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Abstract

The era of PUFs has been characterized by the efforts put into research and the devel-
opment of PUFs that are resilient against attacks, in particular, machine learning (ML)
attacks. Due to the lack of systematic and provable methods for this purpose, we have
witnessed the ever-continuing competition between PUF designers/ manufacturers, crypt-
analysts, and of course, adversaries that maliciously break the security of PUFs. This
is despite a series of acknowledged principles developed in cryptography and complexity
theory, under the umbrella term “hardness amplification”. This paper aims at narrowing
the gap between these studies and hardware security, specifically for applications in the
domain of PUFs. To this end, this paper provides an example of somewhat hard PUFs and
demonstrates how to build a strongly secure construction out of these considerably weaker
primitives. Our theoretical findings are discussed in an exhaustive manner and supported
by the silicon results captured from real-world PUFs.

Keywords: Hardness Amplification, Machine Learning, Physically Unclonable
Functions

1 Introduction

After the introduction of the first strong physically unclonable function (PUF), it became
soon evident that it is vulnerable to machine learning (ML) attacks [17]. In this case, an
adversary can intercept the transmission of a subset of PUF challenge-response pairs (CRPs)
between a prover and a verifier, and run an ML algorithm on the gathered CRPs to create
a model of the PUF. Several countermeasures, from structural to protocol level, have been
proposed to increase the security of PUFs against ML attacks. However, one of the main
questions remains unanswered: is it possible to create a significantly harder PUF from a PUF,
which is moderately resilient to ML attacks? In ML theory as well as cryptography, this
question has been already addressed through hardness amplification approaches, mainly by the
Yao’s XOR Lemma. This lemma states that if several instances of a somewhat-hard functions
are XORed together, the resulting function is harder to compute. One can observe a close
relationship between the concept of XOR PUFs and Yao’s lemma, although it has not even
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Figure 1: A systematic hardness amplification methodology. In Step 1, the designer defines
the hardness level and number of CRPs in each round of rolling, and designs the PUF (marked
by (a) and (b), respectively). The influential stages are computed in Step 2. By rolling these
stages, a somewhat hard PUF can be built, as shown in Step 3 (Case 1). If the accuracy of this
PUF is still unsatisfactory, some instances of that can be combined to improve the hardness
(Case 2). Finally, in Step 4, the designer limits the access of an attacker to the CRPs by
allowing only a pre-defined number of CRPs to be exchanged in each round of rolling.

implicitly discussed in the PUF-related literature, to the best of our knowledge. The application
of the XOR function in the context of PUFs has its roots in the problem of how to obfuscate the
outputs of a PUF [27]. Besides, this function has been employed to enhance the performance
characteristics of PUFs in terms of, e.g., reliability, uniqueness, etc. (for a prime example,
see, [25]). Nevertheless, when it comes to resilience to ML attack, it has been shown that
XORing can be only marginally effective since empirical and provable attacks are launched to
compromise their security [4, 11, 24]. Therefore, it is as yet unclear how and to what extent
the hardness of a PUF, i.e., being mildly resilient against ML attacks, can be amplified. To
address this, our framework takes some steps towards presenting a provably secure PUF, whose
hardness is amplified as commonly practiced in cryptography and ML theory.

Our contribution. The main contribution of this work is proposing a framework for the
hardness amplification of PUFs. In this regard, we first discuss an example of how a somewhat
hard PUF can be designed in practice. In doing so, we propose to add uncertainty to the PUF
architecture by rolling a PUF to make ML attacks fail. We exploit the partial reconfigurability
of modern FPGAs to swap only a few stages of a PUF, while the other parts of the PUF
remain intact (for a literature review on this, see Sect. 3). To this end, we develop a systematic
methodology through the concept of influential stages [10] to identify which PUF stages should
be rolled to flip the responses of the PUF to given challenges. These stages are then reconfigured.

Although the above approach makes the PUF more resilient to ML attacks, it still requires
drastic practical measures to be taken to achieve the ultimate level of security, where the attacker
cannot do considerably better than flipping a coin for the response of the PUF. Hence, we shift
our focus to known approaches for hardness amplification acknowledged in the ML theory. In
this context, we demonstrate that the Tribes functions outperform the XOR function in PUF
scenarios in terms of not only resiliency to ML attacks, but also being close to balanced (i.e.,
unbiased). Furthermore, we introduce a new metric, namely, the expected bias, which indicates
how hard a combined PUF can be. Last but not least, to support our theoretical findings, we
conduct comprehensive experiments – followed by an extensive discussion – on rolling Arbiter
PUFs implemented on the Xilinx Artix 7 FPGAs. It should be noted, that we have selected
Arbiter PUFs for our experiments only since there is a verified systematic way to implement it
on an FPGA [19]. Hence, the proposed framework in this paper is not limited to one specific
PUF family, and thus, it could be applied to other strong PUF implementations as well.

A brief overview of the proposed scheme: Although the hardness amplification theory,
forming the base for our framework, might have been known in the ML community, this paper
presents the first formalization of a secure PUF design in the context of this theory. More
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importantly, as we demonstrate, without a profound support from the hardware platform em-
bodying a PUF, the concept of hardness amplification cannot be realized in practice. To give
a better understanding of this, Fig. 1 illustrates the steps of our methodology described below.
Step 1 concerns the design of a PUF, marked with (a) in Fig. 1. Additionally, the designer
can define the level of hardness (Step 1(b)). Afterward, in Step 2, the set of PUF stages that
should be rolled is determined in a systematic manner, namely by computing the influential
stages that determine the responses of the PUF to given challenges. Step 3 encompasses two
cases: designing a somewhat hard PUF and combining such PUFs to achieve the ultimate hard-
ness as desired by the designer in Step 1. We show that to obtain a somewhat hard PUF, it is
inevitable to enjoy the practical advantages offered, e.g., by the rolling strategies. Moreover, we
prove that the Tribes function outperform the XOR function to combine somewhat hard PUFs.
Finally, in Step 4, to help with this entire process, we limit the number of CRPs accessible to
an adversary in each rolling round. For this purpose, we adopt a simple but effective strategy:
in each round of rolling, the number of CRPs does not exceed the lower bound established for
provable ML algorithms in general. This lower bound can be also calculated upfront, in Step 1,
by the designer.

2 Notation and Preliminaries

2.1 Boolean Functions as Representations of PUFs

Generally speaking, PUFs can be defined by physical mappings from the given challenges to
the respective responses. PUFs exhibiting an exponentially large set of CRPs are called strong
PUFs. The physical mappings underlying the design of digital intrinsic PUFs are characterized
by inherent silicon imperfections of the hardware, on which the PUF is implemented. Here
we consider merely unclonability among several security properties of PUFs. Let the mapping
fPUF : C → Y, where fPUF(c) = y, describes a PUF. Ideally, for a given PUF fPUF, unclonability
reflects the fact that creating a clone, i.e., a (physical) mapping gPUF 6= fPUF, is virtually
infeasible, where the challenge-response behavior of gPUF is similar to fPUF [3]. We stress that
our work does not cover the topics of formalization of the PUFs (for more details on this, see,
e.g., [3]). Similar to the most relevant studies on PUFs, we represent PUFs as Boolean functions
over the finite field: fPUF = {0, 1}n → {0,1}.

In this paper, when we occasionally need a representation of Boolean functions, we stick
to Linear Threshold functions (LTFs) and k-junta functions. A k-junta is a Boolean function,
whose output is determined merely by an unknown set of k variables. In order to define an
LTF, the encoding scheme χ(0F2

) := +1, and χ(1F2
) := −1 should be considered, based upon

which the Boolean function f can be defined as f : {−1,+1}n → {−1, + 1}. Now, a Boolean
function is called a linear threshold function (LTF), if there are coefficients ω1, ω2, · · · ,ωn ∈ R
and θ ∈ R such that f(c) = sgn ((

∑n
i=1 ωici)− θ). Here we assume, without loss of generality,

that
∑n
i=1 ωici 6= θ for every c ∈ Cn.

Tribes Functions [22]: A Tribes function on k Boolean variables is defined as follows.
C(x1, · · · ,xk) := (x1 ∧ · · · ∧ xb) ∨ · · · ∨ (xk−b+1 ∧ · · · ∧ xk), where ∧ and ∨ denote the
logical AND and OR functions, respectively. Moreover, b is the largest integer fulfilling the

inequality (1− 2−b)k/b ≥ 1/2; hence, b = O(log k).

2.2 Probably Approximately Correct Learning Model

Here, we stick to an extension of the PAC model, beneficial for our security analysis, where
the examples are informally drawn from the instance space Cn = {0, 1}n. For the target concept
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class Fn and the hypothesis class Hn, the hypothesis h ∈ Hn being a Boolean function over
Cn is an ε-approximator for f ∈ Fn, if Prc∈UCn

[f(c) = h(c)] ≥ 1− ε, where the index U shows
that the example are drawn with regard to the uniform distribution. Regarding the definition
of the hypothesis class, two cases can be differentiated. In the first case, the algorithm is forced
to deliver a given, pre-defined hypothesis class that is subset of the target class F = ∪n≥1Fn,
while in the second case, the algorithm is allowed to deliver the hypothesis h ∈ Hn so that
H 6⊂ F , and consequently, h 6∈ F . The first case is known as proper learning, whereas the latter
is referred to as improper learning. Now we can define a uniform PAC learning algorithm as
follows.

Definition 1. The algorithm A learning the target concept class F is given a polynomial number
of labeled examples drawn uniformly from Cn. The algorithm then returns an ε-approximator
for f , the hypothesis h, with probability at least 1 − δ. For any n ≥ 1, any 0 < ε, δ < 1,
and any f ∈ Fn, the running time of A is poly(n, 1/ε,VCdim(F ), 1/δ), where poly(·) denotes a
polynomial function.

In the above definition, the Vapnik-Chervonenkis (VC) dimension VCdim(F ) offers the
measure of complexity of the target concept class. In this regard, generally speaking, for a
PAC learning algorithm it is possible to establish a lower bound on the number of exam-
ples needed to obtain the ε-approximator for f ∈ F with the probability at least 1 − δ [5]:
N = Ω

(
1
ε log 1

δ + V Cdim(F )
)
.

3 Designing a Somewhat Hard PUF
It is evident that in order to apply the concept of hardness amplification, one has to first

come up with a somewhat hard function, i.e., a PUF in our case. The harder the PUF that
we begin with, the resulting, final PUF would be more cost-efficient (in terms of the number
of PUFs to be combined) and harder-to-learn. In other word, for our purpose, a PUF family
that can be learned with a high accuracy is not useful. This section presents an example of
how somewhat hard PUFs can be constructed in practice.

The notion of “rolled” PUFs: Among all potential solutions concerning the resilience of
PUFs against ML attacks, a class of countermeasures relies on rolling the PUF during authen-
tication. Similar to the concept of key rolling, where the key of a cryptographic algorithm is
regularly updated during encryption/decryption to limit the leakage of side-channel informa-
tion, a PUF instance can be rolled and swapped with new PUFs to limit the amount of exposed
CRPs from each specific PUF instance. As a result, the attacker cannot obtain enough CRPs
for each individual rolled PUF to create accurate models for them, see, e.g., [28,30]. Although
applied on a trial-and-error basis and in a blind fashion, this approach has been shown to be
helpful. This can be explained by a fact that all the above mentioned rolling strategies aim at
adding noise to the PUF architecture. A great deal of attention should be paid to differentiate
this noise from the phenomenon commonly referred to under the general term “noise”.

The noise associated with the rolling can be thought of as a hidden variable [18]. It has been
shown that the hidden variables, namely a manufacturing process variable and a noise variable,
account for the underlying physical, random processes in a PUF stage. To relate this model to
the noise models known in ML theory, it has been shown that the hidden variable in a PUF
stage refers to the “attribute” noise in the ML related literature [12]. More formally, similar to

the models presented in [12,18], consider a (silicon) PUF stage, e.g., ith stage, with the process
variations Xi (1 ≤ i ≤ n) and the noise varying during each evaluation Ni ∼ N (µN , σ

2
N ). Xi

follows a Gaussian distribution with the mean value µ reported by manufacturers as the nominal
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Figure 2: From a conventional PUF to its rolled version. First, the designer should collect a
sub-set of CRPs and run a test (e.g., the test in [21]) to determine the influential stages of
the PUF, i.e., the stages associated with the Boolean variable determining the output of the
function fPUF. To obtain the rolled PUF, various strategies can be employed (see Sect. 6).

value, and the standard deviation σi, which is the result of the process variations [20]. Clearly,
the total impact of hidden variables on a stage can be written as Zi = Xi + Ni (1 ≤ i ≤ n)
with Zi being a Gaussian random variable. By applying the challenge bits ci = 1 and ci = 0,
we obtain zi,1 = xi,1 + ni,1 and zi,0 = xi,0 + ni,0, respectively.

When reconfiguring a stage of the PUF, irrespective of the reconfiguration method, the
realizations xi,1 and xi,0 are changed to x′i,1 and x′i,0. Although the latter two realizations can
be very close to those in the first setting, due to the manufacturing process variations, they are
not identical. Note that x′i,1 and x′i,0 follow the same distribution as xi,1 and xi,0. Following the
definitions presented in [12, 18], the realizations of the random variable Zi can be rewritten to
obtain zi,0 = x′i,0 +n′i,0, where n′i,0 = xi,0−x

′
i,0 +ni,0. In order to relate the random variable Zi

to the concept of attribute noise, we should determine the conditions under which zi,0 = xi,1,
cf. [12]. In other words, in the above circumstance, it is impossible to decide which challenge
bit (“0” or “1”) is applied to the PUF. The same conditions can be met for the reconfigured
PUF stage, when x′i,0 = xi,1−n

′
i,0, and x′i,1 = xi,0−n

′
i,0, it is not straightforward to say which

configuration/ challenge bit is used. To sum up, here we demonstrate that reconfiguration of a
PUF stage can be translated to the attribute noise in the ML domain.

Rolled PUFs as somewhat resilient PUFs: When coming under ML attacks, PUFs en-
hanced by adding attribute noise can resist better since to obtain a sufficiently accurate model
of the PUF with a high probability, a larger number of CRPs is required by ML algorithms.
This number of CRPs is polynomial in the level of the attribute noise, and hence, increasing
in this level results in achieving better resiliency against ML attacks (see Corollary 4 in [12]).
Therefore, if a framework can be established to increase the level of attribute noise beyond an
upper bound, the effectiveness of an ML attack against the PUF can be impaired. To this end,
our framework suggests that (some) stages of the PUF are rolled in several rounds to obtain
a more ML attack-resistant primitive. Clearly, a blind partial reconfiguration cannot automat-
ically assure making a change in the challenge-response behavior of the PUF. More precisely,
adding the attribute noise can have a significant impact on the outputs of the function, but
only if influential challenge bits are affected by the attribute noise; otherwise, the output of
the function is not flipped [2]. Therefore, before rolling a PUF, it is crucial to determine the
influential stages, for instance, by applying an approach proposed in [10], see Fig. 2.

The importance of introducing rounds into our scheme: This issue is two-fold. (1) If the
rolled stages are the same in each round, it may be still possible to learn the PUF by mounting
the Fourier-based attack [12]. This is due to the fact that by reconfiguring the PUF stages,
we introduce the attribute noise into our PUF, which can only slightly impair the effectiveness
of the above attack. (2) Different sets of CRPs should be used in the rounds. This is in line
with other cryptographic schemes aiming at preventing replay attacks as well as the concept of
controlled PUFs proposed in the literature, e.g., [13],(see Sect. 7 for discussion on the difference
between controlled PUFs and our scheme). The goal is to stop an attacker attempting to collect
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noisy CRPs in each round of rolling, the attacker should not have access to a set of CRPs needed
to build a sufficiently accurate model of the challenge-response behavior of the PUF. To address
this issue, a lower bound on the number of examples required by the learning algorithm can
be established (see Sect. 2.2). Afterward, the number of CRPs used in each round should not
exceed the lower bound.

As an example, consider Arbiter PUFs represented by LTFs. As for LTFs with n
Boolean variables the VC dimension is n + 1, it is easy to calculate the lower bound as
N = Ω (1/ε log(1/δ) + n+ 1) (see Sect.2.2). Now by setting ε = 0.51, we ensure that the
attacker cannot do considerably better than flipping a coin to determine the response of the
PUF to a given challenge. As an example, for a noiseless 64-bit Arbiter PUF, the minimum
number of CRPs required to achieve our learning goal is approximately 75, when δ = 0.01. This
bound holds in general in the sense that regardless of the algorithm applied to learn a target
concept, the above bound can be established. More interestingly, the bound discussed above is
achieved for the noiseless setting. In other words, in the presence of noise, the accuracy of the
model is less than ε for the same number of CRPs and the confidence level (δ).

4 Hardness Amplification for PUFs

Even though the design of the somewhat hard PUF discussed in Sect. 3 is further supported
by theoretical analysis, the desired hardness may not be achieved easily. This is due to the
fact that such an approach is still dependent on the practical aspects of the design, such as
manufacturing variations, which are not entirely under our control. Therefore, we claim that
even when employing a systematic approach, as considered in the first part of our paper, a
paradigm shift from practical methods to theoretical and provable ones should be emphasized.

As discussed in Sect. 1, we are interested in building a strongly secure construction out
of a weakly secure construction of a cryptographic primitive. To address this, Yao’s XOR
lemma has been established, which states: (informally) if a Boolean function f is weakly un-
predictable (i.e., learnable) within some complexity bound, for sufficiently large k, the function

F (x1, ..., xk) :=
⊕k

i=1 f(xi) is virtually unpredictable within the respective complexity bound.
This lemma has been further strengthened to ensure that the final function F is close-to-
balanced, and in particular, remaining close-to-balanced even in the presence of the attribute
noise, see Theorem 1 [22].

Theorem 1. [22] Let the function f : {0,1}n → {0,1} denotes a Boolean function in NP that
is 1/poly(n)-hard to be computed. There exist a function F (x1, ..., xk) := C(f(x1), · · · ,f(xk))

that is 1/2 + n−1/3+ε hard, where C is a combination function.

Here we do not discuss the proof of this theorem, but the properties of the function C
is of great importance to us. As proven in [22], the function C should be polynomial-time
computable and monotone, i.e., given two inputs x ≥ y in the partial order on {0,1}n, we have
C(x) ≥ C(y). Moreover, the combination function C should exhibit low expected bias, known as
a metric indicating the hardness of the final, combined function. Informally, the expected bias
is a measure of the average bias of a function in the presence of attribute noise. To introduce
a combination function with the above properties, the “Tribes” function, has been used in the
proof of Theorem 1. The inherent feature of the Tribes functions making them suitable for
the hardness amplification is not only their monotonicity, but also remaining close-to-balanced
even in the presence of the attribute noise.

Now we can eventually shift our focus to hardness amplification for PUFs. We argue that the
hardness amplification following the Theorem 1 is much stronger than what can be achieved
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by XORing the PUFs. In particular, the new combination functions, i.e., Tribes functions,
provides an inherently distinctive characteristic that makes them attractive in PUF scenarios:
(1) on the one hand, Tribes functions are sufficiently noise sensitive to ensure a close-to-random
behavior of the combined function, and (2) on the other hand, they are nearly balanced and
preserving this quality even when being subject to the attribute noise. The following theorem
concludes this section by stating how the hardness of PUFs can be amplified.

Theorem 2. Consider a PUF fPUF : {0,1}n → {0,1} that is given N pairs of CRPs chosen
uniformly and an adversary using these N pairs to come up with an εN -approximator for fPUF

with probability at least 1− δN . There exist a Tribe function C applied to k instances of fPUF,

i.e., C(fPUF(x1), · · · ,fPUF(xk)) to obtain a 1/2 + n−1/3+ε-hard function.

Proof: First set the desired confidence level δ, and N being the minimum number of CRPs
that a polynomial-time algorithm requires to deliver an εN -approximator of the function fPUF

with the desired probability 1− δ. Clearly, according to the PAC model, εN is a function of δ,
N , and n. More precisely, the achievable accuracy level is indeed 1/poly(n) (see Sect. 2.2). Note
that with this number of CRPs no polynomial-time algorithm can achieve better than an εN -

approximation of fPUF. The proof is completed by taking Theorem 1 and setting k = O(n2/3).
�

How many CRPs are required in each round of rolling Tribes-combined PUFs?
We should establish the lower bound on the number of CRPs needed to learn a PUF
with the accuracy of 1 − δ, and then the number of CRPs in each round should be less
than that. We begin with the calculation of the VC dimension of the combined function
C(fPUF(x1), · · · ,fPUF(xk)), where C(·) is the Tribes function. For the representation of the
target concept, fPUF, we stick to the LTF functions. It is known that for finite concept
classes, VCdim(C ⊗ F ) = O(kd + kd log(kd)), where ⊗ denotes the composition operator and
d = VCdim(F ). When the inputs to this Tribes function are LTFs with VCdim(F ) = n+ 1, we
obtain VCdim(C(fPUF(x1), · · · ,fPUF(xk))) = O(k(n+ 1)(1 + log(kn+ k))). Substituting this in
the general lower bound (see Sect. 2.2) yields the minimum number of CRPs required to learn
our combined function. Note that the ultimate hardness of our scheme depends not only on the
hardness of the PUF chains, but also on the expected bias of the final combined function [22].
As the expected bias of the Tribes functions is close to 1/2, in contrast to the XOR function,
the hardness of the combined function can be guaranteed.

5 PUF Implementation

One approach to roll a PUF circuit on an ASIC or FPGA is to have multiple PUF instances
in parallel, where they are selected by a multiplexer [26]. Another approach is to physically swap
a PUF circuit partially or entirely, which is only feasible by using the dynamic reconfigurability
feature of mainstream FPGAs [28]. The first introduced rolled PUF [28] has utilized the
reconfiguration capability of an FPGA to reconfigure and move the entire PUF circuit on the
FPGA. However, inside an FPGA the resources are shared among several IPs and free movement
of the PUF might not be feasible. Moreover, implementing a strong PUF, such as Arbiter PUF,
on an FPGA requires precise and symmetric routing constraints, which is not achievable by
random reconfigurations. Even a complete symmetric design does not necessarily guarantee
that the PUF works properly, i.e., without a far too high level of bias and acceptable inter/
intra distances. Hence, it is more desirable to partially reconfigure the PUF and swap only a
few stages of it. More importantly, partial reconfiguration provides support for our theoretical

39



Rock’n’roll PUFs Ganji et al.

ai�;2 y

+(y)

2M�#H2

ai�;2 R

+(R)

ai�;2 ek

+(ek) i/QrM(y)

imT(y) ai�;2 ej

+(ej) i/QrM(R)

imT(R)
�`#Bi2`

. Z `2bTQMb2

aBM;H2 S.G

A1

A2

A3

A4

A5

A6

O6

A1

A2

A3

A4

A5

A6

O6

Pmi

AM

*

�1

R

y

R

y

R

y

R

y

y
R
y
R
y
R
y
R

R

y

R

y

�2

R

y

�3

Pmi

*?�HH2M;2 #Bi

j@Glh6 input LUT

62
…

… …

…

…

(a) (b) (c)

Figure 3: (a) Illustration of the propagation delay in a 6-input LUT based on the state of the
challenge bit. (b) Composition of the PDL from two 6-input LUTs which operate as inverters.
(c) Schematic structure of a PUF using PDLs as stages.
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Figure 4: Examples of rolling the PUF stages with different LUT combinations in a slice and
different physical LUT inputs: (a) using LUTs A and B for an unrolled stage, (b) Swapping
both LUTs to LUTs C and D. (c,d) changing the input from A1 to A2 and A3, respectively.

setting, namely, only the influential stages can be reconfigured in each round of the rolling.
Here, we describe the setup used to realize the approach discussed in Sect. 3.

FPGA implementation of Arbiter PUFs: We deploy a Digilent Arty development board,
which contains a Xilinx Artix-7 (XC7A35T) FPGA manufactured with 28 nm technology.
Among different PUF candidates, we selected Arbiter PUFs for our experiments since there
is a verified systematic way to implement them on FPGAs [19]. Due to delay imbalances of
classical multiplexer-based Arbiter PUF on FPGAs, we implemented the stages by two indepen-
dent chains using so-called programmable delay line (PDL) as in [19], see Fig. 3. The PDL takes
advantage of the internal behavior of a LUT and consists of two LUTs in the implementation,
where each LUT behaves as an inverter, see Fig. 3a. The signal applied to A1 takes different
distances, depending on the assignment of the inputs of A2 − A6. If A2A3A4A5A6 = 11111,
the highlighted path in green is selected, see Fig. 3a; Otherwise, if A2A3A4A5A6 = 00000, the
longer red path is chosen. If we take 6-input LUTs of our DUT into account, input A1 can be
used as inverter input, and the remaining inputs A2−A6 serve as our interconnected challenge
bit. By implementing a second inverter connected in series, the caused signal inversion is re-
versed, see Fig. 3b. A complete stage of the PUF can be realized as a module from two such
individual PDL module instances, each with the same challenge bit. Our design consists of a
64-bit Arbiter PUF, where 64 of these modules are chained in series, see Fig. 3c. Additionally,
there is a certain number of tuning stages [19], consisting of two PDL instances similar to the
PUF stages. However, they are realized with two independent selector bits, which compensate
for the bias between the two routes. At the end of the chain, a D-flip-flop serves as an arbiter,
where data/clock input is connected to the upper/lower path. The response of the PUF is
zero/one if the total delay through all stages of the upper signal path is greater/less than that
of the lower.
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Reconfig. stages ε # Influential stages Influential stages
9, 22 0.0024 7 32,5,17,47,3,20,7
9, 17 0.0024 16 47,18,32,20,7,5,22,35,6,

54,31,3,53,10,50,4
5, 17 0.0024 2 9,22

Table 1: Influential stages within n = 64 stages. In this experiment, δ = 0.99, the inside-LUT
configuration is CD, and a set of stages in the first column is reconfigured. For the configurations
not shown here, no influential stage is found.

5.1 Partial Reconfiguration of PUFs

At the first stage, we implement a reference Arbiter PUF. We take into account two different
approaches for the reconfiguration: 1. changing the configuration of the LUTs, and 2. choosing
different ports for the input signal. These modification options are based in part on the ideas
presented in [14], where the reconfiguration of a ring oscillator PUF has been discussed. Con-
sidering the first approach, there are four LUTs A, B, C and D inside each slice of our FPGA,
where in the initial unrolled stage, the LUTs A and B are deployed as PDLs. Since there are
six combinations per stage (see Fig. 4) after taking into account the combination already used
for the unrolled PUF, five combinations remain to construct a rolling with the selection of the
two necessary LUTs. In the second approach, the propagation path can be changed within a
stage for each PDL by selecting a different physical LUT input, see Fig. 4.

5.2 Measurements

For each experiment, we collect CRPs from the reference PUF and the rolled one obtained
by applying one of the approaches mentioned in Sect. 5.1. The tuning stages are adjusted in
a way that a ratio of nearly 50% of zeros and ones is obtained. Note that inter slice routing
has the main effect on the bias of the PUF, and thus, retuning of tuning stages is not needed
if reconfiguration is carried out inside a slice. Due to very little delay differences between
two chains, the arbiter can sample a meta-stable signal. Thus, for each given challenge, we
measured the responses 19 times, as found effective experimentally, and applied majority voting.
Afterward, if the percentage of responses to a challenge equal the majority value is less than
75%, the CRP is marked as noisy and sorted out. From each PUF, we collect 640000 CRPs
from that 89284 CRPs are removed due to the noisy behavior. Note that for each experiment
we randomly and uniformly choose solely 113729 CRPs, depending on the value of ε and δ. The
reason behind collecting more CRPs is to run the experiment repeatedly to obtain statistically
relevant results. The CRPs are collected in an offline fashion, and then, analyzed by applying
in-house developed algorithm written in MATLAB [16].

6 Results

6.1 Determining the Influential PUF Stages

As the first step, by applying a property testing algorithm, namely a k-junta testing al-
gorithm [21], we determine the influential stages of the PUF. The rationale behind a k-junta
testing algorithm is that giving black-box query access to an unknown function f , the algo-
rithm determines whether f is ε-close to k-junta functions or it is “far” from any such function.
The k-junta testing algorithm can also determine the influential stages. The number of queries
made by the algorithm, i.e., CRPs in our case, is poly(k)/ε [9]. In this regard, in Matlab [16]
we implement the k-junta testing algorithm proposed in [21]1. We run the algorithm against

1
The algorithms are available under https://www.trust-hub.org/software
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Figure 5: The schematic illustrating how our scheme is used in different rounds of rolling. The
combination function shown in this scheme is either the XOR or the Tribes functions. The
response of the PUF is given to the low degree algorithm to evaluate the hardness of the PUF.

our unrolled Arbiter PUF, i.e., a PUF with an inside-LUT configuration AB. With regard to
the requirement enforced by the spectral properties of a Boolean function, e.g., Parseval’s iden-
tity cf. [21], we compute an interval, within which ε can lie. The mean of the values lying
within this interval is chosen as the default value of ε that is, ε = 0.0024. Moreover, we repeat
each experiment 5 times and take the maximum number of influential stages. With regard to
our results, in line with the theoretical limits on the number of influential stages in an LTF
(see [1,12]), the unrolled arbiter PUF depends solely on 4 influential stages, namely, the stages
5,9,17, and 22.

In the second step of our experiments, we change the inside-LUT configuration of these
stages one-by-one to AC, AD, BC, BD, and CD. In a nutshell, the following conclusions drawn
from all of our experiments are worth noting here (for the complete set of results, see [1]).
Among all inside-LUT reconfigurations, we observe that changing the configuration from AB
to CD is the most effective strategy. Moreover, for some stages, there are some ineffective inside-
LUT rolling strategies, e.g., changing the configuration from AB to the AD in the stage (22) and
the AC in the stage (5) do not impair the effect of these influential bits (hereafter, the numbers
inside the parentheses indicate the rolled stages). Secondly, the natural question, which may
arise here, is that whether by collecting more CRPs, the attacker can find the influential stages
of the rolled PUF. This can be explained by the fact that the influence of the stages is very well
reduced so that increasing the precision of the algorithm results in finding none or only some
of the influential stages. Finally, for the same value of ε, inside-LUT reconfigurations are more
effective than the input-port selection strategy.

In the next step of our experiments, we observe that when rolling the PUF by changing the
configuration of a set of stages (i.e., more than one stage at the same time), the traces of the
remaining influential stages can be seen in some experiments, see Table 1. However, for some
rolling strategies, the influential stages cannot be determined, even after increasing the number
of available CRPs, e.g., after rolling all four influential stages. To sum up this section, we stress
that in order to obtain a somewhat hard PUF through rolling, one has to go step-by-step and
identify the best strategy to roll the PUF: a strategy that maximizes the difference between the
sets of influential bits for a PUF and its rolled version.

6.2 Learning Rolled PUFs

Here, we examine if the rolled PUFs are still vulnerable to machine learning attacks, in
particular, applying the low degree algorithm. The reason for this is two-fold. First, as discussed
in Sect. 3, the reconfiguration of a PUF stage can be translated to an increase in the attribute
noise level. Since it has been proven that even in the presence of this type of noise, the low degree
algorithm can be applied [6], one can deduce that the security of rolled PUFs can be broken
by mounting the low degree algorithm. Secondly, the low degree algorithm is categorized as an
improper learning algorithm, i.e., without limit on the hypothesis class, hence, the infeasibility
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Stage # CRPs in training set Accuracy
Unrolled (AB)

125

94.26
(9) 92.96

(17,22) 92.13
(5,9,17,22) 95.21

Table 2: Results for learning Arbiter PUFs with different number of rolled stages. The number
of CRPs in the test set is 100000, and the inter-LUT configuration is CD.

of applying the low degree algorithm provides a stronger security assurance.
To employ the low degree algorithm, however, the attribute noise level should be known/

approximated. As in practice, this parameter is not under the designer’s control, the best
estimation of it, i.e., ε = 0.05, has been used in our experiments. The number of CRPs used to
come up with an approximator of the Boolean function fPUF is aggressively reduced to verify
the lower bound on the number of CRPs discussed in Sect. 3. Regarding this, the number
of CRPs in the training set is 125, whereas in the test set we have 100000 CRPs. Table 2
shows the accuracy of the model delivered by the low degree algorithm for only a set of PUFs,
with different numbers of rolled stages, whose models have the least accuracy. Note that as
we are interested in amplifying the hardness of PUFs, the minimum accuracy is important to
our approach (for a complete set of results, see [1]). Nonetheless, we emphasize that these
somewhat hard PUFs can be modeled with a high level of accuracy (up to about 95%), even
with a small set of CRPs. We repeat this experiment when the number of CRPs fed into the
algorithm is reduced to 100. Our observation confirms that in this case, the accuracy of the
model delivered by the algorithm drops significantly to approximately 80%. Note that although
further reduction may result in obtaining an even less accurate model, from a practical point of
view, it is not desirable. This is founded on the basis that a reduction in the number of CRPs
exchanged in each round results in a more frequent reconfiguration of the hardware platform.

Hence, we shift our focus to designing rolling strategies changed in each round. In this
regard, we employ two different rolling strategies: first, in each round of rolling only one stage
of the PUF is reconfigured. More specifically, in four rolling rounds, the PUF configuration
is changed from unrolled to a PUF with different rolled stages, denoted as Unrolled→5→9→
17→22. For example, in the second round of rolling the configuration of the stage (5) is
rolled back to “unrolled” and the stage (9) is reconfigured. In the second strategy, in each
round, we have a various number of rolled PUF stages, e.g., Unrolled→(5,9)→(9,17)→(17,22)→
(5,9,17,22). This strategy is much appropriate from the angle of view of practical implementa-
tion. Furthermore, we adopt the “refined” CRP management strategy, where the CRPs used
in previous rounds are filtered (see Fig. 5(a)). The number of CRPs used in a round is 100,

and the adversary can take advantage of all the CRPs observed by her: after the ith round,
the number of CRPs used by the adversary is 100 · i. Additionally and similarly, the number
of CRPs in the test set is 5000 · i. Table 3 shows the results of the experiments, in which the
effectiveness of the rolling strategies is examined. As can be seen, the accuracy of the model is
reduced drastically to approximately 65%.

6.3 Learning Combined PUFs

The goal of conducting this set of experiments is to assess the hardness of combined PUFs
featuring either the XOR or the Tribes combiners. In our experiment, we set k=4, 6, and
12, i.e., the XOR Arbiter PUFs under test have 4, 6 or 12 chains, respectively. To compare
the results for these combiners and the Tribes functions, we set the input length of the Tribes
functions, k, to 4, 6, and 12 accordingly. Moreover, as suggested in [22], b, the size of the
terms in the Tribes functions is set to 2 that is close to log2 k. To obtain somewhat hard PUFs
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Rolling
Strategy

Accuracy [%]
1 round of rolling 2 rounds of rolling 3 rounds of rolling 4 rounds of rolling

1 65.26 64.16 65.02 64.05
2 65.35 64.30 65 64.09

Table 3: Results for learning Arbiter PUFs rolled according to different strategies. In all of the
experiments, the noise level is 0.05. The rolling strategy 1 refers to Unrolled→5→9→ 17→22,
whereas strategy 2 is related to Unrolled→(5,9)→(9,17) →(17,22)→ (5,9,17,22).

Combination
Function

Accuracy [%]
1 round of rolling 2 rounds of rolling 3 rounds of rolling 4 rounds of rolling

XOR (4) 88.42 88.37 86.41 85.41
Tribes (4,2) 65.04 63.84 63.53 63.47

XOR (6) 83.68 82.86 80.02 78.7
Tribes (6,2) 66.45 64.81 64.66 64.48

XOR (12) 77.2 76.90 76.95 76.89
Tribes (12,3) 63.3 57.1 54.72 53.34

Table 4: The accuracy of the model delivered by the low degree algorithm. In this table, the
results are grouped into three main segments, showing how the results for the XOR and the
Tribes functions should be compared to one another.

to be combined, the strategies regarding the rolling, and the CRP feeding in different rounds
are employed, as what we have used in our experiments described in Sect. 6.2. Moreover, the
number of CRPs in training and test sets are the same as the previous experiments on single
PUFs. Table 4 presents the results of conducting the experiments described above. The core
message conveyed here is that for both of the XOR-combined and the Tribes-combined PUFs
the hardness is improved compared to the results for the standalone PUFs, even after rolling
them (see Table 2). Another interesting aspect of the results is related to how the hardness
of the combined functions is improved after rolling the PUFs in each round. For not only the
Tribes-combined, but also the XOR-combined PUFs, after each round of rolling the hardness
is slightly improved. However, in the latter case, even after 4 rounds, the hardness is still not
satisfactory, compared to the Tribes-combined PUFs.

Comparison to the theoretical bounds: As discussed before, the hardness of the combined
functions is at most equal the expected bias of the combination function (see Sect. 4). For Tribes
functions, the expected bias can be approximated as 1/2 + 1/k, when δ is close to 1/2 [22].

For the XOR function, the expected bias can be calculated directly as 1/2 + 1/2(1 − δ)k,
where δ here denotes the hardness of the function fPUF. According to the results provided in
Sect. 6.2, on average, we can set δ to approximately 0.25. Hence, for k=4 the expected bias,
and accordingly, the hardness of the XOR function is 0.6282, whereas it is 0.5890 for k=6. For
the same setting, the expected bias of our Tribes function is approximately 0.75 and 0.6667,
respectively. Consequently, the hardness of this function is at least equal to these values.

Nevertheless, as can be seen in Table 4, for the XOR function, the combined function may
not be as hard as what can be approximated theoretically. This is a key difference between our
practical setting and the theoretical one. The hardness amplification bounds provided for the
XOR and the Tribes functions are established in a so-called hard-core setting [22]. This means
that the adversary knows whether the output of the combined function is corrupted by the
attribute noise or not (recall that the attribute noise may not always flip the output). On the
contrary, in PUF scenarios, the adversary cannot gain this knowledge. In other words, we go
beyond the hard-core setting and take the worst case scenario into account. Consequently, there
is no one-to-one comparison between the bounds suggested in [22] and our results. Therefore,
when XORing the PUFs, the hardness of this function cannot be tight or close-to tight for
the hardness bound suggested by Yao’s lemma. In contrast to this, the hardness achieved for
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the Tribes functions in our experiments is much closer to what can be approximated in theory.
This is regarding an intrinsic property of the Tribes function: remaining close to balanced,
even under the effects of the attribute noise [22]. Hence, the Tribe functions can handle the
noisy cases in real-world PUFs. For instance, for the Tribes (12,3), the expected bias is 0.5178,
whereas it is 0.7689 for XOR (12). In conclusion, although one cannot directly compare our
experimental results with the asymptotic hardness bounds of the Tribes and XOR functions,
the hardness of the Tribes-combined functions can be closer to those bounds in practice.

7 Discussion

Comparison to the previous bound defined on the hardness of XOR Arbiter PUFs:
We underline that the results for XOR Arbiter PUFs with a large number of chains (k > lnn)
do not contradict the upper bound established for provable algorithms, cf. [11]. The bound
established in [11] holds for PAC learning algorithm in a general setting (i.e., no restriction on
the distribution, regarding which we draw the CRPs); however, in this paper we discuss uniform
PAC learning algorithms. Besides, the PAC learning algorithm considered in [11] has to deliver
LTFs, whereas this is relaxed for the low degree algorithm. Thus, the results presented here
are not comparable to what has been reported in the literature so far, e.g., [11].

Comparison to PUF protocols: Although our scheme shares some commonalities with
protocols suggested in [23, 31], we emphasize the differences between them. First, for these
protocols, the number of PUFs combined together using the XOR function has to exceed a
lower bound defined for specific ML attacks. This is not sufficient since if the lower and/or
upper bounds are not established in a general sense, an algorithm that has been overlooked up
till now could break the security of a PUF built upon that lower/upper bounds cf. [7]. In contrast
these protocols, our scheme is anchored on a solid foundation: the hardness amplification for
Boolean functions, and bounds that hold in general, i.e., for any provable algorithm.

Another common aspect of our scheme and the PUF-based protocols is applying the notion
of “controlled PUFs”. For instance, the Slender PUF protocol [23] deploys an input network to
not only restrict the attacker’s access to the CRPs, but also meet the strict avalanche criterion
(SAC) requirement. In our scheme, however, it is solely necessary to filter the CRPs used in the
previous rounds of rolling. Moreover, as discussed before, the presence of the attribute noise in
conjunction with the Tribes function ensures the maximum possible randomness, i.e., similar
to the SAC property.

Comparison with schemes exploiting the impact of the noise: We stress that our
architecture, enhanced by adding the attribute noise, should be clearly differentiated from
schemes, which improve the security of a PUF by leveraging the impact of the classification
noise (i.e., changing the output of a function by a random process), e.g., [32]. The latter
approach is interesting, but it has been shown to be less effective than promised [29]. The core
difference between such approaches and ours is that the attribute noise is harder to handle
by provable machine learning algorithms, in particular, in the PAC learning framework [15].
Therefore, a stronger security guarantee can be given by our approach.

Resilience to attacks exploiting the impact of the noise: Although our scheme aims at
making the provable ML attacks fail, it is worth considering noise-assisted ML attacks. Attacks,
which take advantages the classification noise as a side channel information, mainly rely on the
meta-stability condition at the measuring element of PUFs (e.g., the arbiter). In our scheme,
the attacker has to deal with the attribute noise primarily, which could impair the effectiveness
of the attacks suggested in [4, 8]. More precisely, the equations that have to be solved to build

45



Rock’n’roll PUFs Ganji et al.

a model of a PUF (cf. Equation 4b in [4] and the system of linear equations in Sect. VI.A and
Sect. VI.B in [8]) cannot be formulated as required, due to the presence of the attribute noise.

Existence of the attribute noise in real-world implementations and how Tribes
functions can deal with that: Upon implementing some instances of the same PUF on the
same platform, ideally, the inter-distance between any pair of these instances should be close to
50%. However, this is not the case in practice due to the effect of the routing, and/or having
not sufficient deviation in the manufacturing process variations from one instance to another.
This can be precisely formulated by the impact of the attribute noise, which is not limited to
our scheme featuring rolling. If the level of the attribute noise is sufficiently high to influence
the bias of the PUF chains, clearly the desired hardness cannot be achieved, even for a large
number of chains XORed together. Accordingly, as proved in theory and verified in practice,
the final, combined PUF may not meet the close-to-balanced condition. Hence, the Tribes
functions can be an appropriate combination functions to be used in not only our rolling-based
scheme, but also in other schemes comprising a combination function for PUFs.

Aging can be considered and modeled as an example of the attribute noise as well. Each
individual aged PUF circuit in a combined PUF, such as XOR PUF, might bias the overall
responses of the combined PUF. In contrast to the XOR combination function, the Tribes
functions can still deliver less biased responses over time. Moreover, under extreme aging
conditions, new enrollments of CRPs in conjunction with using Tribes functions can recycle the
PUF in an unbiased manner.

Enrollment phase: Since the influential stages can be different on different devices, the
framework presented in Sect. 6 has to be applied to each new PUF during the enrollment
phase. Thus, in addition to CRPs, the configuration of each rolled PUF have to be stored in a
database for the future authentications.

8 Conclusion and Remarks

This paper aims at narrowing the gap between approaches for hardness amplification intro-
duced in the ML theory and the PUF-related literature. Following the discussion on methods
suggested to impair the effectiveness of ML attacks against PUFs, we conclude that two major
classes of techniques can be distinguished. On the one hand, based on practical observations,
to build a somewhat hard PUFs, rolling some stages of the PUF can result in failure for ML
attacks. On the other hand, it is suggested to obfuscate the responses of PUFs by combining
them together. Our proposed scheme takes advantage of both of these techniques, i.e., recon-
figuration of some PUF stages and combining instances of a PUF implemented on the same
platform. For this purpose, we make a marked paradigm shift, from the XOR function to the
Tribes function, known for their random behavior. According to the proofs, the hardness of our
proposed scheme implies that the attacker running provable algorithms cannot do better than
filliping a coin to find the response of the PUF to an unseen challenge. This theoretical finding
is further supported by conducting experiments on real-world PUFs in this paper.
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