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Abstract

A derivation of so-called “soft-margin support vector machines with kernel” is presented
along with elementary proofs that do not rely on concepts from functional analysis such
as Mercer’s theorem or reproducing kernel Hilbert spaces which are frequently cited in
this context. The analysis leads to new continuity properties of the kernel functions, in
particular a self-concordance condition for the kernel. Practical aspects concerning the im-
plementation and the choice of the kernel are addressed and illustrated with some numerical
examples. The derivations are intended for a general audience, requiring basic knowledge
of calculus and linear algebra, while some more advanced results from optimization theory
are being introduced in a self-contained form.

1 Introduction

For the problem of estimating yes-no answers – based on a given data set with known answers
but with unknown structure – so-called “support vector machines” (SVMs) are an approach
that can be applied under weak assumptions.

More precisely, SVMs are methods for the automated classification of new data into two
classes based on a set of old data with corresponding classifications. For example, the data can
be digitized images of handwritten characters, and the classification involves deciding whether
the pixels of the images represent a given character or not. The old data are called training
data whose classification has been made in some way beforehand, for example by a human
who recognizes the images and manually enters the corresponding characters. If many different
images of handwritten characters have been scanned and classified, the SVM is used to recognize
new images of handwritten characters automatically without a programmer first having to enter
specifications of the sort “the digit three has the following characteristics”.

SVMs estimate yes-no decisions; for certain more complex answers, multiple different SVMs
can be combined; however, in general, other approaches are more appropriate in these cases.
Despite the limited form of the response, SVMs can indeed be a helpful approach for complicated
decision problems.
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1.1 Limitations of SVMs

Applications of SVMs include, for example, automatically classifying images or the task of
determining from a database of patient data whether a new patient falls into a risk group for a
specific disease – or, using another database, deciding whether a customer should be granted a
loan. The last two examples illustrate a problem that has repeatedly occurred in applications
of AI techniques and is described, for example, in [11]. When a SVM is used to identify risks in
patients that might otherwise be overlooked, it serves human well-being; however, it does not
do so when used to deny health insurance or a loan without further examination.

Another problem arises when the training data itself has been automatically classified. The
classification errors made during this process typically persist in the SVM that is developed
from this training data. The same is true, of course, when the training data has been incorrectly
classified by humans.

Even if the given data has been classified correctly, the quality or quantity of the data often
is not sufficient to derive a clear classification from it. Nevertheless, an SVM generally does
provide some form of classification but without the information how reliable the output is.

Another problem arises when the training data is not uniformly distributed. If the hand-
written digits from the above example were collected in the USA (where the digits 1 and 7 are
written differently than in Germany), an increased error rate can be expected when an SVM
developed in the USA is applied in Germany. (This is a rather harmless example!)

Finally, the limitations of SVMs also concern their applicability to large data sets. When
the data consists of more than m = 5000 data points, the SVM approach presented in this
paper gets increasingly expensive a since optimization problems with dense m × m-matrices
need to be solved. Modifications for solving large scale problems are proposed in [2, 4, 8, 7],
for example.

The following will not further address such modeling and interpretation errors but explain
the mechanism of SVMs. Complementing surveys are given, for example, in [1, 12, 19].

1.2 Outlook

The basic idea is to assign similar data to the same class. However, the term “similar data” is
very imprecise. For example, the pixels of two scans of handwritten digits can be completely dif-
ferent even if the same digit is represented. One problem that SVMs ideally solve automatically
is to derive and utilize an appropriate criterion for “similarity” from the data.

The basics of SVMs are well-researched and understood, see e.g. [13, 3, 10, 18] and the
references therein. Below, an introductory mathematical summary will be provided. The
chosen presentation is “minimalistic” in the sense that some concepts commonly used in the
consideration of kernel functions are omitted, and also the results from statistical learning
theory are not addressed. In particular, the completeness of the “feature” space and associated
theorems such as Riesz’s representation theorem or Mercer’s theorem are not used. Nevertheless,
a central property, the continuity of the kernel functions, will be established and analyzed.
Finally, the effect of a normalization of the kernel on the continuity properties and on the
conditioning of the kernel matrix is addressed.

1.3 Notation

A ⪰ 0 denotes that A is a symmetric positive semidefinite matrix. Given two matrices A,B ∈
Rm×n, their Hadamard product A ◦B is defined by component-wise multiplication,

(A ◦B)ij = AijBij for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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For a matrix A, the matrix norm induced by the 2-norm is denoted by ∥A∥2. The derivative
Df(x) of a differentiable function f : Rn → Rm is represented as an m × n matrix (the
Jacobian), and in the case m = 1, the gradient ∇f(x) = Df(x)T is a column vector. The
vector e := (1, 1, . . . , 1)T always denotes the all-one-vector with its dimension given by the
context.

2 Basic form of support vector machines

The initial situation is as follows. There are given training data consisting of points x(i) from
a compact convex set Ω ⊂ Rn for 1 ≤ i ≤ m and associated classifications ζi ∈ {−1, 1}.

The simplest case of defining an SVM is when there exists a hyperplane {x ∈ Rn | aTx = β}
with a fixed vector a ∈ Rn\{0} and a constant β ∈ R such that

aTx(i) > β ∀ i with ζi = 1 and

aTx(i) < β ∀ i with ζi = −1. (1)

In this case, we call the hyperplane {x | aTx = β} classifying, as it “correctly separates” all
data points, and the criterion of “similarity” of data reduces to whether aTx > β holds or not.

To maximize the “prospect” that the chosen hyperplane correctly classifies new points, the
hyperplane should be chosen so that it correctly separates the given points on the one hand
and is as far away as possible from all points on the other hand — i.e., as few points as possible
are boundary cases that would switch classes under a slight perturbation. Finding the best
hyperplane in this sense should be automated.

To determine the hyperplane, conditions (1) are written equivalently in the compact form

δi := ζi(a
Tx(i) − β) > 0 ∀ i. (2)

If a point x(i) satisfies condition (2) and a number λ ≥ 1/δi is chosen, then x(i) also satisfies
the condition

ζi(λa
Tx(i) − λβ) ≥ 1.

By changing from a to λa and β to λβ, the strict inequalities in (2) can therefore be replaced
by the weak inequalities

ζi(a
Tx(i) − β) ≥ 1 ∀ i. (3)

with the right side 1. Finally, note that the distance of a point x̄ from the hyperplane {x |
aTx = β} is given by |aT x̄− β|/∥a∥2. Maximizing the distance of x̄ from the hyperplane under
the condition that |aTx−β| ≥ 1 therefore is equivalent to minimizing the norm of a. Thus, the
problem of maximizing the minimum distance of all points from a classifying hyperplane can
be written in the form

min
a, β

{ 1

2
∥a∥22 | ζi(aTx(i) − β) ≥ 1 ∀ 1 ≤ i ≤ m }. (4)

Here, the standard notation is used, where the term “min” in Problem (4) is to be understood
as “minimize”; if the data is such that there is no separating hyperplane, the minimum does
not exist, but otherwise it is uniquely defined. If a, β are optimally determined from (4), then
the label ζ̃ for a new point x̃ can be estimated by

ζ̃ := sign(aT x̃− β)
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since (x̃, ζ̃) then also satisfies the relationship ζ̃(aT x̃− β) ≥ 0.
In solving (4), many of the constraints ζi(a

Tx(i) − β) ≥ 1 typically prove to be superfluous.
Only the points with the smallest values |aTx(i) − β| are relevant for determining the optimal
hyperplane. Those training points that are not redundant, i.e., that have the minimum distance
to the hyperplane, are called “support vectors,” which explains the name SVM.

3 Soft margin SVM

Often, the situation arises where the given data cannot be exactly separated by a hyperplane
because, for example, not all training data points were correctly classified. In this case, one can
use a so-called “soft margin” SVM, where the restrictions (3) are relaxed to ζi(a

Tx(i)−β) ≥ 1−si
with si ≥ 0, and minimize1 the expression

1

2
∥a∥22 + C

m∑
i=1

si (5)

for a fixed “penalty parameter” C > 0. For a large value C, higher priority is given to minimizing
the “tolerated error terms” si ≥ 0 (hoping that only the incompatible, misclassified data points
x(i) retain positive values si > 0) and lower priority is given to minimizing the norm of a, whose
inverse describes the distance of the support vectors from the separating hyperplane. The sum
in (5) is given by

∑m
i=1 si = eT s, and the overall soft margin SVM problem is given by: Find

µ∗ and a, β, s with

µ∗ = min
a, β, s

{ 1

2
∥a∥22 + CeT s | ζi(aTx(i) − β) ≥ 1− si, ∀ 1 ≤ i ≤ m, s ≥ 0}. (6)

The solution to (6) can be reformulated as follows. Let L be the so-called Lagrangian for
(6), i.e.,

L((a, β, s), (u, v)) :=
1

2
∥a∥22 + CeT s+

m∑
i=1

ui (1− si + ζiβ − ζia
Tx(i))︸ ︷︷ ︸

≤0 in (6)

+vT (−s)︸︷︷︸
≤0 in (6)

for so-called Lagrange multipliers u, v ≥ 0. The motivation for defining the Lagrangian function
is that problem (6) can be written as

µ∗ = inf
a, β, s

(
sup

u≥0, v≥0
L((a, β, s), (u, v))

)
(7)

because when forming the infimum, only those (a, β, s) are selected for which the supremum is
finite, and those are exactly the ones for which the constraints from (6) are satisfied.

(For example, if si < 0 for some i, then taking the limit ui → ∞ for this i would result in
the inner supremum having the value +∞. Therefore, only vectors s ≥ 0 are considered when
forming the infimum. Similarly, only (a, β, s) are considered for which 1−si+ζiβ−ζiaTx(i) ≤ 0.
For such choice of (a, β, s) the optimal value of the inner supremum is obtained for u = v = 0
so that indeed the objective function of (6) is minimized in (7).)

Problem (6) is a convex problem, and since only linear constraints are present, the so-called
Slater condition is trivially satisfied, and the “Lagrange duality” holds, i.e.

inf
a, β, s

sup
u≥0, v≥0

L((a, β, s), (u, v)) = sup
u≥0, v≥0

inf
a, β, s

L((a, β, s), (u, v)). (8)

1Another formulation of the soft margin is discussed, for example, in [3].

129



SVM with Self-Concordant Kernel Jarre

(The fact that the left side in (8) is greater than or equal to the right follows from elementary
calculations; and the fact that both sides are equal – when the Slater condition is satisfied –
is a standard result of convex optimization, see, for example, [17].) The inner problem on the
right (the formation of the infimum) now has no more constraints and due to convexity it can
be solved explicitly (for given u, v ≥ 0):

Rewriting the Lagrangian equivalently as

L((a, β, s), (u, v)) =
1

2
∥a∥22 −

(
m∑
i=1

uiζix
(i)

)T

a+

(
m∑
i=1

uiζi

)
β + (Ce− u− v)T s+ eTu

we consider the minimizer of the inner infimum problem on the right in (8). By setting the
derivatives with respect to (a, β, s) to zero it follows that

a =
m∑
i=1

uiζix
(i),

m∑
i=1

uiζi = 0, and Ce− u− v = 0 (9)

must be satisfied. With these conditions, the terms

(

m∑
i=1

uiζi)β + (Ce− u− v)T s

vanish in the Lagrangian, and the first equation in (9) states that the first two terms in the
Lagrangian reduce to

1

2
∥a∥22 − (

m∑
i=1

uiζix
(i))Ta = −1

2
∥

m∑
i=1

uiζix
(i)∥22,

where the variable a has been eliminated.
The conditions (9) are equivalent to forming the inner infimum of the right side of (8) and

can therefore be formulated as constraints on the supremum problem,

µ∗ = sup
u≥0, v≥0

{
−1

2
∥

m∑
i=1

uiζix
(i)∥22 + eTu | uT ζ = 0, Ce− u− v = 0

}
(10)

where ζ ∈ Rm is the vector with components ζi. The “slack vector” v ≥ 0 simply indicates
that Ce− u ≥ 0 holds. It can be eliminated above, and with a change of sign in the objective
function, one obtains

−µ∗ = inf
u∈Rm

{
1

2
∥

m∑
i=1

uiζix
(i)∥22 − eTu | uT ζ = 0, Ce ≥ u ≥ 0

}
. (11)

(The constraint u ≥ 0 from the term “supu≥0” in (10) is explicitly listed on the right in (11)
again.) Problem (11) is also called the dual problem to (6).

In general, similar as for problem (4), many data points x(i) are also unnecessary in the
original soft-margin formulation (6), i.e., for many indices i, one obtains ζi(aTx(i) − β) > 1
in any optimal solution a, β, s of (6). These x(i) and the corresponding si can then simply be
omitted in the Lagrangian, or the corresponding multipliers ui can be fixed to zero. And these
x(i) are then also unnecessary in the equivalent transformation (11), i.e., the corresponding
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multipliers ui in an optimal solution of Problem (11) are zero. Let B denote the indices for
which ui > 0 holds in the given optimal solution. It follows from (9) that

a =
∑
i∈B

uiζix
(i). (12)

The set B defines the support vectors, {x(i)}i∈B. Now, if a is calculated as above from the
solution of (11), the corresponding β can be determined based on (6): For a given β and a, the
corresponding optimal s in (6) is given by solving

min CeT s | si ≥ 1 + ζi(β − aTx(i)) ∀ 1 ≤ i ≤ m, s ≥ 0.

Setting b ∈ Rm the vector with components bi := 1 − ζia
Tx(i), the above inequalities on the

variables si can be written as si ≥ 1− ζia
Tx(i) + βζi = bi + βζi. Therefore, for a given β (and

a) the optimal s ∈ Rm in (6) is explicitly representable as

s(β) = max{b+ βζ, 0},

where the maximum is applied component-wise. The mapping

β 7→ eT s(β) = eT (max{b+ βζ, 0}) =: σ(β)

is piecewise linear, as a maximum of linear functions it is also convex, and the value of β that
minimizes eT s(β) thus solves (6),

β = argminβ̂∈Rσ(β̂) = argminβ̂∈R {eT max{b+ β̂ζ, 0}}. (13)

Minimizing the convex, piecewise linear function σ : R → R is possible with low computational
effort. The classification of a new data point x̃ can then be obtained as

ζ̃ := sign(x̃Ta− β) = sign(x̃T (
∑
i∈B

uiζix
(i))− β) = sign((

∑
i∈B

uiζix̃
Tx(i))− β).

For the derivation the kernel SVM, a reformulation of the objective function in (11) is
presented next. Let Z := Diag(ζ) be the diagonal matrix with diagonal ζ ∈ Rm. The quadratic
term in the objective function of (11) can then be written as

∥
m∑
i=1

uiζix
(i)∥22 = uT (ZQZ)u (14)

with the matrix Q having entries Qi,j = (x(i))Tx(j). As a Gram matrix, i.e.,

Q = (x(1), . . . , x(m))T (x(1), . . . , x(m)) ∈ Rm×m, (15)

the matrix Q is symmetric positive semidefinite, Q ⪰ 0.

3.1 Summary, soft margin SVM

Given Q as in (15) and a diagonal matrix Z with diagonal entries ζi solve (11), i.e.

min
u∈Rm

{
1

2
uTZQZu− eTu | uT ζ = 0, Ce ≥ u ≥ 0

}
,
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set b = e− ZQZu, find β as in (13), and classify a new point x̃ via

ζ̃ := sign((
∑
i∈B

uiζix
(i))T x̃− β)

where B is the set of components i with ui > 0. The steps for the classification via kernel SVM
in the next section are quite similar when replacing Q with some other matrix K ⪰ 0.

4 Kernel SVM

Now, there are also many applications where the data, in the given form, cannot generally be
separated by a hyperplane, i.e., the “border” that separates the two classes is not a hyperplane,
but rather a somewhat more complicated nonlinear boundary. In these cases, a nonlinear
mapping is sought

ϕ : Ω → W,

which maps the points x(i) ∈ Ω to a scalar product space W that is typically higher-dimensional
(it can also be a function space) with scalar product ⟨., .⟩W and induced norm ∥ . ∥W , so that
the images ϕ(x(i)) of the two classes can be separated by a hyperplane. On the one hand,
the choice of ϕ should preserve the “similarity” of data mentioned earlier i.e., ϕ should satisfy
certain continuity properties, and on the other hand, the unknown “separation” into two classes
should be made possible. By maintaining the “soft margin”, one then obtains the problem to
find

µ∗ = min
ã∈W, β, s≥0

{ 1

2
∥ã∥2W + CeT s | ζi

(
⟨ã, ϕ(x(i))⟩W − β

)
≥ 1− si, ∀ 1 ≤ i ≤ m} (16)

instead of (6), where the vectors ã now lie in the higher-dimensional image spaceW of ϕ. (Below
it is established that the minimum actually exists.) Due to the nonlinearity of the mapping
ϕ, the linear separation in the image space of ϕ translates into a nonlinear separation in the
original data space with the data x(i).

When the optimal solution ã, β from (16) is given, the label ζ̃ for a new data point x̃ is
estimated by

ζ̃ := sign
(
⟨ ã, ϕ(x̃)⟩W − β

)
. (17)

Even if the dimension of W should be infinite, problem (16) still is a finite-dimensional
optimization problem, as will be explained briefly:

To this end, let M := Span{ϕ(x(i))}1≤i≤m ⊂ W (the linear hull of the ϕ(x(i)) for 1 ≤ i ≤
m). Then ⟨., .⟩W is also a scalar product on M and thus, for any fixed ã ∈ W, the function
ψ : M → R with ψ(x) := ∥ã − x∥2W is strictly convex. The function ψ is convex on the
finite-dimensional space M and thus it is continuous on M . Furthermore, for x̄ ∈ M the level
set {x ∈ M | ψ(x) ≤ ψ(x̄)} is bounded. Thus, ψ has a unique minimizer on M , which is
denoted by ãM . (This statement does not require the completeness of W.) For λ ∈ R and fixed
i ∈ {1, . . . ,m} it follows from the definition of M and ãM that

∥ã− ãM∥2W ≤ ∥ã− ãM + λϕ(x(i))∥2W = ∥ã− ãM∥2W + 2λ⟨ã− ãM , ϕ(x
(i))⟩W + λ2∥ϕ(x(i))∥2W ,

i.e., 0 ≤ 2λ⟨ã− ãM , ϕ(x
(i))⟩W + λ2∥ϕ(x(i))∥2W for λ ∈ R. Setting

λ :=

{
−⟨ã− ãM , ϕ(x

(i))⟩W if ∥ϕ(x(i))∥2W = 0,
−⟨ã− ãM , ϕ(x

(i))⟩W/∥ϕ(x(i))∥2W otherwise,
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the assumption that ⟨ã−ãM , ϕ(x(i))⟩W ̸= 0, leads to a contradiction. So, ⟨ã− ãM , ϕ(x
(i))⟩W = 0.

Setting ãM⊥ := ã− ãM it follows

⟨ãM⊥ , ϕ(x(i))⟩W = 0 (1 ≤ i ≤ m), and therefore also ⟨ãM⊥ , ãM ⟩W = 0. (18)

Now let ã, β, s be feasible for (16). From (18) it then follows that

∥ã∥2W = ∥ãM⊥ + ãM∥2W = ∥ãM∥2W + ∥ãM⊥∥2W

and ⟨ã, ϕ(x(i))⟩W = ⟨ãM , ϕ(x(i))⟩W for all i. Hence, ãM , β, s is also feasible for (16) and the
objective function value in (16) is reduced or remains unchanged when replacing ã with ãM .
Therefore (16) is equivalent to

min
ãM∈M, β, s≥0

{ 1

2
∥ãM∥2W + CeT s | ζi

(
⟨ãM , ϕ(x(i))⟩W − β

)
≥ 1− si, ∀ 1 ≤ i ≤ m}. (19)

This problem is finite-dimensional and has the same structure as problem (6).2 It can therefore
be reformulated analogously to (11) with the objective function from (14). The dual problem
then results in finding

−µ∗ = inf
u∈Rm

{
1

2
uTZKZu− eTu | uT ζ = 0, Ce ≥ u ≥ 0

}
, (20)

with the term uTZKZu in place of the term uTZQZu in (14). The entries of K are given by
Ki,j = ⟨ϕ(x(i)), ϕ(x(j))⟩W . Just like the above matrix Q ∈ Rm×m, also K ∈ Rm×m is a Gram
matrix and thus positive semidefinite, K ⪰ 0, and K does not depend on the dimension of the
image space W — but on the number of support points m. When ϕ is the identity mapping
then K = Q and problem (20) coincides with problem (11).

To determine a suitable function ϕ, the so-called kernel trick is applied: instead of the
transformation ϕ, only a symmetric continuous mapping

κ : Rn × Rn → R

is defined in such a way that κ(x, y) could be interpreted as κ(x, y) = ⟨ϕ(x), ϕ(y)⟩W for a
function ϕ. To do this, it is required that for all m ∈ N and all x(1), . . . , x(m) from Ω, the
matrices K ∈ Rm×m with entries Ki,j = κ(x(i), x(j)) for 1 ≤ i, j ≤ m always satisfy K ⪰ 0. In
this case, κ is called a3

positive definite kernel. (21)

In summary, the matrix K is formed with Ki,j := κ(x(i), x(j)) for 1 ≤ i, j ≤ m and (20) is
solved. As in (12), the optimal solution u of (20) defines the set B := {i | ui > 0} as well as the
optimal solution ã =

∑
i∈B uiζiϕ(x

(i)) of (16). However, the vector ã is not required explicitly
(i.e., the function ϕ is not evaluated explicitly). The classification of a new data point x̃ is
performed according to the rule

ζ̃ = sign(⟨ã, ϕ(x̃)⟩W − β) = sign(⟨
∑
i∈B

uiζiϕ(x
(i)), ϕ(x̃)⟩W − β) = sign(

∑
i∈B

uiζiκ(x
(i), x̃)− β),

(22)

2Because the scalar product ⟨ . , . ⟩W in (17) is applied to arbitrary x̃ ∈ Ω, it is reasonable to formulate
problem (16) over the general space W and not to restrict oneself to the finite-dimensional formulation (19) to
begin with.

3At this point, the notation “positive semidefinite kernel” would be appropriate. The fact that the kernel
defines a norm in a certain space justifying for the notation “positive definite kernel” will be provided later in
(27).
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where β is obtained by exploiting ⟨ã, ϕ(x(i))⟩W =
∑

j∈B ujζjκ(x
(i), x(j)) as with the soft-margin

SVM: First, ζ ∈ Rm is set to the vector with components ζi, and b ∈ Rm as the vector with
components bi = 1− ζi

∑
j∈B ujζjκ(x

(i), x(j)). Then, again

β = argmin {eT max{b+ β̂ζ, 0} | β̂ ∈ R}.

In the next paragraph, the question is considered whether for a given positive definite kernel
κ : Ω× Ω → R, there also is a function ϕ : Ω → W such that for given data points x(i) ∈ Ω for
1 ≤ i ≤ m, the relationship

κ(x(i), x(j)) = ⟨ϕ(x(i)), ϕ(x(j))⟩W for 1 ≤ i, j ≤ m (23)

holds true. Since the number of equations in (23) to be satisfied by ϕ increases with m and no
upper bound is set for m, it is natural to allow an infinite value for the degrees of freedom of
ϕ, i.e., for the dimension of W.

4.1 Interpretation in the feature space

The image space W of the above function ϕ is also called the “feature space”; it is the space
where the linear separation of the two classes is performed. For a given κ, neither the mapping ϕ
nor its image space W is unique. The existence and desirable properties of ϕ will be considered
below.

4.1.1 Existence

If the order of reasoning in (23) is reversed, and for a given κ and for points x(i) that are given
“first”, a function ϕ is sought, then the existence of ϕ can be established easily: ForK ⪰ 0, there
exists an eigenvalue decomposition, K = UTDU with an orthogonal matrix U with columns
u(i) and a diagonal matrix D. Setting ũ(i) := D1/2u(i), it holds that Ki,j = (ũ(i))T ũ(j).
Thus, a mapping ϕ : Rn → Rm =: W can be defined arbitrarily, so that for 1 ≤ i ≤ m,
the interpolation conditions ϕ(x(i)) = ũ(i) are fulfilled, and thus also the desired relationship
Ki,j = ⟨ϕ(x(i)), ϕ(x(j))⟩W holds true with ⟨., .⟩W being the standard 2-norm scalar product.
(This reasoning uses the fact that the dimension of W was assumed to be chosen at will.)
However, compared to (23), the order is reversed here: The points x(i) are used to define the
function ϕ without requiring any form of continuity of ϕ. The reason why such approach is
problematic will be explained below using a simple example.

4.1.2 Overfitting

If, for example, many measurements (xi, yi) of a function f : R → R, x 7→ y are given, which
approximately lie on a straight line, and if the value of f at a “new” point x̃ needs to be
estimated, one could on the one hand define a line g : x 7→ ax + b so that g approximates
the measurements in a certain sense as accurately as possible. This leads to the so-called
least squares problem for determining the two parameters a, b ∈ R, and to the approximation
f(x̃) ≈ g(x̃). On the other hand, one could also determine a polynomial p of high degree such
that all measurements are exactly interpolated, and then approximate f(x̃) ≈ p(x̃). Typically,
such a polynomial oscillates strongly, and therefore provides a very unreliable prediction of
f(x̃). The higher number of adjustable parameters in p compared to just two parameters in g
does not provide a more reliable approximation. This well-known fact is also called overfitting.
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For support vector machines, often there are also many data points available, and the
separation into two classes is to be made based on unknown “similarity properties”. As in the
example above, here as well, the approach of constructing a function ϕ so that all training data
can be correctly separated does not guarantee a reliable classification by itself. The goal is to
find a mapping ϕ that, on the one hand, does not depend on the specific choice of x(i) (these
only determine the separating hyperplane in the space W) and, on the other hand, is chosen so
that ϕ does not behave “too chaotically” (does not “oscillate too much”) but rather possesses
certain continuity properties that preserve the assumed but unknown “similarity properties” of
the original data points.

4.1.3 Cross-validation

The so-called cross-validation provides an approach to estimate the reliability of the classifica-
tion. A simple approach to cross-validation is as follows: Assume that the training data were
generated randomly and independently. Then one can randomly divide the training data into
two parts, e.g., 70% in one part and the rest in the other, and then calculate the separation
using only the 70%. The 30% that were not used in generating the SVM but for which the
classification is known, are then used to estimate which percentage of the correctly classified
data points, and this can be used as an estimated error rate for the separation. The actual
separation can then be performed using all training data. By monotonicity of the separation
quality with increasing size of the training data the “70% estimator” can serve as an estimate
of the overall error rate – but only for the error rate for new data generated from the same
distribution.

4.1.4 Example: Gaussian kernel

Definition 1. Let a constant c > 0 be given. The function κ : Ω× Ω → R with

κ(x, y) := e−c∥x−y∥2
2

is referred to as the Gaussian kernel, inspired by the Gaussian distribution curve.

The associated kernel matrix K has the entries Ki,j = κ(x(i), x(j)) := e−c∥x(i)−x(j)∥2
2 . In

Section 7.1 in the appendix, it is briefly explained that the above K is always positive semidef-
inite. However, it is not immediately obvious how to determine the scalar product ⟨., .⟩W and
a mapping ϕ such that

⟨ϕ(x), ϕ(y)⟩W ≡ e−c∥x−y∥2
2

always holds. If such a mapping ϕ exists, it immediately follows that

∥ϕ(x)∥2W = ⟨ϕ(x), ϕ(x)⟩W = κ(x, x) = e0 = 1

for all x ∈ Ω.

Definition 2. In the following we call κ with ∥ϕ(x)∥2W = κ(x, x) ≡ 1 an

iso-normalized kernel.

Any kernel for which κ(x, x) > 0 ∀x ∈ Ω holds true can be scaled diagonally in the manner
described in Section 7.1, such that it is iso-normalized. The scaling is typically nonlinear and
thus also alters the separation properties.
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4.2 Determining the kernel and the scalar product

The construction of a map ϕ and associated scalar product ⟨., .⟩W that is more suitable than the
motivation given in Section 4.1.1 is based on [6]: Let a continuous, symmetric positive definite
kernel κ be given on the compact convex set Ω ⊂ Rn. For a fixed x ∈ Ω, we define the mapping
ϕ(x) := Kx : Ω → R as follows:

Kx := κ(x, . ), i.e., ϕ(x)[z] ≡ Kx(z) ≡ κ(x, z) for z ∈ Ω.

To avoid confusion regarding the fact that ϕ(x) itself is a function, we use the more intuitive
notation Kx instead of ϕ(x). The finite linear combinations of such functions Kx then form the
space

W := Span({Kx | x ∈ Ω}) = {f | ∃k ∈ N, x(i) ∈ Ω, αi ∈ R (1 ≤ i ≤ k) : f =

k∑
i=1

αiKx(i)}.

Furthermore, for f, g ∈ W with f :=
∑k

i=1 αiKx(i) and g :=
∑ℓ

j=1 βjKx(j) let the mapping
⟨., .⟩ : W ×W → R be defined as follows:

⟨f, g⟩ :=
k∑

i=1

ℓ∑
j=1

αiβjκ(x
(i), x(j)). (24)

It is shown next that ⟨., .⟩ indeed is a scalar product: First, we need to justify that ⟨., .⟩ is well-
defined: Since it is not assumed that all Kx(i) are linearly independent, there could be different
representations for a given function g ∈ W. However, the above mapping ⟨., .⟩ is independent
of the representation of g since from (24) it follows that

⟨f, g⟩ =
k∑

i=1

αi

 ℓ∑
j=1

βjκ(x
(i), x(j))


︸ ︷︷ ︸

=
∑ℓ

j=1 βjKx(j) (x(i))=g(x(i))

=

k∑
i=1

αig(x
(i)).

The right-hand side does not depend on the chosen coefficients x(j) and βj for the representation
of g, but only on the function values g(x(i)). In addition, the right-hand side is linear in g.
Analogously, it follows that the mapping is also independent of the representation of f and
linear in f , i.e., ⟨f, g⟩ is bilinear – and, like κ, also symmetric. Finally, positive semidefiniteness
is inherited:

⟨f, f⟩ =
k∑

i=1

k∑
j=1

αiαjκ(x
(i), x(j)) ≥ 0

according to the definition of a positive definite kernel. Therefore, the Cauchy-Schwarz inequal-
ity also holds, ⟨f, g⟩2 ≤ ⟨f, f⟩⟨g, g⟩ (with the usual proof4).

4Due to bilinearity and semidefiniteness, we have 0 ≤ ⟨f−λg, f−λg⟩ = ⟨f, f⟩−2λ⟨f, g⟩+λ2⟨g, g⟩ for λ ∈ R.
So 2λ⟨f, g⟩ ≤ ⟨f, f⟩+ λ2⟨g, g⟩ for all λ. If ⟨g, g⟩ = 0, this implies ⟨f, g⟩ = 0, i.e., ⟨f, g⟩2 = 0 ≤ ⟨f, f⟩⟨g, g⟩, and if
⟨g, g⟩ > 0, then, with the choice λ := ⟨f, g⟩/⟨g, g⟩, we get

2
⟨f,g⟩2
⟨g,g⟩ ≤ ⟨f, f⟩+ ⟨g, g⟩ ⟨f,g⟩

2

⟨g,g⟩2 i.e.,
⟨f,g⟩2
⟨g,g⟩ ≤ ⟨f, f⟩ or ⟨f, g⟩2 ≤ ⟨f, f⟩⟨g, g⟩.
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Now, for x ∈ Ω, f =
∑k

i=1 αiKx(i) ∈ W, and g := Kx in (24), we also have

⟨f, κ(., x)⟩ = ⟨f,Kx⟩
(24)︸︷︷︸
=

k∑
i=1

αiκ(x
(i), x) =

k∑
i=1

αiKx(i)(x) = f(x), (25)

a central property known as the “reproducing kernel” property. Let x, z ∈ Ω and g := κ(., z),
then we also have

⟨Kx,Kz⟩ = ⟨κ(., x), κ(., z)⟩ = ⟨κ(., x), g⟩ = ⟨g, κ(., x)⟩
(25)︸︷︷︸
= g(x) = κ(x, z). (26)

Using (25) and the Cauchy-Schwarz inequality, for f ∈ W and x ∈ Ω, we further have

f(x)2 = (⟨κ(., x), f⟩)2 ≤ ⟨κ(., x), κ(., x)⟩⟨f, f⟩ = κ(x, x)⟨f, f⟩,

where the last equation follows from (26). Therefore, if ⟨f, f⟩ = 0, then f(x) ≡ 0 for x ∈ Ω,
i.e.,

⟨., .⟩W := ⟨., .⟩ is a scalar product, (27)

which induces a norm ∥ . ∥ on W )5. In general, W is not complete with respect to this norm.
What is important, as motivated earlier, is the continuity of ϕ : Ω → W, which is discussed in
Section 5.1. But first, the existence of a separation is addressed.

4.2.1 Separability in the feature space

In the case where κ is chosen so that the functions ϕ(x(1)), . . . , ϕ(x(m)) are linearly independent6,
the existence of a separating hyperplane can be established explicitly even without a soft margin:

To do this, we consider the problem (19) and use the notation

ãM =

m∑
i=1

αiϕ(x
(i)) =

[
ϕ(x(1)), . . . , ϕ(x(m))

]
α

and fix C = ∞, i.e., s = 0. Then (19) is given by

min
ãM∈M, β

{ 1

2
∥ãM∥2W | ζi

(
⟨ãM , ϕ(x(i))⟩W − β

)
≥ 1, ∀ 1 ≤ i ≤ m} (28)

= min
α∈Rm, β

{ 1

2
αTKα | ZKα− βζ ≥ e},

where the entries of the matrix K are again given by Ki,j = ⟨ϕ(x(i)), ϕ(x(i))⟩W . Since K is
invertible by assumption, and Z = Z−1, the latter problem has the feasible solution β = 0
and α = K−1Ze. Together with s := 0 this is also feasible for (19) with objective value
1
2e

TZK−1Ze. This feasible solution generally is not optimal, but it can be seen that the
corresponding objective value generally increases as the smallest eigenvalues of K approach
zero, an observation that often also applies to the optimal solution of (28).

If one chooses a kernel for which the ϕ(x(i)) are always linearly independent for pairwise
different x(i), i.e., for which an exact separation of the data is always achievable, then the
problem of overfitting from Section 4.1.2 arises again. Therefore, it is also usually advisable to
choose an approach with a soft margin for such kernels.

5The property of being a norm may seem surprising at first, since the Kx(i) were not assumed to be linearly
independent and only K ⪰ 0 was demanded, but for linearly dependent Kx(i) , the space W is also smaller. On
W, the scalar product is (strictly) positive definite. However, as motivated in Section 4.2.1, linear independence
of the Kx(i) for pairwise distinct points x(i) is a desirable property.

6As discussed in the Appendix 7.2, this assumption is always fulfilled for the Gaussian kernel.
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4.3 Summary, kernel SVM

Choose a kernel function κ : Rn×Rn → R so that the matrix K with entries Ki,j = κ(x(i), x(j))
satisfies K ⪰ 0, and let Z be the diagonal matrix with diagonal entries ζi. Solve

min
u∈Rm

{
1

2
uTZKZu− eTu | uT ζ = 0, Ce ≥ u ≥ 0

}
, (29)

set b = e − ZKZu, find β as in (13), i.e. as the minimizer of “eT max{b + β̂ζ, 0}” for β̂ ∈ R,
and classify a new point x̃ via

ζ̃ := sign((
∑
i∈B

uiζiκ(x
(i), x̃))− β)

where B := {i | ui > 0}.

5 Kernel properties

5.1 Relative Lipschitz condition

In the following, it is assumed that the data space has been rescaled beforehand, such that
the maximum norm of the data from Ω is on the order of 1 and that the similarity of data
from Ω ⊂ Rn can be measured in the 2-norm. The latter assumption depends on the specific
application.

Since “similar data” generally should be classified similarly and the separation of the data
in the kernel approach is done via the scalar product ⟨., .⟩W , we are now looking for a mapping
ϕ such that for small ∥x− y∥2, also ∥ϕ(x)−ϕ(y)∥W is small. A stronger requirement regarding
continuity of ϕ (e.g., a global Lipschitz property that holds for large ∥x− y∥2 as well) generally
cannot be justified for the SVM approach.

When considering the continuity properties of ϕ in (16), it should also be noted that ϕ and β
can be multiplied by an arbitrary factor λ > 0 without changing the separation (17). However,
if ϕ were, for example, locally Lipschitz continuous, then multiplication by λ would also change
the Lipschitz constant by a factor of λ. Therefore, the Lipschitz constant should be considered
relative to the norm of ϕ. As a possible requirement on the kernel, the (local) relative Lipschitz
condition can be considered

∥ϕ(x)− ϕ(y)∥W
∥ϕ(x)∥W

≤ γ∥x− y∥2 (30)

for small ∥x−y∥2 with a local relative Lipschitz constant γ > 0. This condition implies ϕ(x) ̸= 0
for x ∈ Ω, a requirement that is always fulfilled for iso-normalized mappings. By construction,
it is invariant under the transition from ϕ( . ) to λϕ( . ) for some fixed λ ̸= 0. But it is not
invariant under a scaling of the data when replacing Ω with λΩ for some fixed λ ̸= 0, i.e., under
the transition from ϕ( . ) to ϕ(λ( . )). In particular, the right-hand-side changes by a factor |λ|
under such scaling. To limit the effects of such scaling, it was assumed in the beginning of this
section that the maximum norm of the elements in Ω is on the order of 1.

Small values of γ in (30) guarantee “high data consistency” in the sense that closely neigh-
boring data points x, y will have closely neighboring images ϕ(x), ϕ(y), while larger values allow
more flexibility in the form of separation.

Note that ϕ and ⟨ . , . ⟩W used in Condition (30) are not determined uniquely7 for a given
kernel κ. Nevertheless, the following theorem holds:

7One may change ⟨ . , . ⟩W for example using a bounded invertible linear operator and adjust ϕ accordingly.
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Theorem 1. If the function ϕ is given by a three times continuously differentiable positive
definite kernel κ (see (21)) and the relative Lipschitz condition (30) holds for some constant
γ > 0,

∥ϕ(x)− ϕ(y)∥W
∥ϕ(x)∥W

≤ γ∥x− y∥2 for small ∥x− y∥2,

then, for the mixed second derivative of κ at z ∈ Ω:

∥Dx(∇yκ(x, y))|x=z, y=z∥2 ≤ γ2κ(z, z). (31)

Conversely, if (31) is satisfied, then the condition (30) holds in the following form:

∥ϕ(x)− ϕ(y)∥W
∥ϕ(x)∥W

≤ eγ∥x−y∥2 − 1 (≈ γ∥x− y∥2 for small ∥x− y∥2).

A proof is provided in Section 7.3. The condition (31) is slightly more precise than (30),
as the latter does not specify what exactly is meant by “small ∥x− y∥2”. Therefore, (31) will
always be used in the following.

Definition 3. Following [9], a kernel satisfying (31) will also be referred to as8

γ-self-concordant kernel

with a local relative Lipschitz constant γ > 0.

From the representation (31), the following construction guideline for γ-self-concordant ker-
nels can be derived directly:

Lemma 1. If κ1 and κ2 are kernels that satisfy the conditions of Theorem 1 with Lipschitz
constants γ1 and γ2, respectively, then for ρ > 0, ρκ1 is also a γ1-self-concordant kernel.
Furthermore, κ1 + κ2 is a γ-self-concordant kernel with γ = max{γ1, γ2}. If κ1 and κ2 are
iso-normalized kernels, then γ can be tightened to γ = 1

2 (γ1 + γ2).

5.2 Condition number of the kernel matrix

The condition number of the kernel matrix may play a crucial role for the quality of the separa-
tion: Consider an iso-normalized m ×m-kernel matrix K. Then, by positive semidefiniteness,
all matrix entries have absolute value at most one, and thus, by Gershgorin’s theorem (see, for
example, [16]), the largest eigenvalue of K is at most m. By the interlacing property (see, for
example, [5]) it is at least 1 (the eigenvalue of a 1 × 1 principal submatrix), but the smallest
eigenvalue can be tiny. If the condition number of K is a moderate number M , a “reasonable”
feasible solution of (28) is given by choosing α = K−1ζ and β = 0. It is feasible because
Zζ = e, and a straightforward calculation shows that the objective value of (28) is bounded by
the moderate value Mm/2 independent of ζ. In this case, a separation with a moderately wide
margin is always possible. The perfect condition number of K (with respect to the 2-norm) is
obtained if, and only if9, K is iso-normalized and

⟨ϕ(x(i)), ϕ(x(j))⟩W = κ(x(i), x(j)) = Ki,j = 0 (32)

8The concept that the derivatives of a function are bounded by constant multiples of other derivatives,
and hence are in “concordance” with themselves, was introduced in [9]. There, Newton’s method for θ-self-
concordant barrier functions is examined. In the case of the kernel functions considered here, a bound of the
mixed second derivatives by the “zeroth” derivative (the function value) is of interest.

9(Because positive multiples of the identity matrix are the only symmetric positive definite matrices with
condition number 1.)
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for all i ̸= j.
However, the aim of generating a well conditioned kernel may be in conflict with the relative

Lipschitz condition with a small Lipschitz constant: For data x(i) and x(j) with small value
∥x(i) − x(j)∥2 the Lipschitz condition requires that also ∥ϕ(x(i))−ϕ(x(j))∥W is small so that K
has two nearly linearly dependent columns and thus K has a small positive eigenvalue and a
large condition number. In such situation a separation with wide margin is no longer possible
for all choices of ζ. (In particular, it is not possible when x(i) ≈ x(j) but ζi = −ζj .) A relaxation
of (32) that is compatible with the γ-self-concordance is the requirement of choosing κ such
that

κ(x(i), x(j)) ≈ 0 whenever ∥x(i) − x(j)∥2 is large. (33)

This requirement is satisfied, for example, for the Gaussian kernel. And as shown below, the
Gaussian kernel is also optimal with respect to the Lipschitz constant.

5.2.1 Effects of iso-normalization

The following guidelines hold: Iso-normalization always10 improves the condition number of all
2×2 principal submatrices of K (unless they are already iso-normalized), and by the interlacing
theorem the condition number of K always is at least as large as the largest condition number
of any 2 × 2 principal submatrix. By Theorem 4.1 in [15], when the dimension n is larger
than 2, the iso-normalized scaling is not too far (namely by a factor at most n) from the
optimal scaling. On the other hand, there are examples where the condition number of an
iso-normalized matrix indeed is larger than (n/2 − ϵ)-times the value of an optimally rescaled
matrix, [14]. Summarizing, iso-normalization not only improves the worst-case bound of the
condition number compared to arbitrary scaling, but as shown in Section 5.4 below, it may also
improve the Lipschitz constant γ.

5.3 The Gaussian kernel

5.3.1 Lipschitz constant:

Consider again the Gaussian kernel κ(x, y) = e−c∥x−y∥2
2 . Here, Dyκ(x, y) = 2c(x − y)Tκ(x, y)

and
Dx∇yκ(x, y)|x=y=z ≡ ((4c2(x− y)(x− y)T + 2cI)κ(x, y))|x=y=z = 2cκ(z, z)I.

The requirement of the relative Lipschitz condition therefore is

∥2cI∥2 ≤ γ2,

which means γ =
√
2c can be chosen here. Observe that for this choice of γ, Condition (31) is

satisfied with equality for all z, i.e., the local relative Lipschitz constant γ for ϕ (in Theorem
1) is equal to the maximum allowed value at all points in Ω. (As will be discussed below, large
values γ allow kernels with lower condition numbers.) Summarizing we obtain the following
lemma:

Lemma 2. The Gaussian kernel κ(x, y) ≡ e−c∥x−y∥2
2 with c > 0 satisfies the relative Lipschitz

condition uniformly for all x ∈ Ω with Lipschitz constant
√
2c.

For the Gaussian kernel with c > 0, it is shown in Section 7.2 that for any pairwise distinct
x(i), the functions Kx(i) are linearly independent, meaning the dimension of W is infinite and

10The straightforward proof of this claim is left as an exercise.

140



SVM with Self-Concordant Kernel Jarre

exact separation always is possible. However, the space W depends on the choice of c. For
x ∈ Ω, the function ϕ(x) has the form

ϕ(x)[y] ≡ e−c∥x−y∥2
2 for y ∈ Ω.

As c→ ∞, the function ϕ(x) converges to the characteristic function of the point x ∈ Ω, and the
matrix K in Section 4.2.1 converges to the identity matrix for any choice of (pairwise distinct)
data points x(i). On the other hand, for c→ 0, ϕ(x) converges to the constant function 1 on Ω,
and the matrix K tends to the rank-1 matrix eeT . For small c > 0, the optimal value of (28)
generally tends to infinity.

5.3.2 Adjusting the soft margin:

In addition to the parameter c in the Gaussian kernel (or the Lipschitz constant γ =
√
2c),

the constant C from the soft-margin approach in (5), which penalizes the violation of the
separation properties, is a freely adjustable parameter when using Gaussian kernels. For large
finite values of C, it may be the case that the optimal solution of (19) leads to a separation
that correctly separates all training data points, but some of the training data points (i.e. some
of the support vectors) are closer to the separating hyperplane (in the space W) than others.
(In the case of separation with C = ∞, within the space W all support vectors are equidistant
from the separating hyperplane, and there are no data points lying closer.)

Figures 1-3 are intended to illustrate the effects of both parameters for an example where
there are no misclassified data points. The black stars indicate the data points. The label for
each data point was assigned along a 3×3 checkerboard pattern with ζ = −1 in the middle and
in the four corners, and ζ = +1 in the remaining fields. 50 data points were randomly chosen
with higher probability to lie near the center. The green areas in the plots below mark those
points that will be assigned the label +1 while red points will be assigned to −1.

Larger values of c generally may lead to a “more curvy” boundary between the two areas,
and lower values of C allow more misclassifications. Also, smaller values of c generally match
larger values of C. The right patterns in the three rows of images below do classify all training
data points correctly, i.e. each of the right patterns might depict the true division between red
and green points. (One of the other patterns might be correct if some of the training data were
misclassified.)

Figure 1: Gaussian kernel with c = 1 and C = 10, C = 100, C = 1000 (C = ∞) from left to
right.
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Figure 2: Gaussian kernel with c = 0.03 and C = 107, C = 108, C = 109 (C = ∞) from left to
right.

Figure 3: Gaussian kernel with c = 0.001 and C = 1012, C = 1013, C = 1014 from left to right.

5.3.3 Modifying the cross-validation strategy:

A simple procedure for identifying c and C uses the following approach. If the set of training
data is divided into 3 disjoint parts, then the concept of cross-validation from Section 4.1.3 can
be generalized. First, with the first part, several choices of the parameters c and C can be used
to determine the respective SVM. The parameters that best classify the second part are then
chosen, and with this choice, the error rate is estimated using the third part. This estimate is
kept when ultimately the SVM is formed over all training data points with these parameters.
(This approach is not optimal; there are a number of newer works on hyper-parameter opti-
mization using repeated cross-validation that are more sophisticated than outlined here. The
outlined approach is intended to demonstrate the basic feasibility of how hyperparameters11

can be chosen appropriately and to sensitize for the risk of not using data for error estimation
that were already used for the design of the algorithm to be evaluated.)

5.3.4 Orthogonal invariance:

Next to Theorem 1, there is often another desirable invariance property: the classification of the
SVM should be invariant when training and test data are all equally reflected at a hyperplane
passing through the origin or rotated about the origin. Since every orthogonal transformation
can be represented by a sequence of reflections and rotations, this requirement implies that
the classification of the SVM should be invariant under orthogonal linear transformations. For
the Gaussian kernel, κ(x, y) depends only on ∥x − y∥2. It follows that κ remains unchanged

11In general, algorithmic parameters such as step sizes, etc. are referred to as hyperparameters as opposed to
problem parameters like the number of data points.
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with input x, y and with input U(x), U(y) if U is an orthogonal linear transformation. Simi-
larly, the calculation of ζ̃ based on the optimal solution of (20) is the same whether κ(x(i), x̃)
or κ(U(x(i)), U(x̃)) is used. Thus, the Gaussian kernel is independent of orthogonal transfor-
mations of the input. This is noteworthy since the discrete Fourier transform (DFT), which
is frequently used in sound and image processing, is an orthogonal transformation (up to a
constant factor which can be accounted for in the term “c” of the Gaussian kernel). Hence, it
does not matter whether the original data or their DFT are used as input for the SVM; the
separation remains the same!

5.3.5 Preprocessing:

In many real-world applications, preprocessing of the data is a tedious but essential detail,
and this may also be true for SVMs. While a given SVM may be invariant under certain
simultaneous preprocessing of all data points, it may still be useful to transform each individual
data point to a certain standard form, for example, by translating, rotating, or scaling it before
using it as input for the SVM. This may change the separation significantly. In case of such
preprocessing the input to the SVM should be augmented by the parameters that were used
for each individual transformation.

For example, consider the task of detecting a given digit in a text. If it is also necessary to
distinguish between the letters | and /, and if the preprocessing includes a rotation that aligns
each new data points before being put into the SVM, then the aligned “/” would resemble a “|”.
Hence, the parameters used in the preprocessing (such as parameters for a possible rotation)
should also be provided as additional input variables to the SVM.

5.4 Other commonly used kernels

1) A commonly used polynomial kernel κ is given by

κ(x, y) ≡ (xT y + 1)p with p ∈ N. (34)

As noted in Section 7.1, this kernel is also positive definite. Here,

Dyκ(x, y) = pxT (xT y + 1)p−1,

and

Dx(∇yκ(x, y))|x=y=z = Dx(px(x
T y + 1)p−1)|x=y=z

= p(p− 1)(zT z + 1)p−2zzT + p(zT z + 1)p−1I

with the identity matrix I. Due to ∥zzT ∥2 = zT z the relation (31) then reads as

p(zT z + 1)p−2 ((p− 1)zT z + (zT z + 1)) ≤ γ2(zT z + 1)p.

or
p(pzT z + 1) ≤ γ2(zT z + 1)2. (35)

This requirement shall be satisfied for all z ∈ Ω. When p ≥ 2 this is true for γ = p/
√
2 )12.

Here, ϕ(x) ∈ W is a polynomial in n variables of maximum degree p, so the dimension of W
is bounded by np+1. Higher values of p improve the separation capabilities at the expense of a
larger Lipschitz constant. Summarizing the following lemma is true:

12For z = 0, the requirement (35) states that p ≤ γ2, which is fulfilled with γ := p/
√
2 because p ≥ 2. Setting

t := zT z and ℓ : R → R with ℓ(t) := γ2(t + 1)2 − p(pt + 1) it suffices to show that ℓ(t) ≥ 0 for t ≥ 0. Because
ℓ′(0) = 2γ2 − p2 = 0 and because ℓ is a convex quadratic function, it follows that ℓ(t) ≥ ℓ(0) ≥ 0 for t ≥ 0. #
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Lemma 3. The polynomial kernel (34) satisfies the self-concordance condition (31) with the
local relative Lipschitz constant γ = p/

√
2.

2) More generally, one can also consider kernels of the form

κ(x, y) := (xT y + α)p

with a parameter α > 0 and integer p ≥ 2. With the same calculations this results in a
Lipschitz constant of γ = p/

√
2α, i.e., the Lipschitz constant also is a continuously adjustable

hyperparameter. (Large values of α result in a nearly constant kernel comparable to tiny values
of c > 0 in the Gaussian kernel, while large values of p in some form have an opposite effect.)
When α = 0 this kernel still is a positive definite kernel, but the condition (31) for this kernel
takes the form

p2 ≤ γ2zT z

and (for small ∥z∥2) this cannot be satisfied. (This kernel is also rarely used.)

3) One can also consider kernels κ of the form

κ(x, y) ≡ h(x)h(y)g(xT y) (36)

with smooth functions g : R → R and h : Rn → R. If g can be represented as a power series
with nonnegative coefficients, g(t) ≡

∑∞
j=0 ajt

j with aj ≥ 0 for all j, then (as shown in Section
7.1) the kernel is positive definite. Condition (31) is then derived as follows:

Dyκ(x, y) = Dy(h(x)h(y)g(x
T y)) = h(x)Dh(y)g(xT y) + h(x)h(y)xT g′(xT y),

For Dx∇yκ(x, y)|x=y=z, one obtains

∇h(z)Dh(z)g(zT z)+h(z)∇h(z)zT g′(zT z)+zDh(z)h(z)g′(zT z)+h(z)2(Ig′(zT z)+zzT g′′(zT z)).

By omitting the arguments z or zT z for h or g and their derivatives, the requirement is

∥g∇h∇hT + hg′(∇h zT + z ∇hT ) + h2(g′I + g′′zzT )∥2 ≤ γ2h2g. (37)

For the choice h(z) = g−1/2(zT z), leading to an iso-normalized kernel, the requirement (37)
then is

∥g∇h∇hT + g′

g1/2 (∇h zT + z ∇hT ) + 1
g (g

′I + g′′zzT )∥2 ≤ γ2.

Using ∇h(z) = ∇z(g(z
T z)−1/2) = −g(zT z)−3/2g′(zT z)z, we obtain

∥ − 1
g2 (g

′)2zzT + 1
g (g

′I + g′′zzT )∥2 ≤ γ2.

For the polynomial kernel (34) with g(t) ≡ (t+ 1)p we obtain for the above choice of h,

∥ − p2

(t+1)2 zz
T + p

t+1I +
p(p−1)
(t+1)2 zz

T ∥2 ≤ γ2

with t = zT z ≥ 0, i.e.,
p∥I − 1

(t+1)zz
T ∥2 ≤ γ2(t+ 1),

which is satisfied for γ =
√
p, a significant improvement compared to (35). In addition to

the improvement of the Lipschitz constant, also the matrix K generally is better scaled. The
improvement of the Lipschitz constant compared to Lemma 3 is summarized in the next lemma.

Lemma 4. For the kernel (36) with g(t) ≡ (t+1)p as in (34) and h(z) ≡ g(zT z)−1/2 the local
relative Lipschitz constant in (31) can be chosen as γ =

√
p.

4) Other kernels that are used include κ(x, y) = e−c∥x−y∥2 or κ(x, y) = e−c∥x−y∥1 . These
kernels are non-differentiable at x = y; so the above analysis is not applicable.

144



SVM with Self-Concordant Kernel Jarre

6 Conclusion

A self-contained derivation of SVMs with kernel is given along with a new condition for eval-
uating the continuity of the kernel function. It turns out that the Gaussian kernel in some
form is an optimal choice with respect to a given local relative Lipschitz constant γ > 0 on
the one hand and the aim to generate a well conditioned kernel matrix on the other hand. For
more general kernels it is demonstrated that a normalization of the diagonal of the kernel may
improve both, the condition number of the kernel and the local relative Lipschitz constant.

7 Appendix

To keep this work self-contained, the proofs of two well-known results are repeated below,
followed by an elementary proof of Theorem 1.

7.1 Positive kernels

Note that the Hadamard product of two positive semidefinite n × n matrices again is positive
semidefinite, because from the decompositions A =

∑
i a

(i)(a(i))T ⪰ 0 and B =
∑

j b
(j)(b(j))T ⪰

0, it follows that

A ◦B =
∑
i,j

(a(i) ◦ b(j))(a(i) ◦ b(j))T ⪰ 0.

By construction, the matrix (x(1) . . . x(m))T (x(1) . . . x(m)) with entries (x(i))Tx(j) at positions
(i, j) is a positive semidefinite Gram matrix.

Thus, Hadamard products of the above Gram matrices are positive semidefinite, and conse-
quently, so is the exponential function as a sum of such products, i.e., the matrix with entries

ec(x
(i))T x(j)

with c > 0 is positive semidefinite. This shows that K with

Ki,j := e−c∥x(i)−x(j)∥2

= e2c(x
(i))T x(j)−c∥x(i)∥2−c∥x(j)∥2

is positive semidefinite, as the terms e−c∥x(i)∥2

and e−c∥x(j)∥2

only cause a symmetric diagonal
scaling of the matrix K, i.e., a change from K ⪰ 0 to DKD ⪰ 0 with a diagonal matrix D.

Analogously, it follows that κ(x, y) ≡ ((xT y)+1)p ≡
∑p

j=0

(
p
j

)
(xT y)j with p ∈ N is a positive

definite kernel.
Also, if a ∈ R, a > 0 is given and g : [−a, a] → R is a power series with nonnegative

coefficients, then for Ω with supx∈Ω{∥x∥22} ≤ a as above, it follows that the kernel κ(x, y) ≡
g(xT y) from Section 5.1 is a positive definite kernel. And since K ⪰ 0 implies DKD ⪰ 0 for
any diagonal matrix D, it follows that the kernel κ(x, y) ≡ h(x)h(y)g(xT y) from Section 5.1 is
a positive definite kernel as well.

Finally, if g(xTx) > 0 for all x ∈ Ω, then κ with the choice h(x) := g(xTx)−1/2 is an
iso-normalized kernel (as defined in Section 4.1.4).

7.2 Exact separability with Gaussian kernels

To prove that the functions x 7→ e−c∥x−xi∥2
2 are always linearly independent for pairwise distinct

xi (with 1 ≤ i ≤ m), consider the question to determine a vector α ∈ Rm such that

0 ≡
m∑
i=1

αie
−c∥x−xi∥2

2 =
∑
i

αie
−c∥x∥2

2e−c∥xi∥2
2e2cx

T xi

= e−c∥x∥2
2

∑
i

αie
−c∥xi∥2

2e2cx
T xi

∀x ∈ Rn.
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Setting βi := αie
−c∥xi∥2

2 , this system is equivalent to

0 =
∑
i

βie
2cxT xi

∀x ∈ Rn.

(In particular, βi = 0 ⇐⇒ αi = 0.) Now choose a vector x̄ such that x̄T (xi − xj) ̸= 0 for all
i ̸= j, and set x := jx̄ for 0 ≤ j ≤ m− 1 in the above system. It follows that

0 =
∑
i

βie
2cjx̄T xi

=
∑
i

βi(ai)
j for 0 ≤ j ≤ m− 1

with ai := e2cx̄
T xi

. By choice of x̄, the numbers ai are pairwise distinct. The above system has
the only solution β = 0 if the transposed system

0 =
∑
j

β̃j(ai)
j

also has only the solution β̃ = 0. This latter system implies that the polynomial t 7→
∑
β̃jt

j

interpolates the zero function at all points ai. Thus, β̃ = 0 must hold. (By uniqueness of
polynomial interpolation.) As derived above, this implies the desired conclusion α = 0.

7.3 Proof of Theorem 1

Assume that the relative Lipschitz condition (30) is satisfied. Rearranging and squaring shows
that (30) is equivalent to

∥ϕ(x)− ϕ(y)∥2W
∥x− y∥22

≤ γ2 ∥ϕ(x)∥2W for small ∥x− y∥2. (38)

The expression on the left resembles a finite-difference approximation of a second derivative,
and as shown below, the bound (38) is indeed equivalent to a bound on the “mixed” part of
the second derivative of κ as a function R2n → R.

The numerator of the left-hand side of (38) is

∥ϕ(x)− ϕ(y)∥2W = ⟨Kx −Ky,Kx −Ky⟩W = κ(x, x) + κ(y, y)− 2κ(x, y). (39)

Furthermore, assume that κ is three times continuously differentiable. Below, the notation z

for the variable pair x, y, i.e., z :=

(
x
y

)
, and the vectors m := x+y

2 and d := x−y
2 are used.

The Landau symbol a = o(|b|) indicates that a depends on b and the limit limb→0, b ̸=0 a/b = 0.
Similarly, if lim supb→0, b ̸=0 a/b < ∞ we write a = O(|b|). With these notations, the Taylor
expansion yields

κ(x, x) = κ(m,m) +Dzκ(m,m)

[(
d
d

)]
+

1

2
D2

z,zκ(m,m)

[(
d
d

)
,

(
d
d

)]
+ o(∥d∥2),

κ(y, y) = κ(m,m)−Dzκ(m,m)

[(
d
d

)]
+

1

2
D2

z,zκ(m,m)

[(
d
d

)
,

(
d
d

)]
+ o(∥d∥2).

Adding these equations yields

κ(x, x) + κ(y, y) = 2κ(m,m) +D2
z,zκ(m,m)

[(
d
d

)
,

(
d
d

)]
+ o(∥d∥2).
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Similarly, from the expansions of κ(x, y) = κ(y, x) around the point (m,m),

κ(x, y) + κ(y, x) = 2κ(m,m) +D2
z,zκ(m,m)

[(
d

−d

)
,

(
d

−d

)]
+ o(∥d∥2).

The last two equations imply

κ(x, x) + κ(y, y)− 2κ(x, y)

= D2
z,zκ(m,m)

[(
d
d

)(
d
d

)]
−D2

z,zκ(m,m)

[(
d

−d

)(
d

−d

)]
+ o(∥d∥2).

The second derivatives with respect to x, x and y, y in the variable vector z cancel each other.
Due to symmetry, D2

x,yκ(m,m) = D2
y,xκ(m,m). Thus, only the mixed terms above remain,

κ(x, x) + κ(y, y)− 2κ(x, y) = 4D2
x,yκ(m,m)[d,d] + o(∥d∥2)

or
κ(x, x) + κ(y, y)− 2κ(x, y) = D2

x,yκ(m,m)[x− y, x− y] + o(∥x− y∥2). (40)

Observe that the left hand side in (40) coincides with (39). Thus, dividing (40) by ∥x − y∥22
yields

∥ϕ(x)− ϕ(y)∥2W
∥x− y∥22

= D2
x,yκ(m,m)[ x−y

∥x−y∥2
, x−y
∥x−y∥2

] + o(1)

The left hand side is positive, and by (38) it is at most γ2κ(z, z). Considering the limit y → x
and using that Dx(Dyκ(x, y))|x=y=z is symmetric it follows that it is positive semidefinite and

∥Dx(Dyκ(x, y))|x=y=z∥2 ≤ γ2κ(z, z)

which is equivalent to (30).
To justify the converse direction, i.e. that (31) implies (30) observe that in the derivation of

(31), only equations were used, as well as the limit y → x, i.e., (31) also implies the infinitesimal
version of (30) or (38), i.e., (31) implies

lim
y→x

∥ϕ(x)− ϕ(y)∥2W
∥x− y∥22

≤ γ2∥ϕ(x)∥2W

For the above proof, the squares of the equivalent inequalities

lim
y→x

∥ϕ(x)− ϕ(y)∥W
∥x− y∥2

≤ γ ∥ϕ(x)∥W (41)

were considered above. Since the third derivative of κ is continuous on the compact set Ω× Ω
it is bounded (as a trilinear form with respect to the 2-norm) by a constant ω < ∞, implying
that the terms o(∥d∥2) in the above estimates can be replaced with ω∥d∥3.

For fixed x, y ∈ Ω (x ̸= y) and t ∈ [0, 1], let’s first consider the function

l : t 7→ ∥ϕ(x+ t(y − x))∥W
∥x− y∥2

.

Here, we utilize the assumption that Ω is convex. By assumption, ϕ(x) ̸= 0 in Ω, and thus
l(t) ̸= 0 for t ∈ [0, 1]. Thus, the function l is differentiable. Let t̄ ∈ [0, 1) and define the point
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x(t̄) := x+ t̄(y − x). The derivative of l at t = t̄ coincides with the following one-sided limit:

l′(t̄) = lim
t↓0

l(t̄+ t)− l(t̄)

t

since t > 0︸ ︷︷ ︸
= lim

t↓0

∥ϕ(x+ (t̄+ t)(y − x))∥W − ∥ϕ(x+ t̄(y − x))∥W
∥t(x− y)∥2

= lim
t↓0

∥ϕ(x(t̄) + t(y − x))∥W − ∥ϕ(x(t̄))∥W
∥t(x− y)∥2

(41)︸︷︷︸
≤ γ∥ϕ(x(t̄))∥W = γ∥x− y∥2l(t̄).

Thus, the differential inequality l′(t) ≤ γ∥x − y∥2l(t) holds for t ∈ [0, 1). The corresponding
differential equation u′(t) = γ∥x−y∥2u(t) with u(0) = l(0) has the solution u(t) ≡ l(0)eγ∥x−y∥2t.
By Gronwall’s inequality, it follows that

l(t) ≤ u(t) = l(0)eγ∥x−y∥2t

for t ∈ [0, 1]. For t = 1 it therefore follows that

∥ϕ(y))∥W ≤ eγ∥x−y∥2∥ϕ(x)∥W . (42)

Furthermore, according to (40), assumption (31), and the local Lipschitz continuity of κ,

∥ϕ(x)− ϕ(y)∥2W
= κ(x, x) + κ(y, y)− 2κ(x, y) = D2

x,yκ(m,m)[x− y, x− y] +O(∥d∥3)
≤ γ2κ(m,m)∥x− y∥2 +O(∥d∥3) = γ2∥ϕ(m)∥2W∥x− y∥2 +O(∥d∥3) (43)

This implies
∥ϕ(x)− ϕ(y)∥W ≤

√
γ2κ(x, x)∥x− y∥2 +O(∥d∥3)

= γ
√
κ(x, x)∥x− y∥+O( 1

2
√
ξ
∥d∥3)

with ξ ≥ γ2κ(x, x)∥x− y∥2 = 4γ2κ(x, x)∥d∥2 (mean value theorem). Therefore,

∥ϕ(x)− ϕ(y)∥W ≤ γ
√
κ(x, x)∥x− y∥+O(∥d∥2) = γ∥ϕ(x)∥W∥x− y∥+O(∥d∥2). (44)

Now, define
g(t) := ∥ϕ(x(t))− ϕ(x)∥W , where x(t) := x+ t(y − x).

Then g is differentiable as long as g(t) ̸= 0, and using the fact that ∥a∥ − ∥b∥ ≤ ∥a − b∥, and
exploiting (44), we have

g′(t) = lim
∆t↓0

∥ϕ(x(t+∆t))− ϕ(x)∥W − ∥ϕ(x(t))− ϕ(x)∥W
∆t

≤ lim
∆t↓0

∥ϕ(x(t+∆t))− ϕ(x(t))∥W
∆t

≤ lim
∆t↓0

γ∥ϕ(x(t))∥W∆t∥x− y∥+O(∥∆t d∥2)
∆t

= γ∥ϕ(x(t))∥W∥x− y∥.
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The above inequality holds also at t = 0 for the right-hand side derivative of g. Substituting
x(t) in place of y into (42), we get from the above inequality

g′(t) ≤ γeγ∥x−x(t)∥2∥ϕ(x)∥W ∥x− y∥ = γ∥ϕ(x)∥W ∥x− y∥eγ∥x−y∥2t.

With g(0) = 0, it follows

g(t) ≤
∫ t

0

γ∥ϕ(x)∥W ∥x− y∥eγ∥x−y∥2t = ∥ϕ(x)∥W(eγ∥x−y∥2t − 1)

and for t = 1 we obtain

∥ϕ(y)− ϕ(x)∥W ≤ ∥ϕ(x)∥W(eγ∥x−y∥2 − 1)

with
eγ∥x−y∥2 − 1 ≈ γ∥x− y∥2 for small ∥x− y∥2. #
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