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Abstract

A new algorithm for incrementally generating counterexamples for the temporal de-
scription logic ALCCTL is presented. ALCCTL is a decidable combination of the de-
scription logic ALC and computation tree logic CTL that is expressive for content- and
structure-related properties of web documents being verified by model checking. In the
case of a specification violation, existing model checkers provide a single counterexample
which may be large and complex. We extend existing algorithms for generating coun-
terexamples in two ways. First, a coarse counterexample is generated initially that can be
refined subsequently to the desired level of detail in an incremental manner. Second, the
user can choose where and in which way a counterexample is refined. This enables the
interactive step-by-step analysis of error scenarios according to the user’s interest.

We demonstrate in a case study on a web-based training document that the proposed
approach reveals more errors and explains the cause of errors more precisely than the
counterexamples of existing model checkers. In addition, we demonstrate that the pro-
posed algorithm is sufficiently fast to enable smooth interaction even in the case of large
documents.

1 Introduction

Model checking is a powerful technique for automatically detecting errors in hard- and software
design artifacts that has also been applied to verify business processes [19], web services [15],
and web documents [26]. A remaining problem of model checking is its limited usability for
non-experts. In the domain of document management, formal verification methods cannot be
applied without appropriate user support. In previous work, we proposed means of supporting
the user in model generation [22,23] and property specification [21]. In this paper, we introduce
the formal structures and algorithms to support incremental and interactive analysis of model
checking results.

A model checker determines if a given finite state transition system M is a model of a
temporal formula p. If M violates p, a counterexample is provided. An ideal counterexample
should take a form that demonstrates in a complete yet concise and comprehensible way [6] why
M violates p. In addition, it should precisely isolate those parts of the model M and the formula
p that contribute to a violation. Counterexamples provided by current state-of-the-art model
checkers such as NuSMV [5] or SAL [8] consist of finite paths in the state transition system
M . These “linear” counterexamples are, in general, not complete, i.e., they may demonstrate
the cause of the property violation just partially [7]. Even so, they tend to be large and
difficult to understand [4, 9]. These problems become worse if temporal formulae contain first
order predicates and quantified variables as required, for instance, to express properties for web
services [15] and documents [25]. To address the problems of incomplete and hard to understand
counterexamples, various extensions to linear counterexamples have been proposed [4,6,24] but
quantified expressions have not been considered.
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We propose a new algorithm for generating counterexamples for first order quantified tem-
poral properties expressible in the temporal description logic ALCCTL [25], a decidable combi-
nation of the description logic ALC [2] and CTL [10]. ALCCTL has been applied for verifying
properties of web documents [26] and technical manuals [21,23]. The proposed algorithm builds
upon the concept of evidence tree introduced in [27]. It extends the algorithm presented in [27]
in the following two aspects:

1. Support of incremental generation of evidence trees. A coarse counterexample is provided
initially which can be refined step-by-step to the desired level of detail. This prevents over-
whelming the user with details of complex error scenarios and increases the responsiveness
of the system.

2. Support of user interaction. The user may choose where and in which way a given coun-
terexample is refined. This supports the successive exploration of different error scenarios
according to the user’s interest, as opposed to existing model checkers which provide just
a single, arbitrarily chosen counterexample.

In addition, we extend the case study in [27] as follows: 1) we demonstrate that the response time

of the algorithm is sufficiently low to provide smooth user interaction even for web documents
with several thousands of web pages; 2) we summarize the results of a new study on the
scalability of the approach for documents up to 4000 pages.

The rest of the paper is organized as follows: first, the research issues of this paper are pre-
sented. After that, some technical preliminaries on ALCCTL and model checking are summa-
rized, followed by the description of the proposed structures and algorithms for counterexample
generation. In the sequel, experimental results are presented before discussing related work and
concluding the paper with a brief summary and outlook.

2 Issues on Counterexample Generation

Example 1 (Linear Counterexample)

p1 p20

p21

Illustration Tree

p2

p22Explanation Tree

Explanation BinTree

Example BinTree

Introduction Basic Definitions

Definition Tree
Definition BinTree

Definition Heap

Figure 1: Web document on data structures (dotted arrows indicate omitted pages)

As an example, let us consider a web-based learning document. It deals with basic data
structures such as binary trees and heaps that are presented in terms of a web document
hypertext (Figure 1). For simplicity, we assume that the web pages of the document form the
finite set of states S and hyperlinks between web pages form the set of transitions T ⊆ S×S of
the Kripke structure M to be checked.

The document contains formal definitions, explanations, illustrations, and examples of the
basic terminology. For instance in Figure 1), page p20 contains definitions of the terms “Tree”,
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“Binary Tree”, and “Heap”, as well as the explanations for “Tree” and “Binary Tree”. After
that, the reader can either see an illustration of “Tree” on page 21 or an example of “Binary
Tree” on page 22 (p21 and p22 in Figure 1). Let us assume that each defined term needs to
be explained on the same page and illustrated by a pertinent example on one of the next pages.
This property can be represented in ALCCTL as

AG(defined ⊑ explained ⊓ EX exemplified) (1)

which is equivalent to the quantified CTL formula

AG(∀t ∈ Term : defined(t)→ explained(t) ∧ EX exemplified(t)) (2)

“On all paths it generally holds (AG) for each term t (∀t ∈ Term :) that if t is defined (defined(t))
then it is explained (→ explained(t)) and it is exemplified on a certain next page
(∧EX exemplified(t))”.

If the set Term in formula (2) is finite, the formula can be reduced to propositional CTL [10]
and verified by model checkers such as NuSMV [5]. Actually, the property is not satisfied
in Figure 1 because, for instance, there is no explanation for “Heap” defined on page p20.
Counterexamples provided by the current model checkers contain a trace (p1, p2, ..., p20) from
the initial page p1 to page p20.

Although such a trace often becomes long, it does not give much information on why the
property is violated. The following questions arise:

Q1) Where on a counterexample trace is the property violated? As for Example 1, the property
is violated on page p20, but also pages p21 and p22 may be involved in certain error
scenarios.

Q2) Which objects violate the property? As for Example 1, the property is violated for terms
“Tree” and “Heap” but not for term “Binary Tree”.

Q3) Why is the property violated? As for Example 1, more than one reason can be suggested.
The property is violated for term “Tree” on page p20, because none of the next pages
p21 and p22 contains an example of “Tree”. The property is violated by term “Heap”,
because no explanation is given for “Heap” on page p20 or, alternatively, because none
of the next pages p21 and p22 contains an example of “Heap”.

Questions Q1) and Q2) refer to two dimensions of error localization. For answering Q1), the
states in the state transition system M , which are involved in a specification violation, are
determined. Q2) corresponds to bindings of the quantified variable t in the formula (2) that
invalidate the formula w.r.t. a given model M . In previous approaches on counterexamples,
quantified variables have not been considered which leaves this important dimension of error
localization unexploited. To answer Q2), we extend counterexamples towards subset expressions
of ALCCTL.

Question Q3) refers to explaining why a property is violated. We observe, that even in
simple scenarios the cause of a property violation can be diverse and complex. Complete
explanations of property violations may be time consuming to generate and may overwhelm
the user with detail. To address these issues, we 1) provide differently detailed views on an error
scenario by structuring counterexamples as trees, and 2) support the incremental refinement of
counterexample trees down to the desired level of detail in interaction with the user.
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p, q→C ⊑ D | ¬p | p ∧ q | EX p | AF p | E(p U q)

C,D→A | ¬C | C ⊓D | ∃R.C | EX C | AF C | E(C U D)

Table 1: ALCCTL syntax definition

3 The Temporal Description Logic ALCCTL

Table 1 shows the syntax definition of a base of ALCCTL connectives over the symbols C ∪ R
where C is a set of unary predicates (atomic concepts) representing sets and R is a set of
binary predicates (atomic roles) representing relations. In Formula (1), defined, explained, and
exemplified are atomic concepts. Basic ALCCTL formulae are of type C ⊑ D (C is a subset of
D) where C and D are concept expressions. According to the second row of Table 1, concepts
can be formed by ALC connectives such as A (A ∈ C atomic concept), ¬C (complement), C⊓D
(intersection), and ∃R.C (quantified role R ∈ R). In addition, CTL temporal connectives can
be applied to form “temporal concepts”: EX C represents the set of objects which are elements
of C in some next state; AF C represents the set of objects which are on all paths eventually

elements of C; E(C U D) represents the set of objects which are on some path element of C until

they are element of D. In Formula (1), explained ⊓ EX exemplified is a (non-atomic) concept.

Any of the usual Boolean, ALC , or CTL connectives such as p ∨ q (disjunction), AG p (all
paths generally p), C⊔D (union), or ∀R.C (universal quantification on roles), can be expressed
in the connectives of Table 1. The CTL fragment of ALCCTL is ALCCTL without concept
constructors (second row of Table 1) and with concept subsumption C ⊑ D being replaced by
atomic propositions. In this way, ALCCTL subsumes CTL.

The semantics of ALCCTL is defined w.r.t. structures M = (S, T,∆, I) where S is a set
of states, T ⊆ S × S is a left-total transition relation, ∆ is a set of objects of interest called
interpretation domain, and I is a state-dependent interpretation of atomic concepts and roles
in such a way that for each s ∈ S,A ∈ C, and R ∈ R it holds: AI(s) ⊆ ∆ and RI(s) ⊆ ∆×∆.
In this paper, we assume both S and ∆ to be finite and non-empty.

Example 2 (ALCCTL Structure)

As an example of an ALCCTL structure, consider M = (S, T,∆, I) were

S = {s0, s1, s2}
T = {(s0, s1), (s0, s2), (s1, s2), (s2, s2)}
∆= {tree, heap}

TaskI(s0) = {heap} there is a task on the topic heap in s0

SolutionI(s1) = {heap} there is a solution on heap in s1

TestI(s2) = {tree, heap} there is a test on tree and heap in s2

Figure 2 depicts the state transition graph (S, T ). The states are annotated with non-empty
interpretations of concepts.

The semantics of ALCCTL defines when a formula f holds in M at a state s, denoted as
M, s |= f or s |= f if M is understood. It extends the interpretation I to non-atomic concepts.
For instance, (¬C)I(s) = ∆\CI(s), (C⊓D)I(s) = CI(s)∩DI(s), and (EX C)I(s) =

⋃
s′∈T (s) C

I(s′)
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s0 s2s1

Task
I(s0)

= {heap} Solution
I(s1)

= {heap} Test
I(s2)

= {tree, heap}

Figure 2: ALCCTL structure

where T (s) denotes the T -image {s′ ∈ S | (s, s′) ∈ T } of s. Further,

s |= C ⊑ D iff CI(s) ⊆ DI(s)

s |= ¬p iff s 6|= p

s |= p ∧ q iff s |= p and s |= q

s |= EX p iff ∃s′ ∈ T (s) : s′ |= p

s |= AF p iff in each infinite path (s0, s1, ...) in (S, T ) starting from s there is a state si such
that si |= p. s |= E(p U q) iff there is such a path (s0, s1, ..., sn) in (S, T ) starting from s that
sn |= q and for each i ∈ {0..n− 1} : si |= p.

In this paper, we discuss counterexamples for ALCCTL
+a
−R which is ALCCTL without quan-

tified roles ∃R.C but extended with concept assertions C(a) where C is a concept and a ∈ ∆ is
a domain object. The semantics of concept assertions is s |= C(a) iff a ∈ CI(s). We disregard
quantified roles in this paper merely because of space limitations. The algorithm presented in
this paper can be extended to handle quantified roles by integrating the respective parts of the
algorithm in [27].

Example 3 (ALCCTL Semantics)
Let M = (S, T,∆, I) as in Example 2. Then

s0 6|= Solution(heap) because heap 6∈ SolutionI(s0)

s1 |= Solution(heap) because heap ∈ SolutionI(s1)

(EX Solution)I(s0) = {heap} because T (s0) = {s1, s2}, SolutionI(s1) = {heap}, and

SolutionI(s2) = ∅

(EX Solution)I(s1) = ∅ because T (s1) = {s2} and SolutionI(s2) = ∅

s0 |= Task ⊑ EX Solution because Task I(s0) ⊆ (EX Solution)
I(s0)

s1 |= Task ⊑ EX Solution because Task I(s1) ⊆ (EX Solution)
I(s1)

Definition 4 (Model Checking Problem of ALCCTL)
The model checking problem of ALCCTL is to decide if M, s |= f for a given structure

M = (S, T,∆, I), state s ∈ S, and ALCCTL formula f .

A detailed description of the syntax and semantics as well as a polynomial model checking
algorithm for ALCCTL is given in [25].

Example 5 (Model Checking ALCCTL)
Consider the ALCCTL formula

f = E((Task ⊑ EX Solution) U ¬(Test ⊑ ⊥))
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“There is a path (E) with the following properties: for each exercise task (Task ⊑), a solu-
tion is reachable in one step (EX Solution) until (U) there is a test (¬(Test ⊑ ⊥)).” ⊥ is an

abbreviation for the empty concept A ⊓ ¬A. Hence, s |= ¬(Test ⊑ ⊥) iff TestI(s) 6= ∅.
Let M = (S, T,∆, I) be the ALCCTL structure of Example 2. Then M, s0 |= f . This is

because there is a path (s0, s1, s2) in (S, T ) starting from s0 such that s0 |= Task ⊑ EX Solution

and s1 |= Task ⊑ EX Solution (cf. Example 3) and s2 |= ¬(Test ⊑ ⊥).
The model checking algorithm given in [25] calculates the interpretation of concepts and

sub-formulae in f as depicted in Figure 3. In step 1), the interpretation of the non-atomic
concept EX Solution is calculated for each state. In steps 2) through 4), it is determined for
each state s ∈ S and sub-formula f ′ of f , whether s |= f ′. The results in bold face are used
to obtain the final result of s0 |= f in step 5). The intermediate results of steps 1) through
4) provide the basis for incremental and interactive counterexample generation as proposed
subsequently.

s0 s2s1

Task
I(s0)

= {heap} Solution
I(s1)

= {heap} Test
I(s2)

= {tree, heap}

(EX Solution)
I(s0)

= {heap}

s0 |= Task  EX Solution

s0 |= Test  ⊥

5)    s0 |= E((Task  EX Solution) U (Test ⊥))

(EX Solution)
I(s1)

= {}

s1 |= Task  EX Solution

s1 |= Test ⊥

(EX Solution)
I(s2)

= {}

s2 |= Task  EX Solution

s2 |= (Test  ⊥)

1)

2)
3)

4)

Figure 3: Intermediate results of ALCCTL model checking

4 Generating Counterexamples

Consider an ALCCTL structureM = (S, T,∆, I), a state s ∈ S, and such anALCCTL formula f
that M, s 6|= f . Our aim is to generate counterexamples to M, s |= f that isolate (Q1) the states
in S and (Q2) the objects in ∆ involved in some error scenario, and explain (Q3) why a given
property is violated for these objects and states (cf. section 2). To avoid information overload
by bulky counterexamples, we structure counterexamples hierarchically w.r.t. the expression
tree of the verified formula and build them incrementally in interaction with the user. This
way, the correspondence between parts of counterexamples and parts of the violated formula is
revealed and the step-by-step analysis of complex error scenarios is supported.

4.1 Representation of Evidence

A counterexample for a formula f may contain witnesses for subexpressions of f . To generalize
from witnesses and counterexamples, we use the term evidence (cf. [4]). A counterexample is
an evidence for M, s 6|= f while a witness is an evidence for M, s |= f . We model evidence as
an ordered tree obtained from the propositional reduction of an ALCCTL formula f w.r.t. M
and s [25].

Example 6 (Structure of Evidence)
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...

(s0 |= p, s1 |= p, …, sn-1 |= p, sn |= q)

...

s0 |= E (p U q)

Evidence for  

s0 |= E (p U q)

... ... ...
Evid. f.  

s0 |= p 

Evid. f.  

s1 |= p 
Evid. f.  

sn-1 |= p 

Evid. f.  

sn |= q

Figure 4: General structure of evidence for s0 |= E(p U q). Read: “E(p U q) holds in s0 because

there is a path (s0, s1, ..., sn) in M such that p holds in s0 and p holds in s1 and ... and p holds
in sn−1 and q holds in sn as demonstrated by the following sub-evidences: p holds in s0 because

...”

Consider the ALCCTL formula f of Example 5. Let p = Task ⊑ EX Solution and q =
¬(Test ⊑ ⊥), i.e., f = E(p U q). Assume such a structure M = (S, T,∆, I) and state s0 ∈ S

that s0 |= f .
A suitable evidence for s0 |= f is a path (s0, s1, ..., sn) in (S, T ) on which it holds: s0 |= p,

s1 |= p, ..., sn−1 |= p, and sn |= q. Hence, the evidence for s |= f should include the evidences
for si |= p (i ∈ {0..n − 1}) and sn |= q as sub-evidences. Figure 4 depicts the structure of
evidence for s0 |= f .

The edges of an evidence tree can be read as “because” (cf. caption of Figure 4): they
associate a state expression s |= f with a finite sequence of state expressions (s0 |= f0, s1 |=
f1, ..., sn |= fn) being the reason for s |= f (note that fi may be equal to fj for i 6= j).
Recursively generating evidences for each of the obtained state expressions si |= fi results in a
tree that can be built top-down based on intermediate model checking results.

Example 7 (Top-Down Construction of Evidence Tree)
Let f be the ALCCTL formula and M = (S, T,∆, I) the ALCCTL structure of Example 5.

Figure 5 illustrates how a branch of the evidence tree for s0 |= f is built in seven iterations.
In an initialization step, the root node of the evidence tree is set to the state expression for
which an evidence should be provided (Figure 5 top).

1. Iteration: f is of type E(p U q) where p = Task ⊑ EX Solution and q = ¬(Test ⊑ ⊥).
According to Example 6), the first step in providing evidence for s0 |= E(p U q) is to find
a sequence (s0 |= p, ..., sn−1 |= p, sn |= q) where (s0, ..., sn) is a path in (S, T ) starting
from s0 . By analyzing the intermediate model checking results in Figure 3, we find the
path (s0, s1, s2) where

s0 |=Task ⊑ EX Solution (row 2) in Figure 3)
s1 |=Task ⊑ EX Solution (row 2) in Figure 3)
s2 |=¬(Test ⊑ ⊥) (row 4) in Figure 3)

The resulting sequence of state expressions is added as a child node to the root node of
the evidence tree (Figure 5, 1. Iteration).

2. Iteration: Let us assume that the user is interested now why s2 |= ¬(Test ⊑ ⊥) (Figure
5, rhs of node obtained in the 1. Iteration). By semantics of negation “¬” we get:
s2 |= ¬(Test ⊑ ⊥) because s2 6|= Test ⊑ ⊥ (Figure 5, 2. Iteration).
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(s0 |= Task  EX Solution, s1 |= Task  EX Solution, s2 |= Test ⊥)

s0 |= E((Task  EX Solution) UTest ⊥))

s2 |= Test ⊥

s2 |= Test(tree)    ⊥(tree)

(s2 |= Test(tree), s2 |= ⊥(tree))

Initialization

1. Iteration

2. Iteration

3. Iteration

T

s2 |= ⊥(tree)

T

4. Iteration

5. Iteration

6. Iteration

7. Iteration

Figure 5: Part of the evidence tree for f = E(Task ⊑ EX Solution U ¬(Test ⊑ ⊥)) after seven
iterations

.

3. Iteration: The user may now want to know why s2 6|= Test ⊑ ⊥ which is equivalent to

TestI(s2) 6⊆ ∅. Each element of TestI(s2) = {tree, heap} (Figure 3 rhs top) provides
evidence for s2 6|= Test ⊑ ⊥. As for the general case s 6|= C ⊑ D, the set of evidence
objects is CI(s)\DI(s), and the set of evidences is {s |= C(a) ∧ ¬D(a) | a ∈ CI(s)\DI(s)}.
In the given example, we get {s2 |= Test(tree) ∧ ¬⊥(tree), s2 |= Test(heap) ∧ ¬⊥(heap)}
as the set of alternative evidences for s2 6|= Test ⊑ ⊥. Let us assume that the user selects
s2 |= Test(test) ∧ ¬⊥(test) for further analysis. This extends the evidence tree to the
level of the 3. Iteration in Figure 5.

4. Iteration: s2 |= Test(test) ∧ ¬⊥(test) because s2 |= Test(test) and s2 |= ¬⊥(test). Hence,
the latter two state expressions in combination provide evidence to
s2 |= Test(test) ∧ ¬⊥(test) which is represented by the pair of state expressions as de-
picted in Figure 5, 4. Iteration.

5. Iteration: Assume that the user requests evidence for s2 |= Test(tree) obtained in the 4.
Iteration. Since Test(tree) is an atomic expression, it holds by definition of M and no
further explanation can be provided. This is represented by the terminal node “⊤” in the
evidence tree of Figure 5, 5. Iteration.

6. Iteration: An evidence for s2 |= ¬⊥(tree) is provided in the same way as in the 2. Iteration.

7. Iteration: Similar to the 5. Iteration, no further explanation for s2 6|= ⊥(tree) can be
provided which is represented by the terminal node “⊤”.

The remaining branches for s0 |= Task ⊑ EX Solution and s1 |= Task ⊑ EX Solution (Figure
5, 1. Iteration) can be expanded in a similar way. The evidence tree is complete when all leaves
nodes are terminal nodes ⊤. The evidence provided by current model checkers for the given
scenario consists of the path (s0, s1, s2), leaving most of the analysis work to the user.
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Remark 8 (Interpretation of Evidence Tree)
The evidence tree of Example 7 contains the information for answering the questions Q1)

through Q3) in section 2. It clarifies

(Q1) in which states which properties hold or do not hold. For instance, Task ⊑ EX Solution

holds in states s0 and s1, and ¬(Test ⊑ ⊥) holds in state s2 as indicated by the node of
the 1. Iteration in Figure 5.

(Q2) for which objects a property holds or does not hold. For instance, Test ⊑ ⊥ is violated in
state s2 by term tree as demonstrated by the evidence for s2 6|= Test ⊑ ⊥ (Figure 5, 3.
Iteration).

(Q3) why a property holds or does not hold. The cause of a property satisfaction or violation
can be drilled down by successively expanding the nodes of the evidence tree until a
terminal node is reached.

For interaction with users not acquainted in temporal logic, the evidence tree is translated into
a structured error report which refers to application level objects (cf. [21,22]). In the given case,
states are mapped onto web pages, domain objects onto important terms used throughout the
document, and ALCCTL formula onto high-level properties derived from specification patterns
[17].

Remark 9 (Optimizations)
The amount of user interaction may be reduced by clustering subexpressions of the formula

and automatically expanding branches of the tree in cases without choices. As for Example
7, just the second and third iteration include choices. In the second iteration, the user has to
decide for which state expression of the sequence obtained in the first iteration further evidence
should be provided. In the third iteration, the user has to choose an evidence for further analysis
from a set of alternative options. The Iterations 1 and 4 – 7 can be completed without involving
the user.

The size of the evidence tree may be reduced by making use of semantic equivalences. For
instance, s |= Test(tree) ∧ ¬⊥(tree) could be simplified to s |= Test(tree) in Iteration 3 of
Example 7 because ¬⊥(tree) ≡ true. This would remove branches that contain just trivial
information. On the other hand, applying (non-trivial) semantic optimizations may result in
evidence trees that are hard to understand. Further research is necessary to find a practical
approach to semantic optimization.

4.2 Generation of Evidence

We now generalize the approach sketched in Examples 7 to an algorithm. First, we introduce
the basic structures for representing evidence trees as depicted in Figure 5.

StateExpression = S × {|=, 6|=} ×ALCCTL
+a

−R
(3)

Node ⊆ {⊤} ∪ (StateExpression × ChildNode) (4)

ChildNode ⊆
⋃

n∈N

Noden (5)

A state expression (Equation (3)) is a triple (s, v, f) where s ∈ S is a state, v ∈ {|=, 6|=} a
validity indicator, and f an ALCCTL

+a
−R formula. A node in the evidence tree (Equation (4))

is either a terminal node ⊤ or a state expression e which has a finite sequence of nodes as child
node (Equation (5)) that provides evidence to e. We use the following abbreviations:
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• State expressions (s, |=, f) and (s, 6|=, f) are denoted as s |= f and s 6|= f , respectively.

• ǫ denotes the empty sequence. 〈s |= f〉 and 〈s 6|= f〉 denote evidence nodes (s |= f, ǫ) and
(s 6|= f, ǫ) without a child node. For instance, 〈s2 6|= ⊥(tree)〉 denotes the node obtained
in the 6. Iteration of Figure 5. (s2 6|= ⊥(tree),⊤) denotes the same node after the 7.
Iteration.

• Let n be a node and s = (n0, ..., nk) = (ni)i∈{0..k} a sequence of nodes. Then s◦n denotes
the sequence (n0, ..., nk, n) obtained by appending node n to s.

• Let node = (e, c) be a non-terminal evidence node. Then node.expr denotes the state
expression e and node.child denotes the child node c of node.

The subsequent algorithm for generating evidence consists of three parts:

1. The main function GetEvidence(s, f) returns an evidence for M, s |= f or M, s 6|= f ,
respectively. It calls the model checking algorithm check as defined in [25] to determine
whether M, s |= f . After that, interactiveExpand is called to incrementally generate
the evidence tree for s and f on the lines of Example 7.

2. interactiveExpand(EvTree) expands user selected branches of an evidence tree EvTree.
It calls getEvSet to calculate the set of possible child nodes of a chosen node in EvTree.

3. getEvSet(expr ) returns the set of options for the child node of a given state expression
expr .

Algorithm 10 (Evidence Generation)
In the subsequent algorithm, the structure M = (S, T,∆, I) is assumed to be available as a
global variable.

function getEvidence(s, f)
if check(M, s |= f) then return interactiveExpand(〈s |= f〉);
else return interactiveExpand(〈s 6|= f〉);

end function

5:

function interactiveExpand(EvTree)
node← userSelectNode(EvTree);
while node 6= ⊤ do

EvSet← getEvSet(node.expr);
10: if |EvSet| > 1 then node.child← userSelectElem(EvSet);

else node.child← elementOf(EvSet);
node← userSelectNode(EvTree);

end while

return EvTree;
15: end function

function getEvSet(expr)
case(expr)
(s |= A(a) | s 6|= A(a)) : EvSet← {⊤};

20: (s |= | s 6|=)(¬C | C⊓D | EXC | AF C | E(C UD))(a) : EvSet← getEvSet(reduce(expr));
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s |= C ⊑ D : EvSet← {(〈s 6|= C(a) ∧ ¬D(a)〉)a∈∆};
s 6|= C ⊑ D : EvSet← {〈s |= C(a) ∧ ¬D(a)〉 | a ∈ CI(s)\DI(s)};
s |= ¬p : EvSet← {〈s 6|= p〉};
s 6|= ¬p : EvSet← {〈s |= p〉};

25: s |= p ∧ q : EvSet← {(〈s |= p〉, 〈s |= q〉)};
s 6|= p ∧ q : EvSet← {〈s 6|= f〉 | f ∈ {p, q} and s 6|= f};
s |= EX p : EvSet← {〈s′ |= p〉 | s′ ∈ T (s) and s′ |= p};
s 6|= EX p : EvSet← {(〈s′ 6|= p〉)s′∈T (s)};
s |= AF p : EvSet← {⊤};

30: s 6|= AF p : EvSet← {(〈si 6|= p〉)i∈{0..n} | (si)i∈{0..n} ∈ findLoop(M, s, p) };
s |= E(p U q) : EvSet ← {(〈s0 |= p〉)i∈{0..n−1} ◦ 〈sn |= q〉 | (si)i∈{0..n} ∈ find-

Path(M, s, p, q)};
s 6|= E(p U q) : EvSet← {⊤};
end case

return EvSet;
35: end function

User interaction is involved in the following functions:

• UserSelectNode(EvTree), called in lines 7 and 12, returns the node of the evidence
tree selected by the user to be expanded, e.g. 〈s2 |= ¬(Test ⊑ ⊥)〉 in the 2. Iteration of
Example 7.

• UserSelectElem(EvSet), called in line 10, returns the child node selected by the user
from a set of options, e.g. 〈s2 |= Test(tree) ∧ ¬⊥(tree)〉 in the 3. Iteration of Example 7.

Function getEvSet calculates the set of evidences for a state expression expr = (s, v, f) by
matching it against a list of possible cases. In getEvSet, s ∈ S is a state, C,D are ALCCTL

+a
−R

concepts, A is an atomic concept, a ∈ ∆ is a domain object, and p, q are ALCCTL
+a
−R formulae.

If the parameter expr is a state expression of type s |= A(a) or s 6|= A(a) (line 19), a
terminal evidence ⊤ is returned (cf. 5. and 7. Iteration in Example 7). In the case of other
concept assertions (¬C)(a), (C⊓D)(a),...,E(C UD)(a) (line 20), the argument a is pushed down
to inner expressions by function reduce and getEvSet is called with the reduced expression.
For instance, reduce(s |= (¬C )(a)) returns s |= ¬(C(a)), reduce(s |= (C ⊓D)(a)) yields s |=
C(a) ∧D(a), and reduce(s |= E(C U D)(a)) results in s |= E(C(a) U D(a)).

As for the other connectives, witnesses (|=) and counterexamples (6|=) are distinguished. In
line 21, a witness for s |= C ⊑ D is generated. Such a witness demonstrates that for each
a ∈ ∆: s |= ¬C(a) or s |= D(a) which is equivalent to s 6|= C(a) ∧ ¬D(a). Hence, the tuple
(〈s 6|= C(a) ∧ ¬D(a)〉)a∈∆ is returned as an evidence for s |= C ⊑ D in line 21.

In line 22, a counterexample for s |= C ⊑ D is generated along the lines of Iteration 3 in
Example 7. Line 23 corresponds to Iterations 2 and 6 in Example 7. The nodes obtained in
Iterations 1 and 4 of Example 7 correspond to the cases of lines 31 and 25, respectively. find-
Path(M, s, p, q) in line 31 applies breath-first-search to find the set of shortest paths (si)i∈{0..n}

in M starting from s such that s0 |= p, ..., sn−1 |= p and sn |= q. Such sequences are witnesses
for s |= E(p U q). Similarly, findLoop(M, s, p) in line 30 searches for shortest paths (si)i∈{0..n}

in M from s such that sn = sj for some j ∈ {0..n − 1} (loop property) and si 6|= p for each
i ∈ {0..n}. Such sequences are counterexamples for s |= AF p.

Note that witnesses for s |= AF p would have to demonstrate that on all paths starting
from s eventually p holds. Since, in general, there are infinitely many such paths, a compact
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evidence for s |= AF p cannot be provided. The same holds in the case of s 6|= E(p U q). As a
consequence, a terminal evidence ⊤ is returned in lines 29 and 32.

Remark 11 (Soundness, Completeness, and Termination of the Algorithm)
A preliminary, non-incremental version of Algorithm 10 has been proven to be sound for

ALCCTL and complete for a larger fragment of ALCCTL [27] than previous counterexample
algorithms [6, 7, 18]. Function getEvSet terminates because each calculated set is finite.
Function interactiveExpand is terminated by the user.

5 Experimental Results

The proposed algorithm has been implemented in Java and integrated in our ALCCTL model
checker for document verification [26]. The runtime results have been acquired on a notebook
computer with Intel Core 2 Duo processor at 2.93 GHz, 4 GB RAM, 64 GB SSD, running
Windows 7 (32 Bit) and Java 6 update 19. The proposed algorithm has been compared with
the CTL model checker NuSMV 2.4.3 [5].

5.1 Evaluation Case

As an evaluation case, we used an XML-based training document on industrial robots which
is implemented in the SCORM [1] standard for web-based e-learning content. The document
consists of 90 web pages, 79 of them being represented as “states” in the ALCCTL model M
that is generated from the XML markup by a software component. The document has been
checked against 25 criteria each represented both as an ALCCTL formula and as a CTL formula
for comparison with NuSMV. 5 formulae were found violated. For each satisfied and violated
formula, a complete evidence tree has been calculated using Algorithm 10. User interactions
were simulated by a depth-first expansion of nodes in lines 7 and 12, and a random selection in
the case of alternatives in line 10 of Algorithm 10.

5.2 Results

The rows in the center of Table 2 summarize the sizes of generated evidence as compared
to counterexamples generated by NuSMV. Since the document structure M and the verified
properties have been chosen in such a way that they can be represented equally well in ALCCTL

and CTL, the counterexamples of ALCCTL and of NuSMV are quite similar in size and range
between 1 and 80 states in the case of NuSMV, and between 3 and 85 nodes in the case of
ALCCTL. However, the ALCCTL counterexamples are structured as trees, breaking down
large error scenarios into comprehensible units. The largest evidence tree (height 17, 85 nodes)
was constructed for a formula with as many as 42 subexpressions. It is almost impossible to
manually analyze the linear counterexamples returned by NuSMV for such complex properties.
The evidence sets for each node contained between 1 and 9 elements, i.e., the user could choose
one of at most nine options in line 10 of Algorithm 10 to expand the current node.

The counterexamples provided by both ALCCTL and CTL lead to 6 “error states”, i.e.,
states that correspond to defective web pages. However, while in the case of ALCCTL these
states are clearly identified in the evidence tree, it requires a considerable amount of manual
effort to find the relevant states in counterexample sequences returned by NuSMV. In addition
to error locations, the ALCCTL counterexamples identified a total of 5 “error objects”. Error
objects are bindings of quantified variables in violated subexpressions (cf. Example 1 and Q2)
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ALCCTL CTL (NuSMV)
# web pages / states 90 / 79
# violated formulae 5 of 25

evidence trees for satisfied formulae

height 2 – 7 – (no witnesses)
# nodes 2 – 146 –
# elements of evidence set per node 1 – 8 –
evidence trees for violated formulae

height 3 – 17 1 (linear counterexamples)
# nodes (CTL: # states) 3 – 85 1 – 80
# elements of evidence set per node 1 – 9 – (no alternatives provided)
# error locations (states) found 6 6 (required manual analysis)
# error objects found 5 –

total runtime 280 ms 660 ms
runtime of model checking 31 ms 30 ms
runtime of evidence generation 30 ms 310 ms
rest (doc. analysis, model generation) 219 ms 320 ms

Table 2: Size and results of the case study on XML documents

in section 2). In the given case, they represent incorrect properties of parts of web pages. For
instance, a “test solution”, which has been tagged as an “information unit” by mistake, has
been detected as an error object but has not been reported in the counterexamples provided
by NuSMV.

The lower part of Table 2 summarizes the runtime results of the experiment. Although pro-
viding more structured and accurate evidence, the proposed algorithm performed better than
NuSMV. We assume that it is easier to extract evidence in the case of an explicit representa-
tion of the state space as applied in ALCCTL model checking than in the case of a symbolic
representation used by NuSMV.

5.3 Performance

For determining the scaling of runtime in the document size, a series of 8 documents consisting
of 16 through 128 chapters of 32 pages each has been synthesized. Each of these documents
have been checked against 10 formulae. Seven of them were satisfied and three of them were
violated. A complete evidence tree for each satisfied and violated formula was generated by
simulating user choices as described in section 5.1.

Table 3 shows the results for four cases of the experiment. The rows in the center of Table 3
report on the size of the largest evidence tree for each document. The height of an evidence tree
merely depends on the corresponding formula. Since the same set of formulae were checked
on each document, the heights of the resulting evidence trees do not vary across different
documents. In contrast, the number of nodes of the largest evidence tree and the size of the
largest evidence set per node grow proportionally in the size of the document. When evidence
sets grow beyond 50 elements, the interactive exploration of each case becomes infeasible. The
height of evidence trees grows linearly in the size of the formula and thus may become large for
very complex properties. Promising strategies to reduce the height and width of evidence trees
are: 1) clustering larger parts of formulae into macro operators, based on specification patters
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# web pages / states 512 1024 2048 4096
# violated formulae 3 of 10

size of largest evidence tree

height 7 7 7 7
# nodes 900 1796 3588 7172
# elements of the largest evidence set 64 128 256 512

total runtime 0.7 s 1.3 s 2.1 s 3.6 s
runtime of model checking 31 ms 78 ms 140 ms 280 ms
runtime of evidence generation 16 ms 32 ms 47 ms 172 ms
worst case user interaction response time <10 ms 15 ms 32 ms 93 ms
rest (doc. analysis, model generation) 0.65 s 1.2 s 1.9 s 3.1 s

Table 3: Results on larger documents

proposed in [17]; 2) providing partial evidence dependent on the user’s focus; 3) generating a
compact symbolic representation of evidence using variables (cf. [27]).

The rows on the bottom of Table 3 summarize the runtime results. Even for large documents,
the total runtime remains below 5 seconds. The runtime is dominated by the time for document
analysis and model generation and scales approximately linearly in the document size. Evidence
generation takes less than 5% of the total runtime. Most important for smooth user interaction
is the response time of the system when expanding the evidence tree. The response time is
dominated by the runtime for calculating the evidence set for a given state expression (line 9 in
Algorithm 10). Even in the case of very large documents, the worst case response time remains
below 100 ms, sufficiently low for smooth user interaction.

6 Related Work

[18] describes the basic method of generating linear counterexamples for CTL which is still
adopted in state-of-the-art model checkers such as NuSMV [5] or SAL [8]. [7] suggests a method
for generating richer ”tree-like” counterexamples. The tree structure of the counterexamples
corresponds with computation trees of the verified model. We structure counterexamples along
the expression tree of the verified formula. This clarifies the correspondence between parts of
the counterexample and parts of the violated formula and supports tracking the cause of a
property violation down to the desired level of detail. Further, a higher level of completeness
and detail is obtained than in [7] because we also consider Boolean connectives, the subset
operator of ALC , and both witnesses and counterexamples for EX.

There have been a number of efforts for addressing the problem of bulky counterexamples.
[16] suggests efficient algorithms, based on transitions shuffling, for approximating the smallest
counterexample in on-the-fly model checking. [20] and [24] define a method for minimizing
variable assignments in CTL counterexample traces which makes it simpler for the user to
find areas of interest. [11–13] and [3] localize errors in C programs based on model checking
results by comparing incorrect and correct runs of the program. Incremental generation of
counterexample and witnesses w.r.t. the user’s interest, however, has not been considered.

[4] proposes a framework for counterexample generation and exploration, based on “proof-
like” counterexamples [14]. Counterexamples and witnesses provided by a symbolic CTL model
checker are annotated with proofs that explain why a property holds in a given state of a
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model. While these proofs support experts in analyzing counterexamples they may be difficult
to understand for users not acquainted in proof systems and proof rules.

A first method for finding counterexamples for the CTL fragment of ALCCTL has been
described in our previous work in [25] and demonstrated in case studies on checking the con-
sistency of technical documentations [21, 23]. [27] proposes a formal definition and analysis of
evidence trees as well as a first algorithm for generating them. This paper extends previous
work towards incremental and interactive generation of evidence trees based on intermediate
model checking results. In addition, the case study in [27] is extended towards larger and
more complex documents and towards the analysis of the system’s response time in interactive
evidence generation.

7 Conclusion

We have presented a new algorithm for the incremental generation of tree-structured counterex-
amples and witnesses for properties of web documents expressed in the temporal description
logic ALCCTL. The algorithm supports exploring alternative error scenarios according to the
user’s interest, instead of providing just a single, arbitrarily chosen counterexample as existing
model checkers do. The generated counterexamples identify both the parts of the model and
the parts of the formula involved in some error scenario, and support the step-by-step analysis
of the cause of a property violation. The runtime performance of the algorithm scales up to
application-relevant problem sizes. The worst case response time remains below 100 ms even
for documents with several thousands of web pages. The presented approach thus provides a
solid basis for generating structured, precise, and user adaptable error reports. Issues of future
work include the optimization of the algorithm to minimize the size of evidence and the amount
of user interaction, the visualization of application level reports generated from evidence trees,
and the evaluation of the usefulness of the approach for differently experienced users.

8 Acknowledgements

This work is funded by the program “Research at International Science and Technology Centers”
of the German Academic Exchange Service (DAAD). The case study reported in section 5
originated from the Verdikt project [26]. We thank Burkhard Freitag for continuing support.

References

[1] Advanced Distributed Learning. Sharable Content Object Reference Model (SCORM) 2004 2nd
Ed., Overview, 2004.

[2] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider,
editors. The Description Logic Handbook - Theory, Implementation and Applications. Cambridge
Univ. Press, 2003.

[3] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to cause: Localizing errors
in counterexample traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2003), pages 97–105, 2003.

[4] Marsha Chechik and Arie Gurfinkel. A framework for counterexample generation and exploration.
International Journal on Software Tools for Technology Transfer, 9(5):429–445, 2007.

48



Incremental Refinement of Counterexamples Franz Weitl and Shin Nakajima

[5] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking. In Proceedings of
Computer Aided Verification (CAV 02), volume 2404 of LNCS. Springer, 2002.

[6] Edmund Clarke and Helmut Veith. Verification: Theory and Practice, volume 2772 of LNCS,
chapter Counterexamples Revisited: Principles, Algorithms, Applications, pages 41–43. Springer-
Verlag, 2004.

[7] Edmund M. Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-like counterexamples in
model checking. In Proc. of the IEEE Symposium on Logic in Computer Science (LICS 2002),
Copenhagen, Denmark, 2002.

[8] Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar, Maria Sorea, and Ashish
Tiwari. SAL 2. Tool description presented at CAV 2004. volume 3114 of LNCS, pages 496–500.
Springer, 2004.

[9] Yifei Dong, C. R. Ramakrishnan, and Scott A. Smolka. Model checking and evidence exploration.
In Proceedings of the 10th IEEE Symposium and Workshops on Engineering of Computer-Based
Systems (ECBS’03), pages 214–223, Huntsville Alabama, USA, 2003.

[10] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science: Formal Models and Semantics, pages 996–1072. Elsevier, 1990.

[11] A. Groce and W. Visser. What went wrong: Explaining counterexamples. In SPIN Workshop on
Model Checking of Software, pages 121–135, 2003.

[12] Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error explanation with distance
metrics. Software Tools for Technology Transfer (STTT), 2005.

[13] Alex Groce, Daniel Kroening, and Flavio Lerda. Understanding counterexamples with explain.
In R. Alur and D. A. Peled, editors, Proceedings of 16th International Conference on Computer
Aided Verification 2004, volume 3114 of LNCS, pages 453–456. Springer, 2004.

[14] Arie Gurfinkel and Marsha Chechik. Proof-like counterexamples. In Proceedings of the 9th Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’03), volume
2619 of LNCS, pages 160–175. Springer-Verlag, 2003.

[15] Sylvain Halle, Roger Villemaire, and Omar Cherkaoui. Specifying and validating data-aware
temporal web service properties. IEEE Transactions on Software Engineering, 35(5):669–683,
2009.

[16] Henri Hansen and Jaco Geldenhuys. Cheap and small counterexamples. In Proceedings of the 2008
Sixth IEEE International Conference on Software Engineering and Formal Methods (SEFM ’08),
pages 53–62, Washington, DC, USA, 2008. IEEE Computer Society.
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