
SMT-Based System Verification with DVF

Amit Goel, Sava Krstić, Rebekah Leslie, Mark R. Tuttle

Intel Corporation

Abstract

We introduce the Deductive Verification Framework (DVF ), a language and a tool for
verifying properties of transition systems. The language is procedural and the system
transitions are a selected subset of procedures. The type system and built-in operations
are consistent with SMT-LIB, as are the multisorted first-order logical formulas that may
occur in DVF programs as pre- and post-conditions, assumptions, assertions, and goals. A
template mechanism allows parametric specification of complex types within the confines
of this logic. Verification conditions are generated from specified goals and passed to SMT
engine(s). A general assume-guarantee scheme supports a thin layer of interactive proving.

1 Introduction

This paper introduces the Deductive Verification Framework (DVF ), a language and automated
proof-checker for the specification and verification of transition systems. In DVF , systems and
their properties are modeled in an expressive language that enables a clean and efficient mapping
of proof obligations into the multisorted first-order logic supported by modern SMT solvers.
The design of the language and the automation from SMT solvers make DVF arguably easier
to use than interactive theorem provers, while making it possible for us to verify systems that
are out of the reach of model checkers.

Over the last decade, research and validation groups at Intel have performed “high-level
modeling” for several interesting examples, where protocols or architectural features were mod-
eled, debugged, and verified in Murφ [9] or TLA+/TLC [12]. In both, transitions are conve-
niently presented as guarded commands. In our own experience, Murφ’s procedural style was
most often fitting; however, its set of available types was constricting, and the state space of
our models too large for Murφ (or other model checkers) to fully explore.

When more naturally presented with datatypes such as sets, multisets and sequences, our
models became more amenable to Hoare-style reasoning, but the hand-proofs of the generated
verification conditions were large and ungainly—hardly counting as reliable proofs, despite their
mathematical shallowness. Thus, a Hoare-style program analyzer supported by SMT-based
proving of the generated conditions seemed to be better suited for our needs. From the class of
existing tools of this kind, we picked Why [11] to experiment with. It worked on small examples,
but was not a perfect fit. Why, like other tools in its class, is designed for analysis of traditional
programs; our rule-based transition system descriptions required inelegant rewriting to become
inputs for Why. Additionally, we were stymied by artifacts of the semantic translation(s) used
by Why to create verification conditions for SMT from the source program and properties
described in a polymorphic language.

We designed DVF to overcome these difficulties. We strived for clarity and for keeping the
semantic gap between our language and SMT-LIB small in order to minimize the translational
overhead and to use SMT solvers efficiently. Our support for Hoare-style and assume-guarantee
reasoning sets the foundation for further development of interactive proving features. Finally,
DVF is conceived as a framework that will include additional tools such as simulators and
model checkers.

32 P. Fontaine, A. Goel (eds.), SMT 2012 (EPiC Series, vol. 20), pp. 32–43



SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

In this paper, we present the language and the tool on simple examples, but we have
applied it to verify sizable cache-coherence and consensus protocols as well. In our industrial
setting, DVF has been successfully used to reason about security properties of instruction-level
architectural features. In an ongoing project, DVF is also being used to model and verify
complex system-on-chip boot flows.

The basic DVF language is explained in the following section. The form and use of templates
are discussed in Section 3, and Section 4 expounds on proof decomposition in the assume-
guarantee style.

2 The DVF Language

Listing 1 shows a DVF program that models a mutual exclusion algorithm. DVF provides
a simple procedural programming language for guarded transition systems. Procedures may
be annotated with pre- and post-conditions. A DVF program can additionally be sprinkled
with assertions, assumptions, and goal declarations. All of these formulas are written in a
multisorted first-order logic.

Listing 1 A two-process mutual exclusion algorithm

1 type process = enum {n1, n2}
type processes = array(process, bool)

const processes empty =
mk array[process](false)

6

const process other(process n) =
n=n1 ? n2 : n1

var process turn
11 var processes want = empty

var processes critical = empty
def bool my turn(process n) = turn = n

proc unit set critical(process n, bool v)
16 ensure (critical[n]=v)
{critical := store(critical, n, v);
return ();
}

21 transition req critical(process n)
require (¬want[n])
{want[n] := true;}

transition enter critical(process n)
26 require (want[n])

require (¬critical[n])
require (my turn(n))
{call set critical(n,true);}

31 transition exit critical (process n)
require (critical[n])
{call set critical(n,false);
want[n] := false;
turn := other(n);

36 }

def bool mutex =
¬(critical[n1] ∧critical[n2])

41 goal g0 = invariant mutex

def bool aux =
∀(process n)

(critical[n]⇒my turn(n))
46

goal g1 = invariant (mutex ∧aux)

The state space of the transition system is defined by the global (state) variables. Initial
states of the system are defined by initial values assigned to the state variables. Some procedures
in the program are marked as transitions; the system can transition from a state s to a state s′

if and only if one of the procedures marked as a transition leads from s to s′. The rest of this
section describes the language in more detail.

33



SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

2.1 Types and Expressions

Booleans, mathematical integers and fixed-size bit-vectors are built-in, with their usual oper-
ators [2]. DVF also has the unit type, with the single value (), and tuples, with projection
operators as in (1,true,3)#3 = 3. Arrays parametrized over their domain and range are also
supported, with the read operator as in the expression want[n], and the write operator as in
store(critical,n,v). In addition, arrays come equipped with a mk array constructor: for exam-
ple, mk array[process m](m=n) can be used to characterize the set containing the single element
n, and mk array[process](false) is the array mapping all processes to false. Since it can rep-
resent arbitrary functions as arrays, mk array is not supported by array decision procedures.
For compilation to SMT problems, we introduce a fresh constant for each mk array term, and
add a quantified assertion to specify its behavior; thus, the term mk array[process](false) would
generate the assertion ∀(process n)(k[n]=false), where k is fresh.

We can also declare enumerations, records, sums, and uninterpreted types. The unin-
terpreted types are useful for under-specification and for defining new types via axioms that
constrain operations on the type. (For example, the type of naturals with the zero constant and
the successor operator could be introduced this way.) Records are constructed by simultaneous
assignment to all fields or by updating some of the fields of an existing record; record fields
are accessed using dot notation. Sums are deconstructed using (exhaustive) match expressions.
Since SMT solvers with support for sum types (or, more generally, algebraic data types) typi-
cally provide constructors and selectors, we compile pattern matches into variable bindings and
expressions using those operators.

Expressions in DVF are pure and statically typed. The language is designed to enable
simple type inference. In keeping with this desire, enumerations, records and sums are typed
nominally. We require annotations wherever it would not be possible to infer the type, say in
mk array[process](false) to specify the type of the domain.

All of the built-in DVF types and operators (with some translation as mentioned above)
are supported by SMT solvers such as CVC3 [3], Yices [10] and Z3 [8].

2.2 Variables, Constants and Definitions

A DVF program’s global variables define the state of the transition system being modeled. Vari-
able initialization serves to describe the initial state(s) of the system, with the understanding
that when the initial value for a variable is not specified, it can be arbitrary. Thus, in List-
ing 1, want is initialized to empty and turn can initially be either n1 or n2. In addition to global
variables, we can use local variables as temporary stores inside procedures and transitions.

The const keyword introduces constants and (total) functions. See lines 4-5 and 6-7 in
Listing 1 for examples of constant and function declarations. Constants and functions do not
need to be defined; much like uninterpreted types, uninterpreted constants and functions are
useful for under-specification and for specifying behavior with axioms.

The def keyword is used to define state predicates and other functions that take the system
state as an implicit argument. Note that the function my turn defined on line 13 of Listing 1
uses the state variable turn in its definition without having it as an explicit argument. We treat
defs as macros to be inlined at points of use.

2.3 Statements, Procedures and Transitions

DVF offers a standard set of statements: assignments, conditionals, while loops (annotated
with loop invariants), procedure calls and returns. Statements may be grouped into blocks

34



SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

with local variables. The examples

turn := other(n); want[n] := true; cache[i].c state := invalid; x[31:16] := y[15:0];

show assignments to a variable, a single array element, individual record field, and a bit-range
in a bit-vector. The last three forms are syntactic sugar; for example want[n] := true abbreviates
want := store(want,n,true). Parallel assignment via pattern matching on tuples is allowed, as in
(x,y) := (y,x). In common with languages like Boogie [14], we have assert, assume and non-
deterministic assignment statements.

Procedures take a (possibly empty) list of typed arguments and have a return type; when
the return type is omitted, it is assumed to be unit. All paths in a procedure must have a return
statement unless the return type is unit, in which case a return () is implicitly assumed. The
keywords require and ensure are used to annotate procedures with preconditions and postcon-
ditions. In postconditions, result refers to the procedure’s returned value.

Transitions are procedures that are identified as such. The system executes transitions
atomically, choosing non-deterministically from transitions whose requirements are satisfied by
the current state for some choice of argument values. A system can transition from the state
s to the state s′ if and only if one of the procedures marked as a transition is enabled in s for
some values of its arguments, and when executed with these values, it terminates in s′.

2.4 Goals

A program in DVF entails a set of proof obligations, arising from the use of assert statements,
require and ensure clauses, as well as from explicitly specified goals, as described below.

We can ask DVF to prove the logical validity of formulas. State variables may occur in
such formulas, in which case the validity of the formula establishes the property for all states,
reachable or not. For example, a lemma in our proof of the German cache-coherence protocol
from [5] is stated as follows.1

def bool coherence thm =
∀(node i, node j)

(i 6=j ∧cache[i].c state = exclusive⇒cache[j].c state = invalid)

def bool coherence cor =
∀(node i, node j)

(i 6=j ∧cache[i].c state=shared⇒cache[j].c state = invalid ∨cache[j].c state = shared)

goal thm implies cor = formula (coherence thm⇒coherence cor)

For a procedure or transition τ with arguments a1, . . . , an, we can write Hoare triples
{θ}τ(e1, . . . , en){φ}, where the triple stands for θ ⇒ wlp(τ [e1/a1, . . . , en/an], φ) and wlp is
the weakest-liberal precondition. For example, memory integrity could be specified with the
three triples:

goal wr1 = {true} write(i,v) {mem[i]=v}
goal wr2 = {mem[i]=v ∧i 6=j} write(j, v’) {mem[i]=v}
goal rd = {mem[i]=v} read(i) {result=v}

In triples, the arguments to the procedure may be omitted, in which case the condition is
checked for all possible argument values.

1The proof needs the fact that caches can be in one of three states, invalid, shared or exclusive. See Appendix A
for the DVF encoding of the protocol and proof of coherence thm.

35



SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

The DVF goal initially φ states that φ is true in all initial states, and invariant φ states
that φ is true in all reachable states. DVF attempts to prove invariants inductively. Thus,
proving the goal g0 on line 41 of Listing 1 reduces to the proof obligations initially mutex,
{mutex}req critical{mutex}, {mutex}enter critical{mutex}, and {mutex}exit critical{mutex}. Often, the
invariants we want to prove are not inductive; in our example, {mutex}enter critical{mutex} is not
valid. In such cases we interactively strengthen the invariant until it does become inductive.
Strengthening mutex with an auxiliary property aux (line 42) creates mutex ∧aux, which is in-
ductive and goal g1 in Listing 1 is easily discharged. In Section 4, we will describe the support
DVF provides for managing invariance proofs for larger systems.

3 Axioms and Parametrized Templates

Consider modeling a reference counting system, where there is a set of resources (with a special
null resource) and a set of processes, each with a pointer to a resource. The system may allocate
a free resource, at which point the resource becomes valid. A valid resource may be referenced
by a process whose pointer is then set to the resource, and the resource’s reference counter goes
up by 1. Processes may subsequently dereference the resource they point to, at the same time
decrementing the counter for the resource. Finally, a resource with a count of 0 may be freed
by the system, setting its status to invalid. A DVF model of this system is shown in Listing 2.

Listing 2 Reference counting

type process
type resource
const resource null

5 var array(resource, int) count
var array(resource,bool) valid =

mk array[resource](false)
var array(process, resource) ptr =

mk array[process](null)
10

transition alloc(resource r)
require (r 6=null)
require (¬valid[r])
{valid[r] := true;

15 count[r] := 0;
}

transition ref(process p, resource r)
require (valid[r])

20 require (ptr[p] = null)
{ptr[p] := r;
count[r] := count[r] + 1;
}

25 transition deref(process p)
require (ptr[p] 6=null)
{var resource r = ptr[p];
ptr[p] := null;
count[r] := count[r] − 1;

30 }

transition free(resource r)
require (valid[r])
require (count[r] = 0)

35 {valid[r] := false;}

def bool prop =
∀(process p)

(ptr[p]6=null⇒valid[ptr[p]])
40

def bool refs non zero =
∀(process p)

(ptr[p]6=null⇒count[ptr[p]] > 0)

45 goal g0 = invariant prop

goal g1 = invariant (prop ∧refs non zero)

We want to verify a basic property: if a process points to a non-null resource, then that
resource must be valid.

36



SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

It turns out that this property is not inductive; in particular, one cannot prove the goal
{prop}free{prop}. Insight into the failing proof leads to the consideration of an auxiliary property,
refs non zero, which states that the reference count of a resource cannot be 0 if there is a process
pointing to it. Attempting to prove the strengthened invariant (the conjunction of the two
properties), we soon realize that it would be convenient to track the set of processes pointing
to a resource, and to show that the cardinality of this set is equal to the reference count of the
resource.

DVF does not provide a built-in type for sets. We could represent sets using arrays that
map elements to Booleans (e.g., valid in Listing 2), but that would still leave us wanting for a
cardinality operator. Instead, we introduce a new type for sets, as well as constants for the
empty set, set membership, adding and removing an element from a set, and cardinality. We
then write axioms that constrain the behavior of these constants. At this point, crucially, we
wish for some sort of parametricity to avoid having to encode sets for each new element type.

Typically, and perhaps most naturally, parametricity is introduced via polymorphic type
constructors in the language. However, this creates a discrepancy with the non-polymorphic
logic of SMT solvers and would necessitate a logical translation between the front and the back
end of the tool. This complication is avoided in DVF by the use of a template construct.
Listing 3 shows the encoding of sets, parametrized by the type of elements, that we use in
the next section to complete the proof of our reference counting example. In general, DVF
templates may be parametrized by types and values; for instance, a template for bounded
queues might include the type of elements and the depth of the queue as parameters. Templates
are instantiated by modules where all parameters are replaced with concrete types and values.
Thus, every DVF system description is essentially monomorphic, matching the SMT-LIB logic.

Listing 3 Sets with cardinality

template <type elem> Set
{
// Signature
type set

5 const set empty
const bool mem (elem x, set s)
const set add (elem x, set s)
const set del (elem x, set s)
const int card (set s)

10

// Axioms for set membership
axiom mem empty =
∀(elem e)

(¬mem(e,empty))
15

axiom mem add =
∀(elem x, elem y, set s)

(mem(x,add(y,s)) = (x=y ∨mem(x,s)))

20 axiom mem del =
∀(elem x, elem y, set s)

(mem(x,del(y,s)) = (x6=y ∧mem(x,s)))

// Axioms for cardinality
25 axiom card empty =

card(empty) = 0

axiom card zero =
∀(set s)

30 (card(s)=0⇒s = empty)

axiom card non negative =
∀(set s)

(card(s) ≥0)
35

axiom card add =
∀(elem x, set s)

(card(add(x,s)) =
(mem(x,s) ? card(s) : card(s)+1))

40

axiom card del =
∀(elem x, set s)

(card(del(x,s)) =
(mem(x,s) ? card(s)−1 : card(s)))

45 }

37



SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

4 Compositional Reasoning

Continuing with our reference counting example, we modify the system with an auxiliary vari-
able, handles, that tracks the set of processes pointing to each resource. This allows us to
state the property count eq card, asserting that the reference count of a resource is equal to
the cardinality of its set of handles. Unfortunately, even with this strengthening we do not
have an inductive invariant. We need two more properties of the system, ptr in handles and
handle is ptr, to establish that the set of handles for a resource is precisely the set of processes
pointing to the resource. Listing 4 shows the system with all these additions.

This process of incrementally strengthening the invariant can quickly become unmanageable
as more and more conjuncts are added. The proof goals become harder for the SMT solver and
in case of proof failure, it is harder to diagnose the reason for the failure. Also, it is easy to lose
track of an understanding for why the auxiliary invariants were necessary. Proofs of this kind
are more easily carried out compositionally by breaking down the temporal induction step into
separate proofs for each invariant, where each invariant is derived assuming: (1) some of the
other invariants that have been proven for the previous time value, and (2) yet others that have
been proven to hold now. This leads to potentially invalid circular reasoning. The following
paragraph summarizes a well-known sound compositional reasoning scheme.

Compositional proofs are conveniently represented in graphical form as in Figure 1, with
purported invariants at the nodes, and with some edges marked as latched. For every node φ,
let Aφ be the conjunction of all ψ such that there is a latched edge from ψ to φ. Similarly,
let Bφ be the conjunction of all ψ such that there is an unlatched edge from ψ to φ. The
set of proof obligations generated by the graph consists of conditions initially φ and triples
{Aφ ∧ φ}τ{Bφ ⇒ φ}, for every node φ and every transition τ . If the graph contains no
combinational cycles, then this set of initial conditions and triples implies invariance of all
node formulas. This is a special case of McMillan’s result on assume-guarantee reasoning [15].2

To finish with our example, the goals main and aux1−aux4 in Listing 4 correspond to the
five nodes in Figure 1, and are all provable. Notice that all edges coming into any particular
node are of the same type: latched or non-latched. Restricting proof graphs so that all nodes
are one of these two “pure” types does not lose generality.3 The “latched” nodes correspond to
DVF goals of the form invariant φ assuming Aφ, which creates proof obligations initially φ and
{Aφ ∧φ}τ{φ}. The “unlatched” nodes correspond to formula (Bφ ⇒ φ), which is stronger than
{φ}τ{Bφ ⇒ φ}, but is simpler and suffices in practice.

5 Related Work

As a procedural system description language, DVF is most closely related to Murφ [9] which
is designed for efficient explicit-state model checking. DVF , on the other hand, is an SMT-
based deductive verification tool. Like DVF , the system verification tools UCLID [4] and
SAL [17] are SMT based. UCLID ’s modeling language is restricted by the decision procedure it
relies on (for a logic that covers counter arithmetic, non-extensional arrays, and uninterpreted
functions). With SAL we share reliance on full-blown SMT solving, but differ in the presentation
of systems: SAL’s (and UCLID ’s) system descriptions are relational, not procedural. While

2McMillan’s technique applies to proving more general temporal formulas, not only invariants.
3Proof. If, for some φ, both Aφ and Bφ are non-empty, let φ′ be the formula Bφ ⇒ φ and modify the proof

graph by adding the node φ′ to it with: (1) a latched edge from φ to φ′; (2) an unlatched edge from φ′ to φ;
and (3) all latched edges into φ redirected to end in φ′. In the new graph, Aφ and Bφ′ are empty. The proof
obligations for φ′ in the new graph are weaker than the proof obligations for φ in the old graph, and φ follows
by modus ponens from its predecessors in the new graph.

38



SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

Listing 4 Reference Counting with a Compositional Proof

type resource
type process
const resource null
module R = Set<type resource>

5 module S = Set<type process>

var R.set valid = R.empty
var array(resource, int) count
var array(process, resource) ptr =

10 mk array[process](null)
var array(resource, S.set) handles

transition alloc(resource r)
require (r 6=null)

15 require (¬R.mem(r,valid))
{valid := R.add(r,valid);
count[r] := 0;
handles[r] := S.empty;
}

20

transition ref(process p, resource r)
require (R.mem(r,valid))
require (ptr[p] = null)
{ptr[p] := r;

25 count[r] := count[r] + 1;
handles[r] := S.add(p, handles[r]);
}

transition deref(process p)
30 require (ptr[p] 6=null)
{var resource r = ptr[p];
ptr[p] := null;
count[r] := count[r] − 1;
handles[r] := S.del(p, handles[r]);

35 }

transition free(resource r)
require (R.mem(r,valid))
require (count[r] = 0)

40 {valid := R.del(r, valid);}

def bool prop =
∀(process p)

(ptr[p]6=null⇒R.mem(ptr[p],valid))
45

def bool refs non zero =
∀(process p)

(ptr[p]6=null⇒count[ptr[p]] > 0)

50 def bool count eq card =
∀(resource r)

(r 6=null ∧R.mem(r,valid)
⇒count[r] = S.card(handles[r]))

55 def bool ptr in handles =
∀(process p)

(ptr[p]6=null
⇒S.mem(p, handles[ptr[p]]))

60 def bool handle is ptr =
∀(process p, resource r)

(r 6=null ∧R.mem(r,valid)
∧S.mem(p, handles[r])
⇒ptr[p] = r)

65

goal main = invariant prop
assuming refs non zero

goal aux1 = formula (count eq card
70 ∧prop

∧ptr in handles
⇒refs non zero)

goal aux2 = invariant count eq card
75 assuming ptr in handles,

handle is ptr

goal aux3 = invariant ptr in handles
assuming prop

80

goal aux4 = invariant handle is ptr

39



SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

prop

refs non zero

count eq card

ptr in handles

handle is ptr

Figure 1: Proof Graph for Reference Counting Example

SAL has features (notably, system composition) currently not available in DVF , it does not
have the expressivity achieved in DVF by axiomatizations and parametrized templates.

DVF uses Hoare-style verification techniques much like existing tools for program verifica-
tion; for example, [1, 6, 13, 18]. However, these tools are not well suited for high-level modeling
because of the limitations of their source languages. A better comparison is with the interme-
diate languages used by these tools. Boogie [14] and Why [11] have additional constructs (a
richer set of types, polymorphism, the ability to add axioms) that make modeling easier, but
they do not provide the support necessary for specification of systems and system properties.
In fact, our work on DVF was motivated by the promise evident from our early experiments
with Why , and was directed to overcome the limitations we faced. We found the threading
of system invariants via contracts to be a major burden. We also found that the translations
introduced to encode types from the polymorphic source language into terms in the multisorted
language of SMT solvers made it harder to discharge the proofs. While there has been work
[7, 14] on improving translations for subsequent proving efficiency, the parametricity enabled
by DVF templates is a semantically cleaner solution. DVF is less expressive; for example, some
aspects of memory encoding in Boogie would be difficult to mimic in DVF . In our experience
this trade-off has been justified—we have found templates to work well for our system mod-
eling tasks. Finally, we note that DVF templates are similar to parametrized theories in the
interactive prover PVS [19].

6 Conclusion

We have presented DVF , a language and tool for the modeling and verification of transition
systems. It is particularly suitable for systems that involve complex parametrized data types
(like sets, multisets, sequences, queues, partial orders). Such types are represented axiomatically
by means of a template construction, which allows all logical manipulations in DVF —from
program annotation to the generation of verification conditions for SMT solvers—to cleanly
stay within the multisorted first-order logic.

The niche of DVF is systems beyond the capacity of model checkers and not readily admit-
ting model-checkable finite-state abstractions as in, say, [16, 5]. Its primary application so far
has been to verify new and complex architectural features in hardware systems where Hoare-
style reasoning has scaled well, requiring only seconds for verification tasks that generated up to
a few hundred proof obligations. The human effort required to provide auxiliary proof artifacts
has not been overwhelming. In fact, the auxiliary invariants have helped our and the designers’
understanding, providing valuable documentation as well as checks for implementations.

Ignoring the logical matter, a DVF system description looks like an ordinary program with

40



SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

an interface defined by several named procedures (transitions). This syntactic closeness to com-
mon programming languages is a significant convenience in the industrial environment, where
model development is done in collaboration with designers unfamiliar with formal languages.

For future work, the diagnosis of proof failures is a priority; proof failures have been largely
due to unprovable goals (rather than solvers’ capacity limits), so we need meaningful counter-
model production for our SMT queries. At the language level, we will need to add some
modularity mechanism for modeling larger and more complex systems. Human-assisted skeletal
proof construction (Section 4) can use additional proof rules and “tactics” borrowed from
interactive provers. Finally, even the least sophisticated model-checking back-end would help
with early debugging of system models.

References

[1] M. Barnett, R. DeLine, M. Fähndrich, B. Jacobs, K. R. M. Leino, W. Schulte, and H. Venter. The
Spec# programming system: Challenges and directions. In VSTTE, pages 144–152, 2005.

[2] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In A. Gupta and
D. Kroening, editors, SMT, 2010.

[3] C. Barrett and C. Tinelli. CVC3. In CAV, pages 298–302, 2007.

[4] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using a logic of
counter arithmetic with lambda expressions and uninterpreted functions. In CAV, pages 78–92,
2002.

[5] C.-T. Chou, P. K. Mannava, and S. Park. A simple method for parameterized verification of cache
coherence protocols. In FMCAD, pages 382–398, 2004.

[6] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and
S. Tobies. VCC: A practical system for verifying concurrent c. In TPHOLs, pages 23–42, 2009.

[7] J.-F. Couchot and S. Lescuyer. Handling polymorphism in automated deduction. In CADE, pages
263–278, 2007.

[8] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages 337–340, 2008.

[9] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a hardware design
aid. In ICCD, pages 522–525, 1992.

[10] B. Dutertre and L. D. Moura. The Yices SMT solver. Technical report, SRI, 2006.

[11] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive program
verification. In CAV, pages 173–177, 2007.

[12] L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

[13] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In LPAR
(Dakar), pages 348–370, 2010.

[14] K. R. M. Leino and P. Rümmer. A polymorphic intermediate verification language: Design and
logical encoding. In TACAS, pages 312–327, 2010.

[15] K. L. McMillan. Circular compositional reasoning about liveness. In CHARME, pages 342–345,
1999.

[16] K. L. McMillan. Verification of infinite state systems by compositional model checking. In
CHARME, pages 219–234, 1999.

[17] L. D. Moura, S. Owre, and N. Shankar. The SAL language manual. Technical report, SRI, 2003.

[18] Y. Moy and C. Marché. Jessie Plugin, Boron version. INRIA, 2010. http://frama-c.com/

jessie/jessie-tutorial.pdf.

[19] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In CADE, pages
748–752, 1992.

41

http://frama-c.com/jessie/jessie-tutorial.pdf
http://frama-c.com/jessie/jessie-tutorial.pdf


SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

A Verification of the German Protocol

Listing 5 shows a DVF translation of the German cache coherence protocol from its Murφ
presentation in [5]. We have added an auxiliary variable, exnode, to store the node, if any, that
has exclusive access. Figure 2 shows the proof graph for the control property using the following
auxiliary invariants:

def bool p1 = ∀(node n) (exgntd⇒shrset[n] = (n = exnode))

def bool p2 = ∀(node n) (chan2[n].m cmd = gnte ∨cache[n].c state=exclusive⇒exgntd)

def bool p3 =
∀(node n)

(¬shrset[n]⇒cache[n].c state = invalid ∧chan2[n].m cmd = empty ∧chan3[n].m cmd = empty)

def bool p4 = ∀(node n) (invset[n]⇒shrset[n])

def bool p5 =
∀(node n)

(chan3[n].m cmd = invack⇒chan2[n].m cmd = empty ∧cache[n].c state = invalid)

def bool p6 =
∀(node n)

(chan2[n].m cmd = inv ∨chan3[n].m cmd = invack⇒¬invset[n] ∧shrset[n])

def bool p7 =
∀(node n)

(chan2[n].m cmd = inv ∨chan3[n].m cmd = invack⇒(curcmd = reqs ∧exgntd) ∨curcmd = reqe)

p7

p6

p5

p4 p3

p2 p1

coherence thm

Figure 2: Proof Graph for the German Protocol

42



SMT-Based System Verification with DVF A. Goel, S. Krstić, R. Leslie, and M. R. Tuttle

Listing 5 German Cache Coherence Protocol

// Types
2 type node

type data
type cache state = enum {invalid, shared, exclusive}
type cache = struct {c state: cache state; c data: data}
type msg cmd = enum {empty,reqs,reqe,inv,invack,gnts,gnte}

7 type msg = struct {m cmd: msg cmd; m data: data}
type chan = array(node, msg)
type caches = array(node, cache)
type nodes = array(node, bool)

12 // Constants for initialization
const data dummy
const msg imsg = {m cmd = empty; m data = dummy}
const cache icache = {c state = invalid; c data = dummy}

17 // State variables
var caches cache = mk array[node](icache)
var chan chan1 = mk array[node](imsg)
var chan chan2 = mk array[node](imsg)
var chan chan3 = mk array[node](imsg)

22 var nodes invset = mk array[node](false)
var nodes shrset = mk array[node](false)
var bool exgntd = false
var node exnode
var msg cmd curcmd = empty

27 var node curptr
var data memdata

// Actions
transition send req shared (node i)

32 require (chan1[i].m cmd = empty)
require (cache[i].c state = invalid)
{chan1[i].m cmd := reqs;}

transition send req exclusive(node i)
37 require (chan1[i].m cmd = empty)

require (cache[i].c state 6=exclusive)
{chan1[i].m cmd := reqe;}

transition recv req shared (node i)
42 require (curcmd = empty)

require (chan1[i].m cmd = reqs)
{curcmd := reqs; curptr := i;
chan1[i].m cmd := empty;
invset := shrset;}

47

transition recv req exclusive (node i)
require (curcmd = empty)
require (chan1[i].m cmd = reqe)
{curcmd := reqe; invset := shrset;

52 curptr := i; chan1[i].m cmd := empty;}

transition send inv (node i)
require (chan2[i].m cmd = empty)
require (invset[i])

57 require (curcmd=reqe ∨curcmd=reqs ∧exgntd)
{chan2[i].m cmd:= inv; invset[i]:= false;}

transition send invack (node i)
require (chan2[i].m cmd = inv)

62 require (chan3[i].m cmd = empty)
{chan2[i].m cmd := empty;
chan3[i].m cmd := invack;
if (cache[i].c state = exclusive) {

chan3[i].m data := cache[i].c data;}
67 cache[i].c state := invalid;

}

transition recv invack (node i)
require (chan3[i].m cmd = invack)

72 require (curcmd 6=empty)
{chan3[i].m cmd := empty;
shrset[i] := false;
if (exgntd) {

exgntd := false;
77 memdata := chan3[i].m data;}

}

transition send gnt shared ()
require (curcmd = reqs)

82 require (¬exgntd)
require (chan2[curptr].m cmd = empty)
{chan2[curptr].m cmd := gnts;
chan2[curptr].m data := memdata;
shrset[curptr] := true; curcmd := empty;}

87

transition send gnt exclusive ()
require (curcmd = reqe)
require (¬exgntd)
require (chan2[curptr].m cmd = empty)

92 require (∀ (node j) (¬shrset[j]))
{chan2[curptr].m cmd := gnte;
chan2[curptr].m data := memdata;
shrset[curptr] := true; curcmd := empty;
exgntd := true; exnode := curptr;}

97

transition recv gnt shared (node i)
require (chan2[i].m cmd = gnts)
{cache[i].c state := shared;
cache[i].c data := chan2[i].m data;

102 chan2[i].m cmd := empty;}

transition recv gnt exclusive (node i)
require (chan2[i].m cmd = gnte)
{cache[i].c state := exclusive;

107 cache[i].c data := chan2[i].m data;
chan2[i].m cmd := empty;}

transition store data (node i, data d)
require (cache[i].c state = exclusive)

112 {cache[i].c data := d;}

def bool coherence thm =
∀(node i, node j)

(i 6=j ∧cache[i].c state = exclusive
117 ⇒cache[j].c state = invalid)

43


	Introduction
	The DVF Language
	Types and Expressions
	Variables, Constants and Definitions
	Statements, Procedures and Transitions
	Goals

	Axioms and Parametrized Templates
	Compositional Reasoning
	Related Work
	Conclusion
	Verification of the German Protocol

