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Abstract

The Ring-LWE problem is a fundamental component of lattice-based cryptography, and evaluating
its security is a crucial challenge. The algorithms for solving the Ring-LWE problem can be classified
into four categories: lattice basis reduction algorithms, algebraic methods, combinatorial methods,
and exhaustive search algorithms. However, the combinatorial approach, the Ring-BKW algorithm,
remains insufficiently analyzed. The Ring-BKW algorithm primarily consists of two steps, with the
Reduction step being the bottleneck because many samples are required for decryption. In existing
implementations of the Ring-BKW Reduction step, the block size remains fixed, preventing it from
adapting to the sample reduction process and efficiently inducing collisions. In this study, we introduce
a method that allows the block size in the Reduction step of the Ring-BKW algorithm to be variable.
We propose two approaches: a static decision method, where users manually specify the block size for
each reduction step, and a dynamic decision method, where the algorithm autonomously adjusts the
block size. The proposed method increases the number of collisions compared to existing methods,
resulting in approximately 55-fold and 425-fold more reduced samples for static and dynamic block
size sglection, respectively, in the Ring-LWE setting with a modulus ¢ = 17 and a ring dimension
n=2"%

1 Introduction

With the advancement of quantum computing, Shor [16] demonstrated that the mathematical hardness
assumptions on which the security of currently used cryptographic schemes such as RSA and ellip-
tic curve cryptography is based, namely, the integer factorization problem and the discrete logarithm
problem, can be solved in polynomial time. In response, the National Institute of Standards and Tech-
nology (NIST) initiated a public call for post-quantum cryptographic algorithms that remain secure even
against quantum computers. In 2024, NIST announced the final selection of four encryption schemes
as Federal Information Processing Standards (FIPS). Among the four encryption schemes, CRYSTALS-
KYBER [7], CRYSTALS-Dilithium [10], and FALCON [14], which are currently undergoing further
standardization, are lattice-based cryptographic schemes and are expected to attract increasing attention
in the future. The Learning with Errors (LWE) problem is one of the mathematical hardness assump-
tions that underpin the security of lattice-based cryptography. The currently well-known methods for
solving the LWE problem can be broadly classified into four categories. These methods include lattice
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basis reduction algorithms [8, 15], algebraic methods [4], combinatorial methods [6, 9], and exhaustive
search algorithms [3, 19]. Among these, the Blum-Kalai-Wasserman (BKW) algorithm, a combinatorial
method, has not been thoroughly studied in the past. Originally, the BKW algorithm was devised as a
solution for the Learning Parity with Noise (LPN) problem [5]. Later, it was shown to be applicable to the
LWE problem, leading to a detailed analysis of its computational complexity [1]. The BKW algorithm
consists of three steps: Reduction, Hypothesis-testing, and Back-substitution. In attacks on the LWE
problem using the BKW algorithm, the primary bottlenecks are the required number of samples and the
computational cost in the Reduction step. The previous researches have explored various approaches to
mitigate these bottlenecks [2, 11, 12]. Stange proposed the Ring-BKW algorithm, which is an improve-
ment of the BKW algorithm for solving the Ring-LWE problem [17]. The Ring-BKW uses the algebraic
properties of rings and employs rotations to increase the number of input samples, thereby reducing
the required number of the Ring-LWE sample. Additionally, it optimizes the data storage method for
collision tables used in the Reduction step, enabling a reduction in computational cost. Furthermore, in
the case of Ring-LWE over power-of-two cyclotomic fields, it has been shown that the Back-substitution
step of the BKW algorithm can be omitted by utilizing the trace map.

However, existing methods use a fixed block size throughout the Reduction step, which results in
inefficient collisions at each reduction stage. To address this issue, we propose two methods: a static
block size selection method, in which the user predefines the block size for each reduction stage, and a
dynamic block size selection method, in which the block size is adjusted adaptively during the algorithm
based on the reduction progress. Compared to existing methods, our proposed approach increases the
number of collisions, resulting in approximately a 55-fold increase in the number of reduced samples
with the static method and approximately a 425-fold increase with the dynamic method, in the case
of Ring-LWE with a modulus ¢ = 17 and ring dimension n = 2*. We also conducted experiments to
evaluate the effect of the parameters @ and S, which are used in the dynamic method.

2 Preliminary

In this section, we shortly describe the LWE problem and the Ring-LWE problem.

Definition 2.1. Let n be a positive integer and q be an odd prime. Let y be a discrete Gaussian
distribution over Z with mean O and standard deviation o. For a secret vector s € Fy and an error
e € Z sampled from the discrete Gaussian distribution , define the probability distribution As ) as
the distribution of (a,b) € Fy xFy, b = (a,s) + ¢ (mod q). A sample drawn from the probability
distribution As ), is called an LWE sample. Given an arbitrary number of LWE samples (a, b) € Fy xF,
Jrom As ., the problem of recovering the secret vector s € Fy, from these samples is called the (search)
LWE problem.

We consider solving the LWE problem using m different pairs (a;, {(a;,s)+e¢; (mod ¢)) (1 <i < m)
sampled from the probability distribution As,. Let A be an m X n matrix whose i-th row is a;,
b= (by,...,b,) ande = (ey,...,e,) the error vector. Then, the relation b = sA” + e (mod g) holds,
and the LWE samples are treated as a pair (A, b) € Fg"" X Fg.

Definition 2.2. Let p be a prime number and define the n-th cyclotomic polynomial as ®,(x) =
[Ti<k<n, ged(k,n)=1(x = k). Here, ¢, denotes a primitive n-th root of unity. Let K be the number
field Q(Z,) and R its ring of integers given by the isomorphism R = Z[x]/(®,(x)). Define R, as
R, = R/pR, and let D, and D, be probability distributions over R,. For a uniformly random
a € Ry, withs «— Dy _and e < D, the pair (a,b = a-s+e) € (R, X Rp,) is called a Ring-LWE
sample. Given an arbitrary number of Ring-LWE samples (a, b), the problem of recovering the secret s
from these samples is called the (search) Ring-LWE problem.
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3 Existing research

In this section, we describe the Plain BKW algorithm [1], which is an algorithm for solving the LWE
problem, and Ring-BKW, which is its adaptation to the Ring-LWE problem [17].

3.1 Plain BKW

The BKW algorithm was proposed as a method for solving the LPN problem using 2°(*/1°27) samples
and computation time. The BKW algorithm can also be applied to the LWE problem, and in the case of
an n-dimensional instance, it can find a solution with a computational complexity of 2" [1]. The BKW
algorithm consists of three steps: Reduction, Hypothesis-testing, and Back-substitution. The Reduction
step aims to reduce the dimensionality of LWE samples by performing sample collisions block by block
using a method similar to Gaussian elimination. The Hypothesis-testing step estimates partial vectors
of the secret vector using the dimension-reduced samples obtained in the Reduction step. Finally, in the
Back-substitution step, the estimated partial vectors are used to reconstruct the entire secret vector. The
following provides a detailed explanation of each step.

3.1.1 Reduction step

Select the dimension n € Z and the block size 0 < b < n, and set the reduced dimension as d < b.

Additionally, define a := [n/b]. Let Ls(';() be the LWE oracle and define Bs(';() ; as the oracle that outputs

samples a; where the first b - £ columns are all zero. At this point, Bs(';() ¢ 18 generated as follows.
- if £=0, B is simply L'}

(n)

e if0<{<a, Bg';() ¢ is obtained from the difference of two vectors derived from B s 1"

The Reduction step is a recursive algorithm and terminates when the dimension of nonzero vectors

reaches d. Thus, the solution space can be reduced from Zj to Zg . The pseudocode for constructing the

LWE oracle B)") , for 0 < ¢ < a is presented in Algorithm 1.

n)

X.0—1

sample from B™ s [¢"/2]. Additionally, it is necessary to perform at most one addition of the two
S, x.C

When constructing the algorithm as described above, the cost of querying Bi to obtain a single

outputs of Bé’;() ¢y Whose first b - £ entries are common. This operation requires n + 1 — b - £ additions
inZg,.
q

3.1.2 Hypothesis-testing Step
Reduction step generates Bs(,")()’a
the Hypothesis-testing step, equations f; = —¢; = j + Zg;ol(ai)<k)x(k) for 0 < j < ¢/2 is formulated
for each sample obtained from this oracle. Here, (a;)(x) denotes the k-th element of the vector a;, and
X (k) represents the corresponding unknown variable. This equation is applied to each candidate vector

obtained from Bs('j()a
candidate vector v is evaluated using the weight function W( - ¢; + X¢=; (a;)(x)v(x)). The pseudocode
for Hypothesis-testing using these is presented in Algorithm 2.

Hypothesis-testing weight functions have been extensively studied; here, we introduce an example
of a weight function based on the log-likelihood ratio. Let y, be an error distribution under the

correct guess (v = s), and let U, be an error distribution under an incorrect guess (v # s). By the

which is an oracle that returns (a;, ¢;), where a; € Zg ,and c; € Z4. In

to estimate the partial vector of the secret vector. Additionally, the score of each
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(n)

Algorithm 1 Reduction Step B,/ , for0 < ¢ <a

Input: b: integer0 < b < n, ¢: mteger O<fl<a
Output: (a,c): Reduced samples
1: TY « array indexed by Zb maintained across all runs of B( ) .

2: query B(”) .o toobtain (a, c).

3: if a.(e-1),b-¢) is 0 then

4:  return output (a,c)

5: end if

6: while 7y, ,_, ., =0do

7: Ab(e-1),b0) (a,c)

8 Toag.-npe < (-a,—c)

9:  query B( )[ | to obtain (a, c).
10: if A(p.(£-1),b¢) 18 0 then

—_
—_

return output (a,c)

12:  endif

13: end while

14: (@', ¢")  Tagy o1y 0

15: return output (a+a’,c+c¢’)

Algorithm 2 Hypothesis testing Step

(n)

Input: F - a set of m samples following B/ .,

numbers.
Qutput: S - a array filled with scores for each vectors,
1: S «—array filled with zeros indexed by ZZ.
2: for v € Z4 do

W - a weight function mapping members of Zg to real

3 wy < 0.

4 for f; € F do

5: write f; as —c; + Zf;& (ai)(k) “X(k)-
6 j — (al7v> - Cl

7 wy «— wy UW(J).

8 end for

9 Sy — Xuew, Wi/m.

10: end for

Neyman-Pearson lemma, the log-likelihood ratio is known to be the most powerful test for determining
whether a sample follows one of two known distributions [13]. Thus, the weight function is defined as

W(j) :=log, (Prr[[::;‘%) for the range [—-¢/2] < j < |q/2].

3.1.3 Back-substitution step

When a candidate vector s’ with a very high probability of being correct is obtained through Hypothesis-
testing, Back-substitution is performed using the table 7;. Back-substitution restores the original dimen-
sion by performing computations using the table employed in the Reduction step to reduce the sample
dimension.
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The bottlenecks in the BKW algorithm are the computational complexity and the number of queries
in the Reduction step, as well as the estimation accuracy in the Hypothesis-testing step [19]. Methods
for improving the performance of the Reduction step have been studied, including Lazy Modulus
Switching [2], Coded-BKW [12], and Coded-BKW with sieving [ 1], which applies the sieve algorithm.

3.2 Ring-BKW

The Ring-BKW algorithm is an application of the BKW algorithm, introduced so far, to the Ring-LWE
problem. In this section, we introduce the basic Ring BKW algorithm, Blind BKW, as well as Traditional
BKW and Advanced BKW, which improve the performance of the Reduction step by leveraging the
characteristics of Ring-LWE samples. First, we define the trace used for decryption in the Ring-BKW
algorithm.

Definition 3.1. If considering Ring-LWE in Ry, where R is the ring of integers of a number field K,
then any subfield L C K gives rise to a subring S C R and, modulo q, to a subring S; € R;. Then S,
is Fy-vector subspace of Ry, and R, has a module structure over S,. The extension degree of K over
L is the same as the rank of R as S-module and the rank of R, as S,-module. There is a linear map

T := Trgz : Ry — Sq satisfying Tr§ (x) mod ¢S = Trgz (x mod gR), where Tr& (-) is the usual trace
map from R to S.

3.2.1 Blind BKW

The Ring-BKW consists of the Reduction step and the Hypothesis-testing step, as the Back-substitution
step required in the BKW algorithm becomes unnecessary by utilizing Theorem 3.1 [17]. Eliminating
the Back-substitution step reduces the polynomial-time computational complexity.

Theorem 3.1. Let R be the ring of integers of the m-th cyclotomic field, where m = 2n is a power of 2.
Let S be the ring of integers of the k-th cyclotomic field. If k | m, then S C R, and the extension degree
of Q(&m)/Q(Ly) is m/k. Assume that the rational prime q is unramified in R.

Consider a Ring-LWE instance in Ry X R, with secret vector s € R, and error distribution  that is

. . e . . . R
invariant under multiplication by {y,. Assume that ag € R, is an invertible element. Define T := Trg?,
q

and assume T (ao) is also invertible. Suppose that N samples (a, b) follow the distribution Ags,, s,y -
Then, the computation of the secret s € R, can be reduced to solving m/k independent search
Ring-LWE problems over S, each with N samples and error distribution %T( X) over S, in linear time
in n and polynomial time in log q.
Moreover, these m [k Ring-LWE problems are mutually independent in the sense that solving one does
not require any information from the others. Furthermore, if the error distribution y is constructed from
a coefficient distribution yq over F, with respect to the {,,-basis, then %T( X) Is constructed similarly.

To apply Theorem 3.1, it is necessary to reduce the sample set to the subring S, in the Reduction step.
To achieve this, the Ring-LWE samples are reordered in descending order of the order of the {—basis
in R, before performing the Reduction step. That is, given the basis 1, {, 2,..,¢" 1 the elements are

3n n n

reordered as "1, {2_1, g,i?n_l, {n%l_l, v L0, 22, 1. By reordering the basis as described above and
performing the Reduction step, the input samples can be reduced to the subring, enabling the application
of Theorem 3.1. After reducing the samples to the subring in this manner, any Hypothesis-testing method
can be used to estimate the partial secret vector s’, and the obtained vector is recovered using Theorem
3.1. Algorithm 3 presents the pseudocode for the Ring BKW. Here, S, and n are the same as above, and
B indicates the block size.
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Algorithm 3 Ring-BKW Algorithm

(n)

Input: (a,c) - a set of samples following By, ,

QOutput: s - the secret
1: Run BKW Reduction with reordered samples on the values a until all samples (a, b) have a € S,.
2: Use Theorem3.1 to create samples from n/B different Ring-LWE problems in S, .
3: Solve these Ring-LWE problems using any method of choice.
4: Use Theorem 3.1 to recover the secret s in polynomial time from these solutions.

Algorithm 4 Traditional BKW Reduction Step
Input: B - Block size, n - dimension
Output: (a,c) - Reduced samples

1: Create empty Table 1 through n/B.

2: for each initially available sample (a, b) do
for j=0ton—1do
4 Rotate the sample by £/, to obtain (ay, by).
5 Send the sample (ay, b;) to Table 1.
6:  end for
7
8
9

(95]

. end for
. for each sample (a, b) sent to Table i, i < n do
if a has all O entries in block i then

10: send sample (a, b) on to Table i + 1.

11:  endif

12:  if the first non-zero coefficient of a; is in the range 1to(q + 1)/2 then
13: Multiply (a, b) by —1.

14:  endif

15:  if a collision is found ( i.e. a sample (aog, bg) already exists in the table having the same first i
blocks of size B ) then

16: Subtract (ay, b) from (ag, by) to obtain a new sample whose first i block of size B are zero
17: Send the result to Table i + 1.

18:  else

19: Store the associated sample in Table i.

20:  end if

21: end for

3.2.2 Traditional BKW

Next, we describe a method for reducing the required number of samples in the Blind BKW over power-
of-two cyclotomic fields by leveraging the applicability of ring properties to Ring-LWE samples. Given
any Ring-LWE sample (a, b) in a power-of-two cyclotomic field, considering its negated counterpart
(—a, —b) allows us to obtain two samples from a single one. Additionally, it is also possible to rotate the
samples within each block. When the block size satisfies B | n, using £/ ensures that the first block of
a remains a zero vector. This allows each block to rotate the samples using 1, { n/B 4 /B e (B=D)n/B
thereby reducing the number of required samples to 1/B of the original. As described above, by utilizing
negation and rotation, the same Reduction step as in the Plain BKW can be performed with only 1/2B
of the samples required in the Plain BKW. The Ring BKW algorithm that employs this method is called
Traditional BKW: Algorithm 4.
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4 Dynamically Adjustable block size method

In this section, we propose two methods for improving the Reduction step of the Ring-BKW algorithm.

In the Reduction step of [17], collisions were performed using the same number of blocks throughout
all steps. However, since the number of samples stored in each table T? varies at each step, it is difficult
to say that an optimal block size is consistently used. In the initial step, since the number of samples is
abundant, collisions can occur and the dimension can be reduced even with a fixed block size. However,
as the steps progress, the number of samples decreases, reducing the probability of collisions. Therefore,
by varying the block size according to properties such as the number of samples stored in each table 7" at
each step, the probability of collisions can be increased, which is expected to result in a greater number
of samples output by the Reduction step. Therefore, in this section, we describe two methods for varying
the block size in the Reduction step of the Ring-BKW algorithm: the static block size determination
method and the dynamic block size determination method.

4.1 Static block size determination method

First, we extend the block size, which was previously given as an integer in existing methods, to an array.
This extension allows the block size to be set individually for each step. In the Ring-BKW, to reduce
the given ring to a subring, the block size must be a power of two in a power-of-two cyclotomic field.
Considering this condition, the Ring-BKW algorithm is executed with the block size decreasing as the
number of steps increases. We call this method szatic block size determination method.

4.2 Dynamic block size determination method

Static block size determination method requires the user to manually set the block size according to
the number of steps. Therefore, when the sample set is first obtained, the user needs to perform the
Reduction step multiple times to determine the optimal block size, making the process inefficient. To
address this issue, we introduce Change block size, which determines the block size based on the number
of samples, and propose a method for dynamically adjusting the block size. We call this method dynamic
block size determination method.

Change block size is a process performed within the Reduction step and is executed when two
conditions are met. The first condition is met when the number of stored columns in the current step
falls below a fixed threshold 5. The second condition is met when a fixed number of samples has been
processed, as determined by the processed sample threshold @. The simplest way to increase collisions in
the Reduction step is to increase the number of samples. However, obtaining a large number of samples
through an excessive number of queries at the start of the Reduction step is not practical. Therefore, it is
important to process each step while minimizing the reduction of the initially given number of samples
and ultimately map them to the desired subring. Therefore, we introduce a threshold 8 (0 < 8 < 1)
to ensure the number of columns in each table 7 at every step. At each step, the maximum number
of columns is given by (¢ — 1)/2, where B is the block size at the corresponding step and ¢ is the
modulus [17]. Therefore, we predefine the proportion of samples to be maintained at each step using
and adjust the block size when the number of columns falls below (¢® — 1) - 8/2. However, since the
Reduction step is a recursive algorithm, specifying only the column threshold 8 would cause the block
size to be divided into smaller sizes from the beginning of the Reduction step. A smaller block size
increases the probability of collisions. However, it also increases the number of required steps, leading
to higher computational complexity. Therefore, we introduce the second condition, which triggers when
a certain number of samples has been processed. When introducing this condition, we use the processed
sample threshold a (0 < @ < 1) to execute Change block size when the ratio of processed samples to
input samples exceeds @. Algorithm 5 presents the procedure for Change block size.
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Algorithm 5 Change block size(i, ¢, a, f5)

Input: i - index of processing steps, ¢ - the number of processed samples, « - a threshold of the number
of processed samples, S - a threshold of the number of the stored columns

Output: B - an array of block size

l: FOWRUM gy = qB[i_l]/Z

2: tableRowTH = rownum,,x - 3

3: if the percentage of processed samples> « then

4 if the rows number of 7! < tableRowTH then

5: tmpB «— BJt].pop()

6: Insert [tmpB/2,tmpB/2] to B[t]

7.

8

9

Initialize T
Create 7'+
: priority_index =i — 1
10:  end if
11: end if

Algorithm 6 Dynamic Variable block size Blind-BKW
Input: (a,c) - Ring-LWE samples, B - an array of block size
Output: (a’, ¢’) - Reduced Ring-LWE samples

1: Create len(B) Tables.

2: for All Ring-LWE samples do

3:  if priority_index # 0 then
4 for All Ring-LWE samples in table[priority_index] do
5 Reduction sample with new block size
6: end for
7
8
9

priority_index =0
end if
Reduction Ring-LWE sample
10:  Change blocksize(i,t, a, B)
11: end for

Change block size is used as a subroutine in the Reduction step of the Ring-BKW algorithm.
Algorithm 6 presents the application of Change block size as a subroutine in the Blind BKW, while
Algorithm 7 shows its application in the Traditional BKW.

The operation of Algorithm 6 and 7 is described using Figures 1 and 2. The elements of the initial
block size array must all be powers of two to utilize Theorem 3.1. First, as a preparation step, we
create tables for Reduction corresponding to the length of the initial block size array. This is because
the number of elements in the block size array matches the number of steps in the Reduction step.
Once a sample is input, the two previously mentioned conditions are evaluated: (1) whether the ratio
of processed samples remains below the initially set threshold, and (2) whether the number of columns
in the current step’s table falls below the threshold. If neither condition is met, the Reduction process
proceeds using the initially assigned block size, as shown in Figure 2 (D). On the other hand, if both
conditions are met, Change block size is executed. When Change block size is executed, the block size
is updated to a new value. In the proposed method, to ensure that the block size remains a power of two,
the current step’s block size is removed from the array, and two new values, each obtained by halving
the removed block size, are inserted into the array. Since splitting the block size in half increases the
number of steps by one, an empty storage table is inserted into the table used for collisions, and the table
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Algorithm 7 Dynamic Variable block size Trad-BKW
Input: (a,c) - Ring-LWE samples
Output: (a’, ¢’) - Reduced Ring-LWE samples

1: Create len(B) Tables.

2: for All Ring-LWE samples do

3. if priority_index + 0 then

4 for All Ring-LWE samples in table[priority_index] do
5 Reduction sample with new block size

6: end for

7 priority_index =0

8 end if

9: forj=0ton—1do
10: Rotate the sample by ¢/ to obtain (aj, c1)
11: Store the associated sample (aj, c¢) in Table.
12:  end for

13:  Reduction Ring-LWE sample
14 Change block size(i,t,a, B)
15: end for

Input Samples }47

Percentage of processed
samples =a
and
Percentage of stored columns
in Table i =P

Divide BlockSize

.

Insert a new column
into the reduction table

.

Process the samples

in the previous reduction table H Sample storage process }7

with new BlockSize

Figure 1: Flow of the Dynamic Decision Method

that previously stored collisions for the corresponding step is reset, as shown in Figure 2 (®). Here, the
reason for resetting the table is to store the sample set that has been collided using the newly assigned
block size, while also reusing the table to reduce space complexity. After that, the samples from the
previous table of the corresponding step undergo the Reduction process using the newly assigned block
size in Change block size, as shown in Figure 2 (®). In Algorithm 6 and 7, the priority_index stores the
index of the previous step. The priority_index is initialized to O at the start of the algorithm. Within
Blind BKW and Traditional BKW, if priority_index # 0, the sample processing for the corresponding
index is prioritized before performing the usual sample processing.

With the proposed method, the number of blocks in the Reduction step can be dynamically adjusted,
increasing the probability of sample collisions. Additionally, in the static decision method, prior
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@ O)

®

Figure 2: The behavior of T for a total of 3 steps

information such as the step at which the number of samples decreases was required to specify an
appropriate block size array in the Reduction step. However, by using the dynamic decision method, it is
possible to ensure the sample count and generate reduced-dimensional samples without requiring prior
information.

S Experiments and consideration

5.1 Experiment environment

In this experiment, to compare with existing methods, we perform the Reduction step using Blind BKW
with a dynamically determined block size on Ring-LWE samples over power-of-two cyclotomic fields.
We conduct experiments on both the static and dynamic methods for varying the block size. For the static
method, the Reduction step is first executed with a fixed block size, and based on the obtained results,
the block size array is determined and then executed. For the dynamic method, we use a processed
sample threshold @ = 0.8 and a stored column threshold 8 = 0.06. Additionally, for the dynamic
decision method, we conducted experiments to determine the optimal values for @ and 8 by varying one
parameter while keeping the other fixed. These experiments measure the execution time, the number of
reduced samples, and the table size. We use a computer whose CPU is the Apple M2. Its macOS is the
sonoma version 14.7.2. We use SageMath version 10.3 [18] as software. We developed a program by
improving the Ring-BKW algorithm [17], which was then used for experimentation. The source code is
available at https://github.com/Kenjiro56/VariableBlockSizeBKW.

5.2 The number of Reduced Samples

Tables 1-2 present the experimental results for the Ring-LWE samples. The initial sample count
represents the number of samples input into the Reduction step. The final block size refers to the
ultimate block size used in the Reduction step. The table size indicates the total number of columns,
excluding the final column, in the table created for collisions in the Reduction step. The number
of reduced samples represents the final count of samples that successfully underwent dimensionality
reduction to the desired dimension. Additionally, the execution time represents the time required for the
Reduction step to complete, measured using the timeit function in SageMath. For the final block size, if
the same block size appears consecutively multiple times, it is abbreviated as [block size * number of
occurrences]. Applying the BKW algorithm with dynamically variable block sizes to Ring-LWE samples
increases the number of reduced samples compared to Blind BKW or static decision methods As the
number of reduced samples increases, the table size, excluding the final table, decreases. Regarding
execution time, compared to existing methods, the static decision method is approximately 150 times
slower for both cases when g = 17,n = 24 while in the dynamic decision method, Blind BKW is about
1000 times slower and Traditional BKW is about 3000 times slower. For g =211, n = 23 the execution
time of the static decision method is approximately 1.8 times faster than that of existing method This
is likely because increasing the number of reduction steps due to block size subdivision enhances the
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Table 1: Reduction results for Ring-LWE samples (g = 17,n = 2%)

Conventional Our Proposal
Ring-BKW [17] | Static Method \ Dynamic Method
Initial Samples 2000 - 2%
Block Size 22 [22,22,2,2,27] [20 % 12,27]
Table Size 31985 31123 21610
Runtime 6.13 ms 911 ms 6.04 s
Reduced Samples 15 838 6388

Table 2: Reduction results for Ring-LWE samples(g = 211,17 = 23)

Conventional Our Proposal
Ring-BKW 17 | Static Method | Dynamic Method
Initial Samples 4000 - 23
Block Size 22 [2,2,27] [20 « 12, 27]
Table Size 31999 27839 424
Runtime 143s 800 ms 4.1s
Reduced Samples 1 4161 25173

collision probability but also increases processing time. However, despite the increase in the number
of reduced samples, a comparison of the final block size reveals that it has been subdivided to the
finest possible level, significantly increasing execution time. This excessive execution time is due to an
overuse of Change block size caused by inappropriate settings for the processed sample threshold and
stored column threshold. Since the block size setting involves a trade-off between the number of reduced
samples and execution time, it is necessary to determine appropriate parameters based on the required
number of reduced samples.

5.3 The relations between the number of reduced samples and parameters

Figures 3—4 show the execution time and the number of reduced samples when « is fixed in the block
size dynamic decision method. Similarly, Figures 5-6 present the execution time and the number of
reduced samples when S is fixed. The horizontal axis represents the stored column threshold 8 and the
processed sample threshold @, while the vertical axis indicates the execution time and the number of
reduced samples, respectively.

When g is varied, both execution time and the number of reduced samples increase significantly at
0.05 and 0.45, remaining unchanged beyond these values. On the other hand, when « is varied, increasing
it results in a decrease in execution time and the number of reduced samples, with no significant changes
observed beyond 0.5. We analyze the settings for the processed sample threshold @ and the stored
column threshold 5. When g is small, the number of reduced samples is low, and the execution time is
short. In this parameter comparison experiment, we used 32,000 samples, g = 17, @ = 0.8, and an initial
block size of 4. As a result, 32,000 x 0.8 = 25, 600 samples were processed, and Change block size was
executed for the first time when (174 — 1) x8/2 = 41, 760 x 8. When 80% of the input samples have been
processed, the parameters in this experiment indicate that a certain number of collisions occur, allowing
the reduction steps to progress. In this case, when S is small, the required number of stored columns is
low, preventing Change block size from being executed in the early reduction steps. Instead, block size
is modified only in the later reduction steps, where the number of stored columns is low. As a result, the
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Figure 3: Execution time of the dynamic decision method (a = 0.8)
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Figure 4: Number of reduced samples in the dynamic decision method (@ = 0.8)

execution time is shorter since no block size changes occur in the early steps, and the number of reduced
samples is lower compared to when 3 is large. Conversely, as 8 increases, the required number of stored
columns also increases in the early reduction steps, leading to earlier block size changes. Consequently,
execution time increases, and the number of reduced samples also increases. Next, we analyze the impact
of @ on block size changes. In this experiment, S was fixed at 0.06. As aresult, when 32, 000 X a samples
have been processed, if the number of columns in the ongoing reduction step at that moment does not
satisfy (17*—1) x0.06/2 =~ 2506, the first Change block size is executed. When « is small, Change block
size is executed early in the sample input process, reducing block size to the smallest possible size. This
results in longer execution times and a higher number of reduced samples. Conversely, as « increases,
the timing of Change block size execution is delayed, leading to block size refinement occurring only in
the later stages. As a result, the number of reduced samples is expected to be lower compared to earlier
stages. In this study, we have not yet clarified the relationship between the number of reduced samples
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Figure 5: Execution time of the dynamic decision method (8 = 0.06)
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Figure 6: Number of reduced samples in the dynamic decision method (8 = 0.06)

required in Hypothesis-testing and the success probability of the attack. However, by elucidating this
relationship in future work, S8 can also be appropriately configured. Furthermore, as mentioned earlier,
the setting of the processed sample threshold a serves as an auxiliary condition to properly manage
the recursive Reduction step, which determines the execution conditions for Change block size. If the
stored column threshold S is appropriately set, it is also expected that an appropriate value for a can be
determined.

6 Conclusion

In this study, we improved the Reduction step by dynamically setting an appropriate number of BlockSize
values for each reduction step instead of using a fixed BlockSize, thereby increasing the number of reduced
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samples. This result demonstrates an improvement in the performance of the Ring-BKW algorithm, as
it allows more candidate vectors to be output using the same number of Ring-LWE samples, while also
suggesting the possibility of further enhancements to the BKW algorithm. In this study, we introduced a
threshold for the number of available samples at each step as a method for dynamically determining the
number of BlockSize values. However, other approaches to determining BlockSize are conceivable, and
devising methods that utilize different statistical properties of the sample set remains an open problem.
Additionally, further analysis is required to appropriately configure the parameters used in the proposed
Change BlockSize method. To achieve this, it is also necessary to clarify the number of samples required
at each step for the BKW algorithm to successfully attack the LWE and Ring-LWE problems, enabling
more detailed research on the Reduction step.
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