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Abstract 
 Intelligent American Sign Language System (IASLS) is a mobile application that 

allows users to operate their phone or tablet’s camera to capture American Sign Language 
(ASL) and convert it into text which could later be saved as a note or copied into a text 
message or document. Text captured from translated finger spelling or full words in ASL 
can be used to send a message cross-platform to other IASLS users, to take notes in the 
app, and to help support an in-person conversation between users with ranging abilities. 
Additionally, users who do not know ASL can use the app’s built-in dictation feature to 
communicate with people with deafness. IASLS is a mobile application that is designed 
to facilitate and speed up communication between parties using ASL. 

1 Introduction 
 

Communication is an important aspect of life for most people we use verbal words as our main way 
of communication, but not all people can do so due to issues related to muteness, deafness, or both. The 
causes of deafness can be genetics, complications at birth, infectious diseases, chronic ear infections, 
use of drugs and toxicants, excessive noise exposure, and age, while muteness can be caused by 
endotracheal intubation, tracheostomy, or damage to the vocal cords from disease or traumas. Muteness 
in a way can also be an effect of deafness. Currently, about 466 million people worldwide require 
rehabilitation to address their hearing loss, 34 million among which are children, and by 2050, over 700 
- 900 million people are estimated to have hearing loss. These numbers demonstrate the deepness and 
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the magnitude of the problem, but this is only looking into half the problem. There is nearly the same 
number of people suffering from the ability to lose speech. Even with the advancement of science and 
tools to aid those people, there are still a lot of people whose only method to communicate is through 
sign language.  

 
Using sign language enables the deaf and the mute to communicate effectively and provides a global 

way for everyone to communicate with them accurately and effectively. The problem is that not 
everyone can use sign language which is why in many cases there is a translator for them especially 
when they speak publicly or need to communicate with someone who is not familiar with the sign 
language. That is why it is important to design a tool that can effectively catch the person 
communicating and translate it into words in real-time so that people can communicate effectively and 
easily with each other. Through the Utilization of machine learning techniques we can build better tools 
for such purpose. Previous studies utilizing machine learning techniques [1-22] have shown great 
promise in this area of research. In this paper, we developed a mobile application called IASLS to help 
support in-person conversations between users with ranging abilities using American sign language. 
 

IASLS takes the captured visual data from the phone’s camera and sends it to a machine learning 
module (e.g., TensorFlow), which continuously learns, analyzes, and makes decisions based on a given 
dataset. Results are sent back to the user’s device and saved as a text document. Users can use this 
application for multiple purposes. IASLS can act as a “keyboard” for people who have difficulties 
typing on their phone, or as an American Sign Language learning tool. Users are also able to 
communicate with others directly through the app. By using our ASL translating functionality, users 
can sign directly into the phone’s camera and the app can distinguish what the user is trying to say. 
Once the user has text in place, the user can send their signed message to another user in a private 
messaging system.  

 
IASLS can run on both the Android and iOS platforms. The iOS version is developed in Swift, while 

Java is used for the Android version. Both platforms used a unified machine learning component 
(TensorFlow) for pattern recognition of hand gestures. Specifically, a CNN-LSTM model was used for 
video classification. The deep learning model can distinguish between many different pre-defined 
words based on the dataset used. Both Android and iOS workflows work in the same way. A stream of 
images from the camera feed is pre-processed and sent to the trained model on the device for 
classification. The predictions are post-processed, and the most confident prediction is displayed in the 
text field. The aggregate of text is saved on the user’s local device. 

 
In order to recognize the gestures efficiently, the machine learning model needs a large dataset of 

videos/pictures of American Sign Language for training. The training process demands a lot of 
processing power. Therefore, this phase was done on a machine with an NVIDIA GeForce RTX 2080 
GPU. The actual machine learning algorithm consists of a CNN-LSTM architecture. Convolutional 
Neural Networks (CNNs) are popular in the field of image classification and computer vision. They are 
used to extract features from an image and create a feature map. Long Short-Term Memory (LSTM) on 
the other hand is a type of recurrent neural network specialized in learning long-term dependencies. 
Alternatively, we experimented with other deep learning architectures to achieve peak performance. 
We experimented with different architectures to find the best-performing model. One such alternative 
involved using a 3-dimensional CNN which allowed for extracting features in both the spatial and 
temporal domains. Many iterative experiments were performed to optimize the model. We found the 
CNN-LSTM model performed best on our validation set.  
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2 System Block Diagram 
Figure 1 illustrates IASLS’s system block diagram; images are captured from the user’s smartphone 

and captured as input to our machine learning model. The machine learning model is then diagrammed 
on the right showing images taken by the smartphone sent as 32x64x200x200 (batch of 32 64-frame 
video clips) through a 3D-CNN LSTM system with an MLP classifier. After classification, the 
prediction of the word or letter is sent back to the user’s smartphone as text output. 

 

 
Figure 1: System Block Diagram  

3 State Diagrams 
 
Figure 2 illustrates IASLS’s Translation State Diagram. It describes the various steps around the 

app and how to go back and forth in the process. The whole diagram has been color coded to represent 
different types of components of the app. The color codes are. Violet: View-Controller, Light Purple: 
Firebase Service, Orange: OS System Call API, Gray: IASLS Translation Algorithm.   

 
At first, the user is prompted to sign into the app, if the user does not have an account, they can 

proceed to sign up. The sign-in process is only done only if the user is not already signed into the app. 
Once signed in, every time the user signs in afterward, they can skip the authentication step. The user 
also has the option to skip signing in and to use the app as a guest. Signing in is required for messaging 
capabilities.  

 
Once the user is authenticated, they will be shown the main view, which comprises a camera view. 

The user can use the main feature of the app, the ASL recognition and speech-to-text feature in this 
view. The camera captures the video using the front camera, it can also be switched to point and shoot 
using the rear camera. Once the video is recorded, it’s sent to the backend server to run by a model. 
Once the model analyzes the video, it returns the text of ASL in the video, then sent back to the user 
which is then shown on the display as text and played as a sound using AVSpeechSynthesizer. In order 
to hold a natural conversation, AVSoundRecorder records what the other person says, and then 
transcribes it to text, which is then made visible to the ASL speaker on the screen. 

 

IASLS a Mobile Application for Communications in American Sign Language Applebaum et al.

30



 
Figure 2: State Machine Diagram 

4 Activities 
This project requires access to both iOS and Android development environments that are XCode on 

macOS and Android Studio. Mobile devices are needed for testing, including an iPhone and an Android 
phone. In order to create and train our machine learning model, we used a remote GPU server with high 
computational power since our training dataset is very large in size and quantity. Internet access is 
required in order to connect the application with the back-end server. GitHub was used for project 
management. 

 
We used TensorFlow software, for both iOS and Android, to help with developing our app. 

TensorFlow was used as a base to kickstart our implementation of the machine learning aspect of this 
project since we need to train the app to understand a wide range of hand motions. In order to train the 
model, we need a large dataset of sign language examples that we can parse and evaluate. The dataset 
has video clips of someone signing a word or phrase along with a text version of the word or phrase. 

 
Detailed Design: 
(1) Convert the MS-ASL dataset into usable data 
a. Download YouTube videos 
b. Process videos using MS-ASL requirements (bounding box, time stamps) 
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c. Maintain 1-to-1 correspondence between videos and labels 
(2) Develop code responsible for data wrangling and training 
a. Generator class used for loading data in batches (can't fit into mem) 
b. Normalize videos to fit the model (i.e.: reshaping, grayscale, shortening, extending based on 

the length of the video 
c. Develop different types of ML algorithms (3d-CNN, Inception 3d, CNN-LSTM) 
(3) Develop code for evaluating a model 
a. Decoding script used for loading a test dataset 
b. Scoring the output of the saved model against ground truths of the test set 
(4) Perform tuning to find optimal model parameters for best performance 
(5) Launch Camera Activity and hold X + K number of frames from the stream, normalize the 

FPS among devices to ensure the same frame rate 
a. X is the number of frames the model takes in, K is the number of buffer frames 
b. The idea is that if X is 30 frames (i.e., one second), a signed word may not be in the same exact 

time as that one-second interval. So, a buffer 11of frames are used, and a sliding window technique was 
used to predict every 30 frames of the image stream. The predictions are post-processed so that once 
the threshold confidence has been reached (I.e.: 80% confident), that is the word that is the output. This 
means the model will run a bit slower than in real-time.  

(6) Use Firebase Realtime Database to send messages between users.  
(7) For Android, the ‘Play’ button activates TTS by invoking its built-in Text-To-Speech engine. 

This will concatenate all the output of the model into a string and pass it to the engine for playback. For 
the iOS version, the same process is used and Apple’s Voice Over API will convert the string to speech. 

(8) The phone’s microphone records the non-mute users’ voice and the app’s speech-to-text 
function can convert the recording to text and send it over the web to a hearing-impaired user. 

5 Development Environment 
The required development environment is two-fold. For the iOS version of our project, we used 

XCode to develop our project. In XCode, we used Swift to write our code. For the Android version of 
our app, we used Android Studio as our base, and we developed the layout and functioning of the app 
with Java. In addition to Java, we use XML to design the look and feel of the app. The base of our app 
is built on software already produced by Google’s TensorFlow. TensorFlow is an open-source 
collection of software that helps with building machine learning platforms. Since TensorFlow already 
has some of the camera and text displaying functionality ready to go, we use this to kickstart the design 
of the app and help use it to create our sign language recognizing machine learning model. 

 
In order to test our applications, we used the simulators that come with XCode and Android. Both 

have decent simulators that are very helpful in creating and testing the design of the app, however, the 
simulators have their limits. Since our app is heavily based on the use of the phone’s camera, and the 
simulators do not allow developers to use the computer’s camera, we used our phones to test the camera 
and motion recognition parts of the functionality. Our team has an equal distribution of users with 
iPhones for iOS testing and Android phones for Android testing, so this should not be a disadvantage. 
We used a software called Telegram for the messaging part of our app. Telegram has an API that we 
for sending and receiving messages from other users. We used this to integrate the ASL translations. 

 
In addition to the environments, we used a GPU server to download an ASL dataset that has been 

collected by Microsoft. The dataset contains a significant number of words and a video of their 
translations in American Sign Language. After that, we parsed the collection of words and used the 
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videos to create our machine learning model. After downloading this dataset, we created a Python script 
to parse through this data and create training, testing, and validation sets, as well as normalizing all the 
videos to a 200x200 frame with a total length of 64 frames. Downscaling all the videos to 200x200 
certainly caused a loss of resolution, however, this tradeoff was worth it as higher dimensions would 
drastically slow the training process. 

6 Algorithms  
As we have a machine learning backend, we implemented a neural network and fed it training and 

testing data. We created a 3-dimensional convolutional neural network paired with a Long Short-Term 
Memory (LSTM) recurrent neural network. The 3-dimensional convolutional layer generates 
spatiotemporal features for each video input. These features were passed along to the LSTM layer where 
long-term dependencies were learned. Finally, the outputs of the LSTM were flattened and passed along 
to a fully connected multi-layer perceptron. This represents the classification portion of the model and 
has an output layer of 1000 nodes, one for each word in the dataset. 

 
We downloaded pre-categorized videos of various examples of signing. These videos were trained 

on the neural network over 10 epochs. We ran the training data through enough training epochs for the 
neural network to learn the various features of the signing data; however, we ran into system limitations 
as running the data through many epochs required the model to run on the GPU for an extensive amount 
of time. Fortunately, this wasn’t an issue as we found that after about 7 epochs the model began 
overtraining and performed worse on validation sets. 

 
We implemented certain techniques into our neural network to reduce the overfitting problem, 

which may occur if the neural network simply “memorizes” the training data instead of learning its 
features. If the former occurs, then the neural network would likely perform very well on the training 
data but would likely perform much worse on the testing data. In order to mitigate the problem of 
overfitting, we utilized a dropout technique. The technique is a way of reducing overfitting by randomly 
ignoring a given percentage (50% in our case) of neurons from the training step in each epoch. This 
ensures that the model is less reliant on specific neurons and can assign appropriate weights to all 
neurons. Another way of eliminating potential overfitting could be to simply ensure that the number of 
epochs is not too high. We trained the model for 10 epochs and saved the weights after each epoch. 
After training was complete, we loaded the model with each of the weights and ran them on our 
validation set. From there, we simply chose the weights that had the highest accuracy for the validation 
set. 

7 Database Design 
 

Figure 3 illustrates the design of our database that we used to store the information for our messaging 
and notetaking features. Firebase uses a node tree to store its data, so this is the best representation of 
that, however, there are no foreign keys or primary keys in a way. Those are defined in the code when 
go and read and write to the tree of nodes. In theory, in each of these tables, there is a node in its tree 
and the values inside each one is a sub-node of the root node. The “Users” node/table holds a unique 
ID of each user. It also holds the name and the email of the user. These values are obtained by the 
authentication feature that Firebase provides. In the “Messages” table, there is a unique ID for each 
message sent. Each message also has a receiver ID and a sender ID that correlate to the “Users” table. 
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There is always a sender and a receiver in each message sent. Each message node also has a text field 
that holds the text of the message as well as a timestamp of when the message was sent.  

 
There is also a “User-Messages” node/table that helps with identifying which user owns which 

message. This is mainly here to quickly and easily track down every message in our messages table that 
belongs to a particular user. The strategy for this is called fanning out. Instead of observing every 
message in the table when we go to gather someone’s messages, we can keep track of which messages 
they own via the user-messages table, which holds the IDs of every message that every user holds, and 
then use those IDs to track down the messages in the messages table. This will save time and money so 
that we do not have to read from the database as much.  

 
On the notetaking side, the concept is pretty much the same. Each notes table holds a unique “Notes” 

ID, the owner ID which correlates to someone in the “Users” table, the text field which holds the text 
of the note, the title field which holds the title of the note, and the timestamp which holds the time it 
was created or updated. The “Notes” table also has a “User-Notes” table which does the same kind of 
user tracking as the “User-Messages” table does. When a note gets made, it finds or creates a node with 
the ID of the user and saves every note ID in that node for quick access to who owns which note. 

 

 
Figure 3: Database Diagram 

8 Testing 
For this project, the model training phase takes a large amount of time.  This prompted us to use at 

the beginning only a portion of the data to create the test model to generalize the data and to make sure 
our machine learning implementation is accurate. We then moved on to the actual training phase of the 
model with all the datasets.  

 
Next, to test the mobile application we used GitHub’s continuous integration platform GitHub-

Actions, so we can test our application for every merge into the main branch. These mainly comprised 
of end-to-end tests of the user interface where user interactions such as button presses were simulated. 
Unit testing of the app consisted of testing the connection between our software and the ASL recognition 
model. We sent simple consistent images to our ASL letter recognition API and would assert the 
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expected letter output. There were aspects of the application that were not able to be captured using 
automated testing. Specifically, the smartphone’s video capture could not be easily or reliably tested 
using end-to-end testing, so we opted for manual acceptance testing for these features. Our team would 
manually pull in any new code to our local machine and install the testing version of the application on 
our physical smartphones. This testing helped ensure that our project’s main branch was always relevant 
and never broken. Therefore, if the main branch ever gets corrupted by a faulty pull request, GitHub’s 
integration testing will alert us about it.  

 
There were issues with using GitHub Actions for continuous integration. The speed of GitHub 

macOS virtual environments was limited and often very slow. This made testing the iOS Application 
much slower than testing the Android equivalent as the Java environment can run in GitHub Linux 
virtual machines at a faster rate. We are also limited to only 5 concurrent macOS testing environments 
for our iOS application whereas our Android application can have up to 20 concurrent testing 
environments. 

9 Conclusion 
In this paper, we introduced a mobile application called IASLS that allows users to operate their 

phone or tablet’s camera to capture American Sign Language (ASL). The application has a lot of 
capabilities, it allows for fast finger spelling detection and is very responsive to ASL word detection. 
The user is provided the ability to help in training the video classification model. In addition to a multi-
platform chat feature between IASLS users and a note-taking feature. The application has still ways to 
go before coming to a full-fledged software tool but in the meantime, the application provides the users 
with a very convenient way to communicate with each other without the need for one of the parties to 
have a translator or the other party to know about ASL. Future work might include building the tool as 
part of a pipeline [23-28, 30-32] of programs to provide more functionality to the users or designing 
another program using the same factors [29] and inserting it within the tool to perform additional 
functionality.  

 

10  Resources 
IASLS Mobile Applications version for both Android and iOS can be found at the links below 
https://github.com/Capstone-Projects-2020-Spring/iASL-iOS 
https://github.com/Capstone-Projects-2020-Spring/iASL-Android 
 
The Algorithmic detail for the IASLS backend is available at https://github.com/Capstone-Projects-
2020-Spring/iASL-Backend 

 

References 
 
 
[1] Kumar P, Gauba H, Roy PP, Dogra DP. Coupled HMM-based multi-sensor data fusion for sign 

language recognition. Pattern Recognition Letters. 86: p. 1-8, 2017. 

IASLS a Mobile Application for Communications in American Sign Language Applebaum et al.

35



[2] Jin CM, Omar Z, Jaward MH. A mobile application of American sign language translation via 
image processing algorithms. Proceedings of IEEE Region 10 Symposium, TENSYMP. p. 104-109, 
2016. 

[3] Cayamcela MEM, Lim W. Fine-tuning a pre-trained Convolutional Neural Network Model to 
translate American Sign Language in Real- time. 2019 International Conference on Computing, 
Networking and Communications, ICNC. p. 100-104, 2019. 

[4] Xu P. A Real-time Hand Gesture Recognition and Human-Computer Interaction System. Apr 
24, 2017. 

[5] Pigou L, Dieleman S, Kindermans PJ, Schrauwen B. Sign Language Recognition Using 
Convolutional Neural Networks. In Pigou L, Dieleman S, Kindermans PJ, Schrauwen B.  p. 572-578, 
2015. 

[6] Hore S, Chatterjee S, Santhi V, Dey N, Ashour AS, Balas VE, et al. Optimized Neural Networks. 
p. 139-151, 2017. 

[7] Abdelnasser H, Harras KA, Youssef M. WiGest demo: A ubiquitous WiFi-based gesture 
recognition system. Proceedings - IEEE INFOCOM. p. 17-18, 2015 

[8] Thongtawee A, Pinsanoh O, Kitjaidure Y. A Novel Feature Extraction for American Sign 
Language Recognition Using Webcam. BMEiCON 2018 - 11th Biomedical Engineering International 
Conference. p. 1-5, 2019. 

[9] Aly W, Aly S, Almotairi S. User-independent american sign language alphabet recognition based 
on depth image and PCANet features. IEEE Access. p. 123138-123150, 2019. 

[10] Koller O, Zargaran S, Ney H, Bowden R. Deep sign: Hybrid CNN-HMM for continuous sign 
language recognition. British Machine Vision Conference, BMVC. p. 136.1-136.12, 2016. 

[11] Brandon Garcia , Sigberto Alarcon Viesca. Real-time American Sign Language Recognition 
with Convolutional Neural Networks. [Online]. Available from: 
http://cs231n.stanford.edu/reports/2016/pdfs/214_Report.pdf. 

[12] Taskiran M, Killioglu M, Kahraman N. A Real-Time System for Recognition of American Sign 
Language by using Deep Learning. 2018 41st International Conference on Telecommunications and 
Signal Processing, TSP. p. 1-5, 2018. 

[13] Guo D, Zhou W, Wang M, Li H. Sign language recognition based on adaptive HMMS with 
data augmentation. Proceedings - International Conference on Image Processing, ICIP. p. 2876-2880, 
2016. 

[14] Rao GA, Kishore PVV. Sign language recognition system simulated for video captured with 
smart phone front camera. International Journal of Electrical and Computer Engineering. 6(5): p. 2176-
2187, 2016. 

[15] Yeo HS, Lee BG, Lim H. Hand tracking and gesture recognition system for human-computer 
interaction using low-cost hardware. Multimedia Tools and Applications. 2015; 74(8): p. 2687-2715. 

[16] Cui R, Liu H, Zhang C. Recurrent convolutional neural networks for continuous sign language 
recognition by staged optimization. Proceedings of the 30th IEEE Conference on Computer Vision and 
Pattern Recognition, CVPR. p. 1610-1618, 2017. 

[17] Huang J, Zhou W, Zhang Q, Li H, Li W. Video-based sign language recognition without 
temporal segmentation. 32nd AAAI Conference on Artificial Intelligence, AAAI. p. 2257-2264, 2018. 

[18] Joshi A, Sierra H, Arzuaga E. American sign language translation using edge detection and 
cross correlation. Proceedings of IEEE Colombian Conference on Communications and Computing, 
COLCOM 2017. 

[19] Shahriar S, Siddiquee A, Islam T, Ghosh A, Chakraborty R, Khan AI, et al. Real-Time 
American Sign Language Recognition Using Skin Segmentation and Image Category Classification 
with Convolutional Neural Network and Deep Learning. IEEE Region 10 Annual International 
Conference, Proceedings/TENCON. p. 1168-1171, 2019. 

IASLS a Mobile Application for Communications in American Sign Language Applebaum et al.

36



[20] Ahmed W, Chanda K, Mitra S. Vision based Hand Gesture Recognition using Dynamic Time 
Warping for Indian Sign Language. In International Conference on Information Science (ICIS) IEEE. 
p. 120-125, 2016. 

[21] Jalal MA, Chen R, Moore RK, Mihaylova L. American Sign Language Posture Understanding 
with Deep Neural Networks. 2018 21st International Conference on Information Fusion, FUSION. p. 
573-579, 2018. 

[22] Flores CJL, Cutipa AEG, Enciso RL. Application of convolutional neural networks for static 
hand gestures recognition under different invariant features. Proceedings of the 2017 IEEE 24th 
International Congress on Electronics, Electrical Engineering and Computing, INTERCON p. 5-8, 
2017. 

[23] Aldwairi T, Chevalier DJ, Perkins AD. Exploring the Effect of Climate Factors on SNPs within 
FHA Domain Genes in Eurasian Arabidopsis Ecotypes. Agriculture. 11(2):166, 2021. 
https://doi.org/10.3390/agriculture11020166  

[24] Aldwairi, T., Elam, B., Hoffmann, F., & Perkins, A. D. RepCalc: a Tool For Calculating 
Transposable Element Density within the Genome. Proceedings of the 34th International Conference 
on Computers and Their Applications (BICOB) 2018. 

[25] T. Aldwairi, B. Nanduri, M. Ramkumar, D. Gautam, M. Johnson, A. D. Perkins. "Statistical 
Methods for Ambiguous Sequence Mappings". In Proceedings of the International Conference on 
Bioinformatics, Computational Biology and Biomedical Informatics (BCB'13), Association for 
Computing Machinery, New York, NY, USA, 674–675, 2013. 
DOI:https://doi.org/10.1145/2506583.2506678  

[26] T Aldawiri, et al. "A Novel Approach for Mapping Ambiguous Sequences of Transcriptomes." 
In Proceedings of 14th International Conference on Bioinformatics and Computational Biology. Vol. 
83, pp. 76-85. 2022. 

[27] Aldwairi T, Hoffmann F, Perkins AD. Prediction Of Novel Pirna Rat Clusters Based On 
Mouse Pirna Clusters Using Downstream and Upstream Analysis. InProceedings of 11th International 
Conference. Mar 18 (Vol. 60, pp. 190-199), 2019. 

[28] Aldwairi, Tamer Ali, "Computational Methods for Solving Next Generation Sequencing 
Challenges" (2014). Theses and Dissertations. 1140.  

https://scholarsjunction.msstate.edu/td/1140.  
[29] Al-Agtash, Salem Y., et al. "Re-Engineering BLUE Financial System Using Round-Trip 

Engineering and Java Language Conversion Assistant." Software Engineering Research and Practice. 
(pp. 657-663) 2006. 

[30] Aldwairi T, Perera D, Novotny MA. Measuring the Impact of Accurate Feature Selection on 
the Performance of RBM in Comparison to State of the Art Machine Learning Algorithms. Electronics. 
9(7):1167, 2020. https://doi.org/10.3390/electronics9071167 

[31] Aldwairi, T., Perera, D., & Novotny, M. A. An evaluation of the performance of Restricted 
Boltzmann Machines as a model for anomaly network intrusion detection. Computer Networks, 144, 
111-119, 2018. 

[32] Aldwairi T, et al. An Investigation of the Role of Feature Selection on the Classification 
Performance of Machine Learning Algorithms. In Proceedings of the 33rd International Conference on 
Computers and Their Applications (CATA). 2018. 

  
 

IASLS a Mobile Application for Communications in American Sign Language Applebaum et al.

37


