
EPiC Series in Computing

Volume 79, 2021, Pages 82–90

Proceedings of ISCA 34th International Conference on
Computer Applications in Industry and Engineering

Mixtures of Normalizing Flows

Sebastian Ciobanu

Faculty of Computer Science
Alexandru Ioan Cuza University, Ias, i, Romania

aciobanusebi@gmail.com

Abstract

Normalizing flows fall into the category of deep generative models. They explicitly
model a probability density function. As a result, such a model can learn probabilistic
distributions beyond the Gaussian one. Clustering is one of the main unsupervised ma-
chine learning tasks and the most common probabilistic approach to solve a clustering
problem is via Gaussian mixture models. Although there are a few approaches for con-
structing mixtures of normalizing flows in the literature, we propose a direct approach
and use the masked autoregressive flow as the normalizing flow. We show the results
obtained on 2D datasets and then on images. The results contain density plots or ta-
bles with clustering metrics in order to quantify the quality of the obtained clusters.
Although on images we usually obtain worse results than other classic models, the 2D
results show that more expressive mixtures of distributions (than the Gaussian mixture
models) can be learned indeed. The code which implements this method can be found at
https://github.com/aciobanusebi/nf-mixture.

1 Introduction

Machine learning can be roughly split into two categories: supervised learning and unsupervised
learning. The latter one covers a wide range of tasks: density estimation, clustering, dimension-
ality reduction, anomaly detection, etc. The first two tasks will constitute the main focus of
this paper. There are classic approaches to density estimation like simply using a multivariate
Gaussian/normal distribution [13, sec. 3.2] and fitting the data using the maximum likelihood
principle (MLE) [13, sec. 4.2]. Besides a Gaussian distribution, a mixture of distributions
can be formed: Gaussian mixture model (GMM) [13, sec. 3.5.1]. The mixture models can be
successfully applied in clustering: after fitting the mixture parameters on the given data using
MLE, one can compute for each instance i and cluster c the posterior probability for i to be in
c, given the instance i—i.e. P (i ∈ c|i).

Deep learning has gained more and more popularity in recent years. New probabilistic
machine learning algorithms were also developed due to deep learning. The new era of generative
models spans the following categories: autoregressive models, variational autoencoders (VAEs)
[13, sec. 20.3.5], normalizing flows (NFs) [13, sec. 19.3.6.3], and generative adversarial networks
(GANs) [13, sec. 19.3.6.2]. The first and the third categories of algorithms model explicitly the
probability density function. We will discuss only the normalizing flows, by creating a mixture
of these models.
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The structure of this paper is as follows:

1. Section 2 contains related work;

2. in Section 3 we include information on our method, methodology, and results;

3. in Section 4 we present the conclusion and the ideas for future work.

2 Related Work

The literature provides a few examples of mixtures of normalizing flows, but no construction of
such mixtures is done straightforwardly as we will do.

In [4], a mixture of NFs is created, by partitioning the Rd space into disjoint subsets and
by combining real and discrete latent variables. If a VAE is used and the distribution of the
observed variables given the latent ones is a mixture of NFs, then this describes the approach in
[16], which applies the mixture in the context of point cloud generation and reconstruction. The
mixture of NFs in [15] differs from the straightforward one by introducing variational inference
when maximizing the likelihood function. Handling discrete variables in probabilistic models
can be problematic and a possible solution is to use the Gumbel-Softmax relaxation; the authors
in [10] created a more advantageous solution by using a discrete mixture of NFs.

3 Method and Experiments

3.1 Method

We propose a modality to directly build a mixture of NFs.
In general, a mixture of distributions can be defined as follows:

p(x; parameters) = π1p1(x; parameters1) + · · ·+ πkpk(x; parametersk),

where
∑k

i=1 πi = 1, π ∈ [0, 1], pi are probability/density functions, and k is the number of
distributions—or clusters in the context of clustering.

In general, to define a normalizing flow the following are mandatory: observable variables
X, latent variables Z, and a deterministic invertible mapping such that X = fparameters(Z). The
probability/density p(x) can be computed via the change of variables formula:

pX(x; parameters) = pZ(f−1
parameters(x))

∣∣∣∣∣det

(
∂f−1

parameters(x)

∂x

)∣∣∣∣∣ .
Usually, Z ∼ N (µ,Σ), where µ and Σ are the parameters of a multivariate normal distribution.
An example of normalizing flow is given by the masked autoregressive flow (MAF) [14]. We
chose to work with a MAF model because it is more expressive than other NFs—e.g. Real
NVP [3]—; it is also known that its sampling process takes a lot of time, but the likelihood
evaluation time is short, which is what we need in our context—i.e. we do not sample, but we
compute likelihoods.

Specifically, we work with the following mixture model:

p(x; parameters) = π1MAF1(x; parameters1) + · · ·+ πkMAFk(x; parametersk),
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where
∑k

i=1 πi = 1, π ∈ [0, 1], MAFi are probability/density functions, and k is the number
of distributions—or clusters in the context of clustering. For each MAFi, there is a different
corresponding masked autoencoder (MADE) [6] and a different corresponding Z distribution:

Z ∼ N

µ =


sample from U(0, 1)
sample from U(0, 1)

...
sample from U(0, 1)

 ,Σ =


0.1 0 . . . 0
0 0.1 . . . 0
...

...
. . .

...
0 0 . . . 0.1


 ,

where U(0, 1) represents the continuous uniform distribution on the interval [0, 1]. The variances
were heuristically set to 0.1 because every dataset is pre-processed such that all the values in
the data are in the interval [0, 1].

3.2 Experiments

We work with the following dataset types:

• toy 2D datasets

– circles

– moons

– pinwheel

– smile

– two bananas

• image datasets

– MNIST [11]: 70000 images, 28 × 28 = 784 pixels, 10 classes

– MNIST5: MNIST only with the digits 0, 1, 2, 3, 4: 35735 images, 28 × 28 = 784
pixels, 5 classes

– Fashion MNIST (F-MNIST) [18]: 70000 images, 28 × 28 = 784 pixels, 10 classes

– CIFAR-10 [9]: 60000 images, 32 × 32 × 3 = 3072 pixels, 10 classes.

Every dataset is pre-processed such that for each attribute the minimum value is 0, and the
maximum value is 1. For the image datasets, we also applied our model to the 100 dimensions
returned by the Principal Component Analysis (PCA) [13, sec. 20.1] algorithm.

All the masked autoencoders are different, but they have the same neural network
architecture—a multilayer perceptron (MLP) [13, sec. 13.2]—per dataset type:

• toy 2D datasets: 1 layer with 10 units, tanh activation function, Glorot uniform initial-
ization

• image datasets: 1 layer with 1024 units, tanh activation function, Glorot uniform initial-
ization.

We maximize the likelihood or, equivalently, minimize the negative log-likelihood, by us-
ing an acceleration of the gradient descent algorithm: Adam [8] with the parameters set to
the default values in TensorFlow [1]. The implementation was written using the Tensor-
Flow probability library [2]. The π1, . . . , πk variables are initialized in a uniform manner:
πinit
1 = 1

k , . . . , π
init
k = 1

k .
Other training parameters differ among the two categories:

84



Mixtures of Normalizing Flows Ciobanu

• toy 2D datasets: 2000 epochs; batch size of 4000; shuffle buffer size of 4000

• image datasets: 10 epochs; batch size of 4000 (MNIST), 3500 (F-MNIST), 1000 (CI-
FAR10), and 1000 (100-dimensional version of MNIST, F-MNIST, CIFAR10 via PCA);
shuffle buffer size of 1024

We compare our model with the following algorithms:

• random clustering

• k-means [13, sec. 21.3]

• Expectation-Maximization (EM) [13, sec. 8.7.2] for GMMs

• for MNIST5, we also report the results in [15].

We ran each algorithm 10 times and retained only the best run in terms of likelihood
maximization or, equivalently, of loss minimization. For this best run, we compute the following
clustering evaluation metrics:

• purity [13, sec. 21.1.1.1],

• adjusted Rand index (ARI) [7],

• Normalized Mutual Information (NMI) [5],

• unsupervised cluster accuracy (ACC) [12].

3.3 Results

3.3.1 Toy 2D datasets

The results are presented in Figures 1–2. Figure 1 shows the results of applying our algorithm
from three perspectives: by labeling the points with the predicted labels, by drawing the decision
boundaries between the clusters, and by density plots. On the circles dataset the results are
poor. The best results are obtained on the pinwheel and the two bananas datasets. One
remarkable observation is that the density plots highlight that the mixture tries to cover the
data with more flexibility than a normal distribution would do this—i.e. the shapes of the
distributions are not ellipses as in the case of the normal distribution. Figure 2 strengthens this
idea by showing other non-optimal density plots.

3.3.2 Image datasets

The results are presented in Tables 1–4. Table 1 presents the clustering metric values on the
image datasets. The mixture of NFs attains the best score in no situation. Nevertheless, it
is significantly better than the random model and in at least three situations it attains scores
approximately equal to the ones returned by the EM/GMM. Table 2 is taken from [15] and it
regards only the MNIST5 dataset. We wanted to compare our model to theirs and these were
the quantitative measures we could extract from their paper. As a result, Tables 3–4 come into
play. Without using PCA, we obtain only 3 clusters instead of 5—in fact, we obtain 2 empty
clusters—: cluster 1 mainly contains images of digit 1, cluster 2 mainly contains images of digit
4, and the other 3 digits are mainly in cluster 0. When using PCA, somehow the same pattern
occurs: two clusters mainly contain only one category of digits; the difference is that now there
are no empty clusters. From this perspective, Table 2 is in accordance with Tables 3–4 up to a
certain level.
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Figure 1: The results on the toy 2D datasets. Four columns: the dataset, the best clustering
result in 10 runs in terms of likelihood maximization, the decision boundary created when
clustering via the mixture using the best model—the points are colored using the real labels—,
the density plot (using the code in [17]) of the mixture using the best model—low densities are
darker and high density values are lighter
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Metric Data Random k-means EM/GMM Mixture of NFs

purity↑

MNIST 0.1133 0.58035 0.4102 0.2828
MNIST5 0.2204 0.8810 0.5678 0.5663
F-MNIST 0.1065 0.5546 0.5587 0.4626
CIFAR10 0.1063 0.2212 0.2065 0.1

MNISTPCA 0.1132 0.5807 0.5799 0.3440
MNIST5PCA 0.2204 0.8810 0.8650 0.6779
F-MNISTPCA 0.1054 0.5757 0.5529 0.3358
CIFAR10PCA 0.1057 0.2212 0.298 0.1830

ARI↑

MNIST 0 0.3646 0.1948 0.1518
MNIST5 0 0.7325 0.2639 0.3965
F-MNIST 0 0.3481 0.3728 0.3174
CIFAR10 0 0.0417 0.0226 0

MNISTPCA 0 0.3618 0.3449 0.1870
MNIST5PCA 0 0.7325 0.6773 0.4643
F-MNISTPCA 0 0.3741 0.3711 0.1757
CIFAR10PCA 0 0.0417 0.0940 0.0333

NMI↑

MNIST 0.0002 0.4845 0.3285 0.2901
MNIST5 0 0.7099 0.3513 0.5624
F-MNIST 0.0002 0.5119 0.5365 0.4924
CIFAR10 0.0003 0.0793 0.0569 0

MNISTPCA 0.0002 0.4831 0.5322 0.3095
MNIST5PCA 0.0001 0.7099 0.7357 0.5161
F-MNISTPCA 0.0002 0.5124 0.5726 0.3515
CIFAR10PCA 0.0003 0.0792 0.1619 0.0567

ACC↑

MNIST 0.1059 0.542 0.3766 0.2828
MNIST5 0.2028 0.8810 0.5678 0.5663
F-MNIST 0.1061 0.4740 0.5396 0.462
CIFAR10 0.1055 0.2062 0.1915 0.1

MNISTPCA 0.1048 0.5432 0.5371 0.3412
MNIST5PCA 0.2048 0.8810 0.8650 0.6779
F-MNISTPCA 0.1045 0.5399 0.5027 0.3266
CIFAR10PCA 0.1055 0.2060 0.2873 0.1822

Table 1: Quantitative comparisons of the clustering algorithms on MNIST, MNIST5, F-MNIST,
and CIFAR10. Each algorithm was run 10 times, and only the best run in terms of likelihood
maximization was reported. For each row, the highest value was highlighted in bold. We un-
derlined the cases where the NF mixture’s metric surpasses or is almost equal to the EM/GMM
metric.
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Figure 2: Across the toy 2D datasets: selected density plots from the 10 runs which were not the
best in terms of likelihood maximization, but which express that the component distributions
differ from the Gaussian distribution

True label\Cluster index cluster 0 cluster 1 cluster 2 cluster 3 cluster 4
digit 0 0.000602 0.012432 0.002807 0.982555 0.001604
digit 1 0.002139 0.020146 0.977001 0.000178 0.000535
digit 2 0.000802 0.952276 0.011630 0.007219 0.028073
digit 3 0.001558 0.479455 0.300682 0.004284 0.214021
digit 4 0.646166 0.347273 0.005125 0.001435 0.000000

Table 2: Normalized contingency table for the clustering in [15] on the MNIST5 dataset. Di-
rectly taken from [15]. We wrote in bold the maximum value from each row.

True label\Cluster index cluster 0 cluster 1 cluster 2 cluster 3 cluster 4
digit 0 0.9818 0 0.0181 - -
digit 1 0.0712 0.8852 0.0435 - -
digit 2 0.9457 0.0002 0.0539 - -
digit 3 0.9413 0.0042 0.0544 - -
digit 4 0.0489 0.0002 0.9507 - -

Table 3: Normalized contingency table for our best clustering on the MNIST5 dataset. We
wrote in bold the maximum value from each row.
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True label\Cluster index cluster 0 cluster 1 cluster 2 cluster 3 cluster 4
digit 0 0.0111 0 0.9210 0.0078 0.0599
digit 1 0.9841 0.0044 0.0002 0.0096 0.0015
digit 2 0.2184 0.0364 0.0908 0.4035 0.2506
digit 3 0.4178 0.0102 0.0194 0.0222 0.5301
digit 4 0.0932 0.0043 0.0118 0.8900 0.0004

Table 4: Normalized contingency table for our best clustering on the MNIST5PCA dataset. We
wrote in bold the maximum value from each row.

4 Conclusion and Future Work

We combined three ideas from the unsupervised machine learning field: density estimation,
clustering, and deep generative models. We proposed a straightforward mixture of NFs—a
mixture of MAFs, specifically— to be used in the context of clustering. The experiments were
on 2D datasets and on image datasets. Density plots and clustering metrics were presented.
The results show that indeed the mixture of NAFs is more expressive than a GMM, but in
the context of images, the results are not necessarily encouraging, although a hyperparameter
tweak should be further explored.

Besides the hyperparameter search, other future work can include replacing MAFs with other
NFs to see how this influences the results. Moreover, one can replace the PCA pre-processing
with the features given by starting to feed the images into a pre-trained neural network and
stopping at a specific layer. Furthermore, other initialization techniques for µ—like the centroids
after fitting a k-means model—can be used instead of the uniformly distributed µ means in the
interval [0, 1].
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