EPR solver engine.

The regular SAT-based BMC unrolls the (possibly pruned) circuit to a desired bound n and then
solves the BMC formula using a SAT solver. Usually, to solve a BMC problem, not all the variables in
the unrolled instance are relevant, even if the cone of influence of the assertion has already been pruned
to contain only the relevant parts of the circuit. It is in general much more beneficial to avoid generation
of irrelevant variables during the unrolling (but see [17] for discussion). With EPR-based BMC, an
instantiation process having the effect of a partial, or more precisely, discrete unrolling, is performed
as part of solving the EPR formula. To explain this claim, let us recall briefly how instantiation-based
theorem provers work; in particular, let us recall the algorithm employed in the iProver solver used in
our experiments.

The basic idea of instantiation-based reasoning is to interleave a smart generation of instances of
first-order formulae with propositional reasoning, within an abstraction-refinement scheme. Given a
set of first-order clauses S, iProver first produces a ground abstraction of S by mapping all variables
into a distinguished constant, say ⊥, obtaining a set of ground clauses S⊥. If S⊥ is unsatisfiable then
so is S and we are done. Otherwise, we need to refine the abstraction by adding new instances of
clauses, witnessing unsatisfiability at the ground level. Instances are generated by an inference system
called DSInst-Gen [16]. iProver repeats this process until we obtain either (i) an unsatisfiable ground
abstraction (this can be checked by any off-the-shelf SAT solver), or (ii) a saturated set of clauses (that
is, no non-redundant inference is applicable), and in this case completeness of the calculus implies that
S is satisfiable.

As a result of the iterative abstraction refinement procedure interleaving instantiation and SAT solv-
ing, iProver generates variables corresponding to circuit signals for a subset of bounds between 0 and
n, and it does this lazily, per demand. Hence, in each iteration, a circuit signal might have fewer than
n+1 copies. Thus with EPR encoding, and with an instantiation-based procedure for solving the EPR
formulas, the BMC problem can (potentially) be solved via solving much smaller propositional SAT
instances.

To further take advantage of the EPR-based approach to abstraction refinement, in this paper we
propose an unsat-core based iterative scheme that allows us to optimize the implicit on-demand unrolling

138

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

discussed above, and as a result the SAT problems generated and solved as part of the Inst-Gen algorithm
shrink even further. For EPR-based BMC, this usually implies a speedup in verification and, more
importantly, much deeper unrolling bounds can be verified. For induction, in addition to the speedup,
this can decrease the unrolling depths required to achieve full proofs. In the context of SAT-based
BMC, interpolation [18] and PDR [19], at the bit-level, some of the ideas in this paper are similar to the
counter-example and proof-based abstraction refinement procedures in [20, 17, 21, 22, 23, 24], although
our algorithm differs significantly from these approaches in technical detail. In abstraction-refinement
for SAT-BMC, the abstract model is usually fully unrolled to a current bound k. In our approach each
part of the transition relation can be added/removed separately at non-consecutive bounds, guided by
the abstraction-refinement process. Our experiments show that usually instantiating different small parts
of the transition relation at previous bounds is enough for solving the problem at the current bound. In
the EPR framework this can be conveniently achieved by adding/removing relevant next state atoms
during the abstraction-refinement process. The EPR framework also gives natural flexibility of how the
transition relation is partitioned.

The paper is organized as follows. In Section 2, we quickly recall the BMC1 algorithm form [11]
and discuss its extension with property lemmas. In Section 3, we introduce a basic version of EPR-
based k-induction, and discuss in Section 4 how to adapt the encoding to always remain within the
EPR fragment. Unsat core and model based refinements of BMC1 are introduced in Section 5, and are
extended to k-induction in Section 6. Quantified invariants are discussed in Section 7. Implementation
and experimental results are reported in Sections 8 and 9, respectively. We conclude in Section 10.

2 BMC1
In this paper we consider verification of safety properties of state transition systems represented using
(many-sorted) first-order logic. In our formalisation we use general first-order logic and later show that
in the case of bounded domains this formalisation can always be reduced to the effectively propositional
fragment (EPR) of first-order logic.

A state transition systems and a verification condition can be represented using first-order logic by
three formulas:

• the initial condition Finit(S), that should hold in the starting state;

• the transition relation Fnext(S,S′), that describes the changes of the state during execution;

• the target property Fp(S).

In order to succinctly represent unrolling of the system we introduce auxiliary predicates I(S),
N(S,S′) and p(S) which represent initial states, the transition relation and the target property.

The bounded model checking representation of the system in first-order logic (BMC1) [11] consists
of the following formulas:

∀S [I(S)→ Finit(S)] (1)
∀S,S′ [N(S,S′)→ Fnext(S,S′)] (2)

∀S [Fp(S)→ p(S)]. (3)

BMC1 unrolling of the system to a bound n can be represented as

I(s0)∧N(s0,s1)∧ . . .∧N(sn−1,sn)∧¬p(sn), (4)

where s0, . . . ,sn are constants representing states. If formula (4) is unsatisfiable (together with the BMC1
representation of the system), then the property p holds at all states reachable from the initial state in

139

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

exactly n steps. The BMC1 procedure then starts from n = 0 and increments n until a state where either
i) (4) is satisfiable and therefore the property is falsified, or ii) the diameter of the system, or more
generally completeness threshold, is reached [2] and therefore the property holds for all states reachable
from an initial state. Let us note that the BMC1 procedure does not change the representation of the
system and at each step n only modifies formula (4) by adding a single atom N(sn−1,sn) and replacing
¬p(sn−1) with ¬p(sn).

2.1 BMC1 with property lemmas.
One modification of the BMC1 procedure is adding property lemmas that we already proved in the
previous steps. For this, first the representation of the system should be modified: we need to replace
(3) with

∀S [Fp(S)↔ p(S)]. (5)

Now BMC1 unrolling with property lemmas to a bound n can be represented by:

I(s0)∧p(s0)∧N(s0,s1)∧ . . .∧p(sn−1)∧N(sn−1,sn)∧¬p(sn). (6)

We have that if (6) together with the system representation (1), (2), (5) is unsatisfiable, then p(sn)
holds and we can add p(sn) as a lemma in the following iterations. The main difference with the
propositional case [2] is that due to expressivity of first-order logic lemmas can be represented by a
single atom at each stage.

3 EPR-based k-induction
The k-induction is an approach to unbounded model checking that uses a variant of a mathematical
induction over the lengths of the execution runs [6]. In essence, the approach can be adapted to the EPR-
based model checking as follows. For a given n the following two formulas are tested for satisfiability
together with the system representation (1), (2), (5).

Induction base:

I(s0)∧p(s0)∧N(s0,s1)∧ . . .∧N(sn−1,sn)∧¬p(sn). (7)

Satisfiability in this case shows that there exists a run of length n, starting from the initial state, at the
end of which p does not hold. This means that the hypothesis is disproved and the procedure terminates.
If the base case is unsatisfiable, then p holds for any chain of states of length n, starting from the initial
states.

Induction step:
p(s0)∧N(s0,s1)∧ . . .∧p(sn)∧N(sn,sn+1)∧¬p(sn+1). (8)

Unsatisfiability in this case means that, starting with n subsequent states where p holds, the next state
will be a state where p also holds. Together with the induction base this completes mathematical induc-
tion: p holds in every state reachable from the initial one.

If the formula corresponding to the induction step is satisfiable, this means that we fail to prove the
induction hypothesis. Then, we increase n and return to the induction base.

3.1 Complete k-induction
In general this version of k-induction is not complete: it is possible that the induction step will fail for
any n even if the property holds for all reachable states. In order to overcome this incompleteness one
can add formulas stating that different states in the induction sequence are not equivalent (see, e.g., [2]

140

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

for the propositional case). We can define this in first-order logic as follows. Let ΣB denote the base
signature which consists of all predicates that are used to represent basic components of the system
such as bit-vectors and memories. For each predicate P(S, x̄) ∈ ΣB we introduce a binary predicate
Noneqp(S,S

′) and axiomatise that two states are non-equivalent wrt. P as follows:

∀S,S′ Noneqp(S,S
′)→∃x̄[P(S, x̄)↔¬P(S′, x̄)]. (9)

Then, define when states are non-equivalent wrt. basic signature as

∀S,S′ NoneqB(S,S
′)→

∨
p∈ΣB

Noneqp(S,S
′). (10)

We assume formulas used in the system description are Skolemized and non-constant functions are
replaced by predicates as described in Section 4 and added to the basic signature.

During the unrolling up to a bound n we add atomic formulas stating that visited states are pairwise
non-equivalent

NoneqB(si,s j) for 1≤ i < j ≤ n. (11)

This ensures that k-induction will always terminate in the case of finite state systems.

4 Reducing to the EPR in the case of functions with finite ranges
In some cases Skolemization can introduce functions with non-zero arity, resulting in formulas outside
of the EPR fragment. Although our approach is valid for general first-order logic, for efficiency reasons
it is desirable to stay within the decidable EPR fragment. Below we summarise how we translate non-
EPR formulas containing function symbols of non-zero arity into the EPR fragment, in the case of
functions with finite ranges.

Consider a function f (x̄) with a finite range. Then, we can replace such a function by a predicate
Pf (x̄,y) which represents the graph of f . A function elimination transformation can be defined as
follows:

F [f (t̄)]⇒felim Pf (t̄,y)→ F [y]. (12)

It can be shown (following [25]) that F is satisfiable if and only if (12) together with the domain axiom
for Pf : ∨

v∈D(f)

Pf (x̄,v) (13)

is satisfiable, where D(f) is the value set of f . Note that values of f can be symbolic, represented by un-
interpreted constants. Using the function elimination transformation we can eliminate all functions with
finite ranges, replacing them with the corresponding predicates. This transformation is suitable when
the value domain is reasonably small such as e.g. a range of bit-vector indexes. For large value domains
such as fixed size bit-vectors, more efficient transformations are possible [11]. In applications such as
hardware verification all domains are finite and therefore we can eliminate functions as described above
or using more intricate transformations for large domains. There are also different clausification meth-
ods such as definition simplifications and unfolding that can be used to avoid introduction of Skolem
functions in many cases [26].

5 Unsat Core and Model Guided BMC1 (UCM-BMC1)
In this section we describe how BMC1 can be guided by unsat cores and models. Our method is based
on approximations of the transition relation.

141

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

5.1 Splitting transition relation
Consider a transition system represented by formulas (1), (2), (5). The formula representing the transi-
tion relation can be naturally written as a conjunction of weaker conditions (usually as a conjunction of
clauses)

∀S,S′ [N(S,S′)→ (F1
next(S,S

′)∧ . . .∧Fm
next(S,S

′))]. (14)

In order to obtain a finer grained representation of the transition relation we replace the predicate N
with a ternary predicate Ns where the additional argument represents transition relations corresponding
to weaker conditions. Then, (14) can be rewritten as follows.

∀S,S′ [Ns(1,S,S′)→ F1
next(S,S

′)]
· · ·

∀S,S′ [Ns(m,S,S′)→ Fm
next(S,S

′)].
(15)

We assume that the first argument of Ns ranges over a finite domain {1, . . . ,m} corresponding to indexes
of the transition conditions F1

next(S,S
′), . . . , Fm

next(S,S
′). There is a natural flexibility of how the transition

relation is partitioned. If all indexes are the same then we obtain the standard representation as in (2),
whereas when indexes are different for each clause, we obtain a fine grained splitting. We can also get
intermediate representations, e.g., merging indexes corresponding to the same latch.

Let us note that for any partition, (1), (15), (5) represent the same transition system as represented
by (1), (2), (5), in particular we can define N using Ns as

∀S,S′ [N(S,S′)↔∀J Ns(J,S,S′)].

In what follows, we will use N(S,S′) as a shorthand for ∀J Ns(J,S,S′). We call conjunction of
formulas (1), (15), (5) as a split representation of the transition system and denote it by STS. The
main idea behind splitting of the transition relation is that it allows one to instantiate different transition
conditions at different bounds. The intuition is that for proving a property at a bound n it may be
sufficient to instantiate only certain transition conditions at different bounds between 0 and n. In other
words, the unrolling is partial, or rather, discrete.

A transition set N is a finite set of atoms of the form Ns(t,si,si+1), where t is either a variable or a
constant in {1, . . . ,m}. We also use N to represent the conjunction of all atoms in N . A partial BMC1
unrolling w.r.t. N and a bound n is represented by the following formula:

I(s0)∧N ∧p(s0)∧ . . .∧p(sn−1)∧¬p(sn). (16)

We assume that when n = 0, (16) stands for I(s0)∧¬p(s0). We denote by U (N ,n) the conjunction of
(16) together with the split representation of the transition system (1), (15), (5).

A transition set E N n and the corresponding unrolling U (E N n,n) are called exhaustive if E N n
consists of atoms Ns(X ,si,si+1) for 0 ≤ i < n, where X is a universally quantified variable. Exhaustive
unrollings directly simulate BMC1 unrollings with lemmas (6). Let us note that in the case of a partial
BMC1 unrolling w.r.t. N we can safely remove the transition conditions in (15) with indexes outside
of N , without affecting satisfiability of the unrolling.

5.2 UCM-BMC1 procedure
The main ingredient of the UCM-BMC1 procedure is a method for extending (to the next bound) and
expanding (at the same bound) transition sets based on satisfiability of the partial unrolling at the current
stage. For this we use unsatisfiable cores and partial models. From now on, we assume that our formulas
are in clausal form.

142

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

5.2.1 Unsat cores

A ground unsatisfiable core (or just unsat core) of an unsatisfiable set of clauses S, is a subset of ground
instances of S which is also unsatisfiable. In practice, unsat cores are usually small, representing the
reason for unsatisfiability. In the propositional case, unsat cores can be conveniently returned by modern
SAT solvers [27, 28] which in turn can be used within instantiation procedures, such as Inst-Gen [16], to
produce ground unsat cores for first-order problems. In many cases unsat cores can be assumed minimal,
i.e., removing a clause from the core will result in a satisfiable set of clauses, but we do not impose this
requirement here. For an unsatisfiable set of clauses S we will denote by Suc one of its ground unsat
cores. For an unsatisfiable unrolling U (N ,n) we denote by N uc the instances of N which are in the
ground unsat core U (N ,n)uc.

5.2.2 Partial models

Models correspond to satisfiable traces, or counter-examples. In our approach we over-approximate the
transition system and therefore models can also represent spurious counter-examples which are then
used to correct the current over-approximation. We do not require models to be complete and generally
use partial models, or partial interpretations. Partial interpretations can be represented as sets of ground
literals. Let us note that there are also more advanced model representations, e.g., based on cubes used
in Z3 [29] or dismatching constraints [30, 31] used in iProver, that allow more compact representation
of ground sets of literals. In the Inst-Gen framework in place of an explicit model representation we can
enforce partial interpretations by fixing a literal selection in clauses using propositional assumptions,
this was used in our implementation. For simplicity of the exposition we will consider representations
of partial interpretations based on sets of ground literals. We say that a set of literals M is a partial
model for a set of clauses S if M∪S is satisfiable. We assume that we are given a function model which
for a satisfiable set of clauses S returns a (partial) model of S and is undefined otherwise. We will use
satisfiability checks combining partial interpretations together with sets of clauses. There is a trade-
off when considering different partial interpretations: the stronger the interpretations (containing more
literals) the easier is reasoning with M ∪ S, on the other hand weaker interpretations represent larger
classes of counter-examples which can be corrected in one step.

Let us informally describe the UCM-BMC1 procedure. We over-approximate unrollings of the tran-
sition system by considering partial unrollings based on transition sets. In partial unrollings, different
transition conditions are instantiated at different bounds. This has the advantage that the reasoning will
involve only relevant transition conditions from (15), corresponding to the current transition set. We start
with the empty transition set and expand it as required in order to eliminate spurious counterexamples.
At each stage we check satisfiability of the partial unrolling with the current transition set. If the partial
unrolling is unsatisfiable then there are no counter-examples reachable with even stronger exhaustive
unrolling at the current bound and we can proceed to the bound extension phase. If, on the other hand,
the partial unrolling is satisfiable then we consider a model M which is a candidate counter-example. We
check M on the exhaustive unrolling at the current bound. If M is satisfiable together with the exhaustive
unrolling then M can be extended to a real counter-example and we are done. Otherwise, we extract
from the corresponding unsat core relevant instances of the transition relation which are sufficient to
eliminate this counter-example. We expand the current transition set by adding obtained new instances
of the transition relation and continue with satisfiability check. We expand the transition relation at the
current bound until we find a real counter-example or show that there is no counter-example reachable at
this bound. In the latter case, we go to the extension phase. In the extension phase we 1) refine the tran-
sition set by restricting it to transition relations used in proving unreachability of the counter-example at
the current bound (these can be extracted from the unsat core of the latest satisfiability check), 2) extend

143

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

selected transition relations from the transition set to the next bound, 3) continue partial unrolling to next
bound with the new transition set. We have flexibility in choosing which transition relations to extend to
the next bound in 2) above with a natural choice of transition relations which involve the current bound
and were used in proving unreachability of the counter-example at the current bound. Let us remark that
the choice of which transition relations to extend to the next bound does not affect completeness of the
procedure but is relevant to performance.

5.2.3 States

A state of the UCM-BMC1 procedure consists of

1. STS – a split representation of the transition system
2. n – the current unrolling bound,
3. N – the current transition set,
4. M – the current model or possibly the empty set, which will indicate that the model is undefined.

The UCM-BMC1 procedure is presented as Algorithm 1.

Theorem 1. (soundness and completeness wrt. counter-examples) If UCM-BMC1 returns DISPROVED
then there is a counter-example, if returns PROVED then property holds for all bounds. Moreover, if
there is a counter-example then UCM-BMC1 will return DISPROVED after a finite number of steps.

Proof. (Sketch) If the algorithm returns DISPROVED then either 1) already an initial state does not
satisfy the property: I(s0)∧¬p(s0) is satisfiable (line 5) or 2) at bound n, exhaustive unrolling reaches
a state that does not satisfy the property – M∪U (E N n,n) is satisfiable (line 16). In both cases a bad
state is reachable from the initial states.

If the algorithm returns PROVED at bound n (line 37) then U (N ,n) is unsatisfiable. More-
over, since N uc

max = /0, N uc does not contain sn. Therefore U (N ,n)uc can be split into two parts
U (N ,n)uc =U1∧U2 where U1 does not contain sn and U2 is either> or ¬p(sn). In both cases we have
U1 |= ∀x(p(x)) and for any exhaustive unrolling beyond n we have U1 ⊆ U (E N n,n), which implies
that the property holds for all reachable states.

In order to show the last part of the theorem, first we note that when the algorithm extends the
bound from n to n+ 1 (line 41) then the property holds for all states reachable from the initial states
in n or less steps. Indeed, at this stage we have U (N ,n) is unsatisfiable and since N ⊆ E N , the
exhaustive unrolling U (E N ,n) is also unsatisfiable from which the claim follows. To complete the
proof it remains to show that for any bound n the algorithm either returns PROVED, DISPROVED or
extends the bound to n+1. For this it is sufficient to show that at any bound n, the Expansion phase is
not called infinitely often (from line 27). First note that expanding N (line 18) is always proper. Indeed,
at this stage (before line 18) we have M |= N (due to line 26) but M 6|= N ∪E N uc

n . Since there are
only a finite number of ground instances of transition predicates, at a fixed bound, there can be only a
finite number of proper expansions (visits to line 18) and therefore the Expansion phase can be called
only a finite number of times before the Extension phase is called or DISPROVED is returned.

Let us make a final remark that we can also split initial predicate I and the property p in a similar
way as we did with the transition relation.

6 Unsat Core and Model Guided k-induction
In this Section we extend UCM-BMC1 with k-induction. As we saw in Section 3 k-induction can be
split into two independent parts: the Induction base and the Induction step. For solving the Induction

144

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

Algorithm 1 UCM-BMC1
1: function UCM-BMC1
2: Initial phase
3: n← 0, N ← /0, I← /0
4: if ISSAT(U (N ,n)) then
5: return DISPROVED
6: else
7: n← 1
8: M← model(STS∧ I(s0))
9: goto Expansion phase

10: end if
11:
12: Expansion phase
13: // Check the current model (trace)
14: // on exhaustive unrolling.
15: if ISSAT(M∪U (E N n,n)) then
16: return DISPROVED
17: else
18: N ←N ∪E N uc

n
19: goto Sat checking phase
20: end if
21:
22: Sat checking phase
23: // Check satisfiability with the collected
24: // transition predicates.
25: if ISSAT(U (N ,n)) then
26: M← model(U (N ,n))
27: goto Expansion phase
28: else
29: goto Extension phase
30: end if
31:
32: Extension phase
33: // Extend the transition set to the next bound.
34: // At this stage U (N ,n) is unsatisfiable.
35: N uc

max←{Ns(j,sn−1,sn) | Ns(j,sn−1,sn) ∈N uc}
36: if N uc

max = /0 then
37: return PROVED
38: else
39: N ←N uc ∪{Ns(j,sn,sn+1) |
40: Ns(j,sn−1,sn) ∈N uc}
41: n← n+1
42: goto Sat checking phase
43: end if
44:
45: end function

base we can directly apply the UCM-BMC1 Algorithm 1. We present a separate algorithm for the
Induction step. The main difference between two parts is that at almost all bounds, except possibly the
last bound, the Induction base is unsatisfiable whereas the Induction step is satisfiable. Instead of over-
approximating the transition relation, we attempt to extend a model at the current bound in the Induction
step into a model at the next bound. Consider a partial interpretation M and a set of clauses S. Define a
consistent sub-model of M wrt S to be a subset M′ of M such that M′∪S is satisfiable, if such a subset
exists, and /0 otherwise. In practice, we aim at maximal or near maximal subset of our model satisfiable
with the current Induction step unrolling, which can be achieved by iteratively removing literals from
M which are in unsat cores of M ∪ S. We assume that we have a function Msat(M,S) which returns a
consistent sub-model of M wrt. S.

145

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

Another modification we make is reversing the unrolling (8) of the Induction step [32].

¬p(s0)∧N(s1,s0)∧p(s1)∧ . . .∧p(sn)∧N(sn+1,sn)∧p(sn+1). (17)

We denote by U r(E N ,n) the reverse unrolling (17) together with the representation of the transi-
tion system (15), (5), and for the complete version also (9), (10), (11). It is easy to see that the reverse
unrolling (17) is logically equivalent to the direct unrolling (8). The reason behind considering the re-
verse unrolling is that in the direct unrolling we flip the value of p(sn) from positive to negative at each
extension. This can adversely affect incremental reasoning which benefits from reasoning at previous
stages. Moreover models can not be directly extended from the current stage to the next due to the flip
in the value of p(sn). In the reverse unrolling we always keep ¬p(s0) at state s0 and at each extension we
add p(sn+1) only positively. In practice, we also apply reverse unrolling in the UCM-BMC1 algorithm.

The Algorithm 2 describes Induction step of UCM-k-ind-step. The full UCM-k-ind is the standard
alternation between UCM-BMC1 as UCM-kind-base and UCM-k-ind-step as described in Section 3.

Algorithm 2 UCM-k-ind (induction step)
1: function UCM-K-IND-STEP
2: n← 0, M← /0
3: while n≤MaxBound do
4: if ISSAT(M∪U r(E N ,n)) then
5: M← model(M∪U r(E N ,n))
6: n← n+1
7: else
8: if M = /0 then
9: return PROVED

10: else
11: M←Msat(M,U r(E N ,n))
12: end if
13: end if
14: end while
15: return induction step fails upto MaxBound
16: end function

7 Quantified invariants
One of the advantages of using first-order logic in verification is that it allows one to represent uni-
versally quantified invariants. During the run of UCM-BMC1 and UCM-k-ind it is possible to generate
universally quantified invariants from the unsatisfiable cores (line 17 in Algorithm 1 and line 10 of Algo-
rithm 2). Consider line 17 in Algorithm 1. At this stage we have M∪U (E N n,n) is unsatisfiable. We
extract an unsat core from M∪U (E N n,n). Let Muc be the literals in the model M from the unsat core
and, as before, N uc be the instances of the transition relation from the unsat core. Then, the disjunction
of the complements of all literals from Muc and N uc will be a ground lemma implied by the split rep-
resentation of the transition system. Let us denote this lemma as lemgr(Muc,N uc). The ground lemma
lemgr(Muc,N uc) will contain some state constants. Since the description of our transition system does
not contain state constants we can replace them by fresh variables obtaining a universally quantified
invariant which holds at all (sequences of) states and is implied by our representation of the transition
system. We denote such an invariant as inv(Muc,N uc). Let us consider an example.

Let Muc = {a(s1),¬b(s1),c(s2),¬d(s3)} and N uc = {N(1,s1,s2),N(2,s2,s3)}. Then the corre-
sponding ground lemma is

lemgr(Muc,N uc) = ¬N(1,s1,s2)∨¬N(2,s2,s3)∨¬a(s1)∨b(s1)∨¬c(s2)∨d(s3)

146

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

Figure 1: The ratio between the size of the transition relation used by UCM over the full relation.
UCM-BMC1 with property lemmas (red dotted line) and UCM k-induction (blue solid line).

and the corresponding quantified invariant:

inv(Muc,N uc) = ∀S1,S2,S3[¬N(1,S1,S2)∨¬N(2,S2,S3)∨¬a(S1)∨b(S1)∨¬c(S2)∨d(S3)].

Such quantified invariants can be added to the system description and can be shared between UCM-
BMC1 and UCM-k-ind.

8 Implementation
We implemented the approach described above in the iProver system [16]. iProver is a general purpose
theorem prover for first-order logic which incorporates SAT solvers at its core (currently, MiniSAT [33]
and optionally PicoSAT [34]). iProver is particularly efficient in the EPR fragment [35].

We implemented UCM-based algorithms, presented as Algorithms 1 and 2, in out system. We also
implemented the basic versions of BMC1 and k-induction, as described in Sections 2 and 3.

One of the main features of iProver which we used to implement BMC and k-induction is incre-
mentality wrt. assumptions, which in turn is based on incrementality of SAT solvers. Assumptions can
be used to assert or retract relevant clauses at each stage of the model checking process, by extending
clauses with a fresh literal and either assuming the negation of the literal to assert the clause, or assum-
ing the literal itself to retract the clause. We use the assumption literals boundn for every n which means
that the n’th iteration of the incremental model checking is performed. We also represent a partial model
as a set of assumption literals.

In our implementation we use several optimisations that significantly increase performance of the
system. One of such optimisations is based on the following observation. If the evaluation of a partial
unrolling is satisfiable, the model is used for the exhaustive unrolling check in the expansion phase.
Then, if that model is unsatisfiable, the unsat core is added to the partial unrolling (lines 25–27 and
12–20 of Algorithm 1). In practice this scenario repeats several times: the model appears to be too
restrictive for the exhaustive unrolling, then at the next iteration slightly modified model is used. We
collapse this loop, adjusting partial model in the expansion phase by removing from it all assumptions
that are contained in the unsat core and continue with the expansion phase to expand the transition set
with several unsat cores.

147

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

problem HWMCC iProver method
6s268 129 130 UCM
6s279 14 15 BMC1
6s280r 15 16 both
6s339rb19 91 125 UCM
6s393r2 30 15 BMC1
6s402rb03422 14 15 UCM
6s516r 15 16 both
6s517rb0 14 15 both
bobsmcodic 19 20 both

Table 1: Deep Bounds problems where iProver outperforms systems in HWMCC-14

iProver accepts problems in the TPTP first-order format [36]. AIGER [37] is a hardware description
language which contains only AND-gates (with possible negations) and latches to describe the state
change. A safety verification problem in the AIGER format contains a description of a circuit and a
Boolean property that should hold in all computational states. In iProver an AIGER problem is trans-
formed into the EPR verification problem and is passed to the solver. We apply several optimisation
techniques at the AIGER level including definition merging, constant propagation and non-growing
inlining similar to [26]. We used an AIGER parser provided by AIGER tools [37].

9 Evaluation
For evaluation we used hardware verification benchmarks from HWMCC-14 competition in the single
safety property track and deep bounds track. These problems are represented at the bit-level rather than
at the word-level, which we believe largely limits the advantages of the EPR-based model checking. For
experiments we used 15 min timeout, the same as in the competition. Experiments were performed on
the machine with Intel Xeon L5410 2.33 GHz processor and 12 Gb of RAM under Linux.

iProver performed well on the deep bounds track (79 problems), reaching strictly higher bounds
than any other system from the competition on 9 problems. iProver also proved validity of a deep bound
problem 6s393r and non-validity of 6s402rb0342, which were not previously known. Table 1 shows the
problems from Deep Bounds track of the HWMCC-14 for which iProver reached larger bounds than the
best bounds reached during the competition. Let us note that for a number of problems UCM-BMC1
was essential to reach deeper bounds. On the problems from safety property track (230 problems),
iProver solved 50 problems, 28 SAT and 22 UNSAT. UCM-BMC1 alone can prove UNSAT (line 37 of
Algorithm 1) this happens on 11 problems in these benchmarks.

Figure 1 shows a comparison between the size of the transition relation used by the UCM procedure
and the full relation on the HWMCC-14 benchmarks. Our abstraction-refinement approach uses under
10% of the transitional relation in 2/3 of cases, therefore we can conclude that on most problems only
small parts of the transition relation are involved in our discrete unrollings.

10 Conclusion
In this paper we presented an EPR-based BMC and k-induction with counterexample guided abstraction
refinement. We implemented our approach in a first-order theorem prover iProver and evaluated our
implementation over hardware verification benchmarks from the HWMCC’14 competition. The deep

2Problem 6s393r was PROVED using UCM-k-ind and 6s402rb0342 was DISPROVED by iProver.

148

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

bounds track at HWMCC represents the most challenging set of publicly available real-life HW ver-
ification benchmarks. On these benchmarks, iProver was able to improve bounds on 7 problems and
fully solve two additional problems, in comparison, out of 62 deep bounds benchmarks that were used
both in 2013 and 2014 competitions, the solvers participating at HWMCC’14 were able to collectively
improve the reached bounds on 21 problems. We have shown experimentally that only small parts of
the transition relation are involved in our discrete unrollings and we believe other SAT and SMT based
verification methods can also benefit from such discrete unrollings. As a by-product of this research, we
are also translating AIGER benchmarks into first-order TPTP benchmarks which can be used to eval-
uate first-order theorem provers on hardware verification problems. As a future work we are planning
to compare and combine our approach with other property directed methods such as PDR/IC3 [19] and
interpolation [18, 22, 29].

References
[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model checking without bdds,” in TACAS’99,

1999, pp. 193–207.
[2] A. Biere, “Bounded model checking,” in Handbook of Satisfiability. IOS Press, 2009, pp. 457–481.
[3] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Modeling and verifying systems using a logic of counter

arithmetic with lambda expressions and uninterpreted functions,” in CAV, 2002, pp. 78–92.
[4] P. Manolios, S. K. Srinivasan, and D. Vroon, “Automatic memory reductions for rtl model verification,” in

ICCAD, 2006, pp. 786–793.
[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-Guided Abstraction Refinement,”

in CAV, 2000, pp. 154–169.
[6] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties using induction and a sat-solver,” in

FMCAD’00, 2000, pp. 108–125.
[7] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer, “Software verification using k-induction,” in SAS,

2011, pp. 351–368.
[8] A. Biere and D. Kröning, “Sat-based model checking,” in Handbook of Model Checking, E. Clarke, T. Hen-

zinger, and H. Veith, Eds. IOS Press, 2015, pp. 457–481.
[9] J. A. N. Pérez and A. Voronkov, “Encodings of bounded LTL model checking in effectively propositional

logic,” in CADE-21, 2007, pp. 346–361.
[10] M. Emmer, Z. Khasidashvili, K. Korovin, and A. Voronkov, “Encoding industrial hardware verification prob-

lems into effectively propositional logic,” in FMCAD, 2010, pp. 137–144.
[11] M. Emmer, Z. Khasidashvili, K. Korovin, C. Sticksel, and A. Voronkov, “EPR-based bounded model checking

at word level,” in IJCAR, 2012, pp. 210–224.
[12] G. Kovásznai, A. Fröhlich, and A. Biere, “BV2EPR: A Tool for Polynomially Translating Quantifier-Free

Bit-Vector Formulas into EPR,” in CADE, 2013, pp. 443–449.
[13] G. Kovásznai, A. Fröhlich, and A. Biere, “On the complexity of fixed-size bit-vector logics with binary

encoded bit-width,” in SMT’12, 2012, pp. 44–56.
[14] N. Dershowitz, Z. Hanna, and J. Katz, “Bounded model checking with QBF,” in Theory and Applications of

Satisfiability Testing, 8th International Conference, SAT 2005, 2005, pp. 408–414.
[15] T. Jussila and A. Biere, “Compressing BMC encodings with QBF,” Electr. Notes Theor. Comput. Sci., vol.

174, no. 3, pp. 45–56, 2007.
[16] K. Korovin, “Inst-Gen - a modular approach to instantiation-based automated reasoning,” in Programming

Logics, 2013, pp. 239–270.
[17] A. Gupta and O. Strichman, “Abstraction refinement for bounded model checking,” in Computer Aided Veri-

fication, 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings,
2005, pp. 112–124.

149

EPR-based k-induction with CEGAR Khasidashvili, Korovin and Tsarkov

[18] K. L. McMillan, “Interpolation and sat-based model checking,” in CAV, 2003, pp. 1–13.
[19] A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI, 2011, pp. 70–87.
[20] K. L. McMillan and N. Amla, “Automatic abstraction without counterexamples,” in TACAS, 2003, pp. 2 – 17.
[21] A. Gupta, M. Ganai, Z. Yang, and P. Ashar, “Iterative abstraction using sat-based bmc with proof analysis,”

in ICCAD, 2003, pp. 416 – 423.
[22] N. Amla and K. L. McMillan, “A hybrid of counterexample-based and proof-based abstraction,” in FMCAD,

2004, pp. 260 – 274.
[23] N. Een, A. Mishchenko, and N. Amla, “A single-instance incremental sat formulation of proof- and

counterexample-based abstraction,” in FMCAD, 2010, pp. 181 – 188.
[24] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of property directed reachability,” in

FMCAD, 2011, pp. 125–134.
[25] P. Baumgartner, A. Fuchs, H. de Nivelle, and C. Tinelli, “Computing finite models by reduction to function-

free clause logic,” J. Applied Logic, vol. 7, no. 1, pp. 58–74, 2009.
[26] K. Hoder, Z. Khasidashvili, K. Korovin, and A. Voronkov, “Preprocessing techniques for first-order clausifi-

cation,” in FMCAD’12, 2012, pp. 44–51.
[27] L. Zhang and S. Malik, “Extracting small unsatisfiable cores from unsatisfiable boolean formula,” in SAT03,

2011.
[28] E. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability for cnf formulas,” in DATE03, 2003,

pp. 10 886–10 891.
[29] N. Bjørner, A. Gurfinkel, K. Korovin, and O. Lahav, “Instantiations, zippers and EPR interpolation,” in

LPAR’13, short papers, ser. EPiC Series, vol. 26, 2014, pp. 35–41.
[30] K. Korovin and C. Sticksel, “A note on model representation and proof extraction in the first-

order instantiation-based calculus Inst-Gen,” in (ARW’12), 2012, pp. 11–12. [Online]. Available:
http://arw2012.cs.man.ac.uk/

[31] C. G. Fermüller and R. Pichler, “Model Representation via Contexts and Implicit Generalizations,” in CADE
20, 2005, pp. 409–423.

[32] N. Eén and N. Sörensson, “Temporal induction by incremental SAT solving,” Electr. Notes Theor. Comput.
Sci., vol. 89, no. 4, pp. 543–560, 2003.

[33] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proc. of the 6th International Conference SAT’03,
ser. LNCS, vol. 2919. Springer, 2004, pp. 502–518.

[34] A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.
[35] G. Sutcliffe, “The CADE-24 automated theorem proving system competition - CASC-24,” AI Com., vol. 27,

no. 4, pp. 405–416, 2014.
[36] ——, “The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0,” JAR,

vol. 43, no. 4, pp. 337–362, 2009.
[37] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” 2011, http://fmv.jku.at/aiger/.

150

http://arw2012.cs.man.ac.uk/
http://fmv.jku.at/aiger/

	Introduction
	BMC1
	BMC1 with property lemmas.

	EPR-based k-induction
	Complete k-induction

	Reducing to the EPR in the case of functions with finite ranges
	Unsat Core and Model Guided BMC1 (UCM-BMC1)
	Splitting transition relation
	 UCM-BMC1 procedure
	Unsat cores
	Partial models
	States

	Unsat Core and Model Guided k-induction
	Quantified invariants
	Implementation
	Evaluation
	Conclusion

