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Abstract 

Due to the underlying characteristics of drought, monitoring of its spatio-temporal 

development is difficult. Last decades, drought monitoring have been increasingly 

developed, however, including its spatio-temporal dynamics is still a challenge. This 

study proposes a method to monitor drought by tracking its spatial extent. A methodology 

to build drought trajectories is introduced, which is put in the framework of machine 

learning (ML) for drought prediction. Steps for trajectories calculation are (1) spatial 

areas computation, (2) centroids localization, and (3) centroids linkage. The spatio-

temporal analysis performed here follows the Contiguous Drought Area (CDA) analysis. 

The methodology is illustrated using grid data from the Standardized Precipitation 

Evaporation Index (SPEI) Global Drought Monitor over India (1901-2013), as an 

example. Results show regions where drought with considerable coverage tend to occur, 

and suggest possible concurrent routes. Tracks of six of the most severe reported droughts 

were analysed. In all of them, areas overlap considerably over time, which suggest that 

drought remains in the same region for a period of time. Years with the largest drought 

areas were 2000 and 2002, which coincide with documented information presented. 

Further research is under development to setup the ML model to predict the track of 

drought. 

1 Introduction 

Drought is costly and its damages are observed around the globe (Below et al., 2007; Mishra and 

Singh, 2010; Sheffield and Wood, 2011; Tallaksen and Van Lanen, 2004; Wilhite, 2000). It is a regional 
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phenomenon that covers, sometimes, large territorial extensions (World Meteorological Organisation 

(WMO), 2006). It is argued that a greater understanding of how drought develops, incl. where it moves 

over time, that is spatio-temporal dynamics, may help to better monitor drought. 

Usually, drought monitoring is conducted through snapshots of the temporal development of a 

drought indicator (DI). This DI transforms the hydro-meteorological record into values related to 

drought anomalies (Mishra and Singh, 2010). When DI is computed in a spatially distributed way, the 

study region is schematized as a grid and in each cell, the DI is calculated. Through setting a DI 

threshold, it is possible to classify a cell whether it is in a drought event or not. This condition of non-

drought/drought can be expressed in a binary way, i.e. using 0s and 1s (Corzo Perez et al., 2011). 

Neighbouring cells showing the same drought condition can be aggregated into regions (areas) by 

applying a clustering technique. Currently, available drought monitors provide information about the 

spatial extent of droughts (i.e. snapshots) but still the tracking of these drought areas is lacking. 

This study aims to explain the main principles of a new method for drought monitoring by tracking 

its spatial extent. The output will be used in ML models, in which inputs are linked to outputs with a 

group of methods that learn/forget, and interact with each other (Solomatine and Siek, 2006). In this 

paper, the description and preliminary results of the proposed methodology to calculate drought 

trajectories is presented. In the next section, description of the methodology and its implementation are 

shown. The spatio-temporal Contiguous Drought Area (CDA) analysis is described as well. As India is 

a country highly prone to drought, it was used in this pilot as an example. After, the results of the 

computation of drought trajectories for India from 1901 to 2013, is presented. We conclude with a 

discussion and main findings. 

2  Material and methods 

Three main steps were followed to determine the drought tracks: (1) calculation of the spatial 

drought events (referred to here also as areas, or clusters); (2) localization of spatial drought events 

centroids; (3) tracking droughts through the estimation of the trajectory of centroids (Figure 1). The 

spatial drought areas are identified by means of the Contiguous Drought Area (CDA) analysis (Corzo 

Perez et al., 2011) on a monthly basis. A CDA is composed of neighbouring regions (cells) in drought. 

Following the CDA methodology, at each time step, the CDAs are computed. After this, the major 

(largest) drought areas and their centroids are found. Drought tracks are built by following the centroids 

in time. A threshold of Euclidean distance between consecutive drought areas is applied to separate/join 

the sequence. 

Data from the Standardized Precipitation Evaporation Index (SPEI) Global Drought Monitor 

(http://spei.csic.es/) was used (Beguería et al., 2014) to test the proposed methodology for drought 

tracking. The procedure to calculate SPEI (Vicente-Serrano et al., 2010) is similar to that used to 

compute the Spatial Precipitation Index (SPI) proposed by Mckee et al. (1993), but taking into account 

precipitation (P) minus potential evaporation (E) instead of only P. SPEI data from the drought monitor 

are in a grid form for different temporal aggregation periods. In this study, we used SPEI-6, which 

corresponds to anomalies of the six-month accumulation of P - E. This aggregation usually refers to 

extended periods of lack of water availability, therefore consequences of what is commonly called 

meteorological drought are closer to that caused by the so-called hydrological drought. Droughts were 

detected by using SPEI-6 data from 1901 to 2013 over India. The DI threshold of -1 was used to indicate 

drought in the SPEI-6 values (i.e., equal/below the threshold). 
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Drought tracks were analysed in two parts: (1) the patterns of all trajectories of largest drought areas 

for the whole period (1901-2013), and (2) the patterns in the worst reported droughts. To select the 

years with the most severe drought registered, two sources were consulted and analysed to provide 

relevant information. According to data (1900-2009) from the Centre for Research on the Epidemiology 

of Disasters (CRED) (Below et al., 2007) and the Monthly Weather Review (Bhalme and Mooley, 

1980), India was impacted severely by droughts in 1900, 1905, 1942, 1964/1965, 1972, 1979, 1982, 

1987, 1993, 1996, 2000, 2002, and 2009. Some of these years showed droughts during the monsoon 

rainfall, which is the Indian rainy season (Bhalme and Mooley, 1980). The years with the worst drought 

throughout the period were 1987 and 2002. The years selected for the second part of the analysis were 

1905, 1965, 1972, 1987, 2000, and 2002. 

3 Results and discussion 

The results are presented in two parts. First, the patterns of all tracks of largest drought areas along 

the period 1901-2013 were examined. Second, droughts in the worst 6 years in drought (Section 2). For 

both parts, SPEI-6 was used to detect drought and CDA to compute its spatial extent. An estimation of 

drought trajectories was done by tracking the centroid of drought extents. 

Drought patterns were estimated for the period 1901 to 2013 (Figure 2). Centroids of the largest 

drought areas are presented in Figure 2 (top). The spatial drought extent is shown schematically with 

symbols that indicate four intervals of percentage of drought area with respect to the country. The origin 

of the axes is placed in the centre of the country. It is observed that the spatial distribution of the 

centroids is almost uniformly distributed over India. However, a higher density of the areas with 

considerable extent can be seen in central India. Drought tracks are shown in Figure 2 (bottom). Three 

drought paths were detected when observing the historical drought tracks. These are (1) N to S, (2) E 

to S, and (3) E to W.  
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Figure 1: Schematic overview of the methodology to build drought trajectories (Sect. 2 for details) 
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Figure 2: Centroids of the largest drought areas identified on a monthly basis (top). Spatial drought extent 

schematized by four symbols pointing out the percentage of drought area. Drought tracks identified on a monthly 

basis for the analysis period (bottom). The origin of the axes is placed in the centre of the country 

 

Drought tracks for 1905, 1965, 1972, 1987, 2000, and 2002 are presented in Figure 3. In all cases, 

it is observed that drought areas overlap considerably, which suggests that the spatial extent after 

reaching a considerable size, it remains in the same region. The presence of large drought areas in the 

same region over time may explain the severity of drought events in these years. There is no 

predominant route followed by droughts in these years, but similar tracks were identified in 1905 and 

1965, as well as 1987 and 2000. The western part of India seems to be the region where the centres of 

the worst drought events were located, for example, see 1905, 1987 and 2002 in Figure 3. For the most 

extreme drought events (1987, 2002) a certain pattern was detected: they started from N to S, then 

changed their trajectory into the opposite direction. In terms of spatial extent, 2000 and 2002 events 

were the largest. 
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Figure 3: Drought trajectories (red arrows) of selected years with the most severe droughts. Spatial drought 

extent is schematized by a circle where its centre corresponds to the respective centroid. Insets show zoomed-in 

views. For the sake of clarity, a reduction factor was used to show the circles 

4 Conclusions and future research 

The presented methodology allowed comparing historical droughts and analysing their spatio-

temporal dynamics. Some preliminary conclusions for India can be drawn from these first results. 

From the historical overview from 1901 to 2013: 

 Spatial distribution of the centroids of the largest droughts areas is almost uniform across the 

country. 

 Density of the spatial distribution of drought events with considerable drought coverage is 

higher in central India. 

 Preferred routes by droughts were detected when observing the historical drought tracks. 

Regarding the worst years in drought: 1905, 1965, 1972, 1987, 2000, and 2002: 

 For these years, it is observed that drought areas overlap considerably, which suggests that 

drought remained in the same region (i.e., high spatial persistence).  

 There is no predominant route followed by droughts in these years. 

 The western part of India seems to be the part where the centres of the worst drought events 

were located. 

 For the most extreme drought events (1987, 2002) a certain pattern was detected: they started 

from N to S, then changed their trajectory into the opposite direction.  

 In terms of spatial extent, 2000 and 2002 events were the largest. 
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The analysis presented here is being also validated through a leave one out procedure, evaluating 

the reliability of the data and the determination of the level of accuracy in the proposed method. With 

the drought tracks built, further research is under development to set up the model based on ML. The 

final outcome of this research will be a model that predicts the drought track. The development of this 

model and other aspects of the study can be consulted at www.researchgate.net/project/STAND-Spatio-

Temporal-ANalysis-of-Drought. 
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