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Abstract

In this paper we report about QBFEVAL’10, the seventh in a series of events established
with the aim of assessing the advancements in reasoning about quantified Boolean formulas
(QBFs). The paper discusses the results obtained and the evaluation setup, from the
criteria used to select QBF instances down to the hardware infrastructure. We also discuss
the current state-of-the-art in light of past challenges and we envision future research
directions that are motivated by the results of QBFEVAL’10.

1 Introduction

For almost a decade now, competitive events in the field of Boolean reasoning have influenced
related research agendas and shaped the course of tool developments. Nowadays, organized eval-
uations are popular for several subfields of Boolean reasoning, including propositional satisfia-
bility (SAT) [3, 27], quantified Boolean formula (QBF) [20], MAXSAT [1], pseudo-Boolean [18],
and satisfiability modulo theory (SMT) solving [2]. While in all these events the organizers are
trying to answer the question “Which solver should I use?” [15] using transparent and fair
evaluation methods, researchers and practitioners look at the outcomes as the preferred way to
understand the current state of the art in each subfield. Often, it is not just the best solver for
the given application which is sought, but also some feeling about what makes a solver suitable
for one kind of problem or another. It is therefore important, in any such event, to motivate and
explain thoroughly the testing methods which led to the latest results. Whenever possible, the
organizers should try to answer the question “Which solver is best, for which task and why?”,
which is far more relevant than just assessing the winner(s) of the event.

In this spirit, we report about the 2010 evaluation of QBF solvers (QBFEVAL’10), the
seventh in a series of events established with the aim of assessing the advancements in QBF
reasoning. An important expansion with respect to the last evaluation (QBFEVAL’08) is the
introduction of five different tracks, each with its own rules, solvers and instances. Overall,
QBFEVAL’10 received 13 solver submissions from 8 different developing teams. Also, a pool
of 136 formulas was submitted about module extraction in description logics [13]. These for-
mulas have been made available both with a prenex CNF encoding and a non-prenex non-CNF
encoding.

Table 1 shows QBFEVAL’10 at a glance. The main competition (main in the following)
is comprised only of prenex CNF formulas obtained by encoding various automated reasoning
tasks into QBF. This track is competitive, i.e., we declare a winner in the end, whereas all the
remaining tracks are non-competitive. This is because evaluation of QBFs in prenex CNF is a
fairly mature area, faring more than ten years of active research into algorithms, heuristics and
optimizations. On the other hand, we preferred to have non-competitive tracks for formulas
with a single ∀∃ alternation (2qbf), “small but hard” instances (sh), and random generated
formulas (rnd), because these tracks are meant to experiment with specific features for which
solvers may have (not) been specifically optimized. All of the above tracks feature formulas in
prenex CNF, and the intersection between the test sets of these tracks is empty, i.e., there is no
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Track
main 2qbf sh rnd npncnf

# Solvers 11 9 10 9 2
# Formulas 568 200 50 550 478

Table 1: QBFEVAL’10 at a glance. “# Solvers” and “# Formulas” denote the total amount
of solvers and formulas involved in a given track, respectively.

formula tested in two different tracks. In the case of non-prenex non-CNF encodings (npncnf),
since this is only the third time in which non-prenex non-CNF solvers are evaluated, and the
research contributions in this area are currently still limited in number, we felt that the topic is
not mature enough for a proper competition. We devote part of Section 2 to describe in some
detail the five tracks, including solvers and formulas.

As in every event of this kind, it is important to choose carefully the test set(s) in order
to get meaningful results while completing the evaluation in a reasonable time. In order to
fulfil these two requirements, in the main track we have extracted the final test set by sampling
the pool of instances available to us – currently more than 15000 instances and 551 families
– to extract a much smaller, yet representative, test set. In all the remaining tracks we chose
the test set according to the topic of the track, and we tried to cover as much as possible
the variety of the instances available to us, either by sampling (2qbf, sh) or by controlled
generation (rnd). In the npncnf track, we considered all the instances available to us. Finally,
we ran the solvers on a farm of identical PCs, imposing different resource bounds according to
the track. Section 2 is chiefly devoted to the description of the above selection methods and
the computing infrastructure.

We present an analysis of QBFEVAL’10 data in two stages. In the first stage – Section 3
– we consider all the solvers and the instances in each track to give a rough, but complete,
picture of the state of the art in QBF. By analyzing the results for problems and discrepancies
among the solvers, we were able to isolate some solvers which turned out to be problematic,
and we have removed them from subsequent analysis. In the second stage – Section 4 – we
analyze the results with the aim of understanding the relative strengths and weaknesses of the
various solvers, as well as the reasons why some formulas turn to be harder than others. Here
we try to extract a narrow, but crisp, picture of the current state of the art. We also try to put
things in perspective, by comparing the current results with past challenges [4] and envisioning
possible future developments. For the main track, we also provide the final ranking of the
solvers according to the YASMv2 scoring method [19]. Finally, in Section 5 we conclude with
an analysis of the evaluation and suggestions for future events of this kind.

2 Setup: solvers, instances and infrastructure

Table 2 summarizes the solvers submitted to QBFEVAL’10. The salient features of the par-
ticipants are briefly described in the following. The input format description is assumed to be
prenex CNF format, unless otherwise specified.

AIGSolve [22] uses And-Inverter Graphs (AIGs) as the main data structure, and AIG-based oper-
ations to reason about the input formula. The solver includes preliminary phases devoted to
simplification, structure extraction and early quantification of the input formula.

aqme’10 [23] is a multi-engine solver, i.e., a tool using Machine Learning techniques to select among
its reasoning engines the one which is more likely to yield optimal results. The reasoning engines
of aqme’10 are a subset of those submitted to QBFEVAL’06, namely 2clsq, quantor2.11,
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Solver Track Author(s)

AIGSolve main, sh F. Pigorsch, C. Scholl
aqme’10 main, 2qbf, sh, rnd L. Pulina, A. Tacchella
CirQit2.1 npncnf A. Goultiaeva, V. Iverson, F. Bacchus
depqbf main, 2qbf, sh, rnd F. Lonsing
depqbf-pre main, 2qbf, sh, rnd F. Lonsing
nenofex main, 2qbf, sh, rnd F. Lonsing, A. Biere
qmaiga main S. Reimer, F. Pigorsch, M. Lewis, B. Becker, C. Scholl
qpro npncnf U. Egly, M. Seidl, S. Woltran
quantor3.1 main, 2qbf, sh, rnd A. Biere
QuBE7 main, 2qbf, sh, rnd E. Giunchiglia, P. Marin, M. Narizzano
QuBE7-c main, 2qbf, sh, rnd E. Giunchiglia, P. Marin, M. Narizzano
QuBE7-m main, 2qbf, sh, rnd E. Giunchiglia, P. Marin, M. Narizzano
StruQS’10 main, 2qbf, sh, rnd L. Pulina, A. Tacchella

Table 2: The QBFEVAL’10 systems. The table is structured as follows. The first column
(“Solver”) reports the name of the solver, the second column (“Track”) indicates the track in
which the given solver is involved, while the last column (“Author(s)”) reports solvers’ authors.

QuBE3.1, sKizzo, and ssolve. Engine selection is performed according to the adaptive strategy
described in [23].

CirQit2.1 [12] is a solver for non-prenex non-CNF formulas using a circuit-based data structure to
represent and reason about the input formula. Search is performed on the internal representation
using unit and Don’t Care propagation. It performs term- and clause-learning, and it leverages
a variable-state independent heuristic.

depqbf is a search-based solver leveraging compact dependency graphs to represent the prefix, instead
of the standard linear representation – see [17]. The difference of depqbf-pre from the basic
version is the use of quantor3.1 as a preprocessor.

nenofex [16] is an expansion-based solver which operates on negation normal form (NNF) formulas.
NNF formulas are represented as structurally restricted trees, and expansions are scheduled based
on expansion cost estimates.

qmaiga merges two “orthogonal” approaches. Its core is AIGSolve, but when AIGSolve is stuck
in a sub-problem, the search-based solver QMiraXT [14] takes over the entire solution process.

qpro [8] is a search-based solver for non-prenex non-CNF formulas implementing dependency-directed
backtracking.

quantor3.1 [5] is based on variable elimination and expansion, plus a number of features, such as
equivalence reasoning, subsumption checking, pure literal detection, unit propagation, and also
a scheduler for the elimination step.

QuBE7 is based on the composition of two reasoning tools: the preprocessor sQueezeBF [9], com-
bining various techniques for reducing the size of the input QBF, and the search-based solver
QuBE3.1 [11].

StruQS’10 [24] main feature is a dynamic combination of search – with solution- and conflict-
backjumping – and variable-elimination. The key point in this approach is to implicitly leverage
graph abstractions of QBFs to yield structural features which support an effective decision be-
tween search and variable elimination.

Further details about the solvers can be found in the short papers submitted by their au-
thors and made available through the QBFEVAL’10 website [21]. Concerning the formulas,
there was a single submission by Roman Kontchakov. The “Kontchakov” suite, as it is named
in the following, consists of 136 formulas obtained by encoding minimal query inseparabil-
ity module extraction in DL-Lite [13]. The formulas have been made available both with a
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prenex CNF encoding and their corresponding non-prenex non-CNF encoding. All the remain-
ing formulas used in the evaluation have been extracted from QBFLIB [10]. These include the
“Wintersteiger” suite, 372 encodings concerning ranking function synthesis problems [7] sub-
mitted after QBFEVAL’08 and thus not extensively tested so far. The complete test set used
in QBFEVAL’10 can be downloaded from the QBFEVAL’10 website [21]. In the following, we
describe in some detail the choice of the test sets for each of the five tracks. Tables 6 and 7 in
Section 4 show further details about the selected formulas.

In order to construct a meaningful comparison between solvers, we constructed the test set
for the main track according to the following guidelines:

1. Balance the mix of different kinds of formulas, considering both syntactic features, e.g.,
number of variables and quantifier alternations, and structural features, e.g., density of
the associated variable dependency graph.

2. Balance the empirical hardness of formulas so that the whole spectrum between easy and
hard formulas is covered, where we consider QBFEVAL’08 results as a yardstick to assess
formula hardness.

3. Balance between true and false formulas, again considering QBFEVAL’08 results.

4. Balanced the mix of formulas coming from different application domains, so that no
application domain is neglected or overrepresented.

5. Finally, ensure that no more than 10% of the total test set comes from a single submitter
whenever the formula submitter is also authoring a competing solver.

To satisfy requirement (1) above, we start with a pool of 2734 formulas extracted from QBFLIB,
i.e., all the publicly available prenex CNF QBFs which have not been generated using some
probabilistic model, excluding the ones eligible for 2qbf and sh tracks (see below). For each
formula, we compute the same set of syntactic features used in aqme’10 [23] to automate
engine selection, plus an approximation of quantified treewidth as described in [25]. Then, we
extract a representative subset of the original pool by (i) clustering the formulas according
to their features, and (ii) random sampling without repetitions the members of each cluster.
The result of the above procedure is a pool of 432 formulas to which we add formulas from
the “Kontchakov” suite to yield a final test set of 568 formulas. It turns out that such test
set satisfies also requirements (2-5) above. In particular, the hardness mix turns out to be
balanced – at least considering the formulas which were tested in QBFEVAL’08. If we consider
requirement (3), we can see that the final selection consists of 166 and 170 formulas which are
known to be true and false, respectively. Among the 232 formulas whose truth value has not
been established, we have newly submitted formulas, hard formulas from QBFEVAL’08 (48),
and formulas that were not used in the previous evaluation (48). As for requirement (4), we
notice that the final test set is composed by 197 instances of formal verification problems, 101
instances of planning problems, 136 instances of module extraction problems and 134 instances
of miscellaneous problems, so there is already some balance among application domains. In the
following, for the sake of simplicity, we will consider module extraction problems as part of the
miscellaneous category. Finally, also requirement (5) is implicitly satisfied by our selection of
formulas.

2QBFs, i.e., formulas with a single ∀∃ alternation in the prefix, arise frequently in applica-
tions such as conformant planning, formal property verification and, more in general, problems
having Σp

2 complexity. If we consider the pool of prenex CNF formulas that we used to ex-
tract the test set for the main track, we see that about 40% of them are 2QBFs. Clearly,
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any general-purpose QBF solver can deal with 2QBFs, but they are also appealing for special-
purpose approaches, e.g., cooperation of two state-of-the-art SAT solvers or encoding to other
logics, like, e.g., Disjunctive Logic Programming. Moreover, it could be the case that even
general-purpose solvers behave differently on 2QBFs with respect to the unbound-alternation
case. Indeed, no formulas were submitted specifically for this track. Therefore, we selected
200 formulas from QBFLIB, trying to meet the same requirements mentioned previously for
the main track. Even if we followed the same procedure outline above, we did not manage
to get an overall balance between the formulas. This is because two suites – “Basler” and
“Wintersteiger”, both made up by encoding of formal verification problems – are numerically
dominating the category. However, we know from QBFEVAL’08 that most of the formulas in
the suite “Basler” were solved by either 1 or 2 solvers, so they represent a reasonably difficult
test set. The suite “Wintersteiger” is interesting in its own right, since it was submitted after
QBFEVAL’08 and it has never been evaluated extensively.

Because solving QBFs is a hard combinatorial problem, we expect that while heuristic-
based solvers can deal with QBFs of increasing “size”, there will always be “small” instances
that turn out to be extremely hard to solve in practice. The focus of this track is precisely
on “small but hard” instances, i.e., relatively small QBFs that resisted solution attempts in
previous QBF evaluations. Clearly, a key factor in selecting these formulas is deciding on a
“size” parameter. The formulas composing the test set for the sh track have been picked up
from QBFLIB according to the following procedure. We focus on formulas that no participant
was able to solve in QBFEVAL’08. We rank such formulas in ascending order according to
(i) number of variables, (ii) number of clauses and (iii) total number of literals. We consider
only the first 100 entries in each ranking, and then each formula is scored using the Borda
method [26]. The position of the formula in each of the rankings above is considered as a
preference expressed by a voter, and the individual preferences are added up to yield the final
score. The 50 highest ranking formulas are selected in the end.

As for the rnd track, since no new formulas/generators were submitted specifically for
this track, we composed the test set considering QBFEVAL’05 and ’06 experience – the last
two events in which were ran random formulas. In particular, we selected 55 instances with
ten samples each, obtaining a total amount of 550 formulas. Our selection considers both
generators, i.e., the “Chen-Interian” probabilistic model [6] and formulas, available in QBFLIB.
Concerning formulas, we made a selection from NestedCounterFactual category, Miscellanea
category (family “ASP Program Inclusion”), and Planning category (suite “Narizzano” and
family “Strategic Companies”). Finally, the test set of the npncnf is composed by 342 formulas
already available in QBFLIB at the time of the submission, together with 132 newly submitted
– the suite “Kontchakov” mentioned above.

In the main track, the only competitive one, formulas have been preprocessed using a
satisfiability-preserving shuffling of the variables in the prefix, literals in the clauses, and clauses
in the matrix, respectively. For each track, the CPU time limit is set to 1200 seconds for all the
tracks, except the sh track where we allowed 43200 seconds (12 hours) of runtime. To prevent
memory swapping, we also set a memory limit at 2GB. If a solver exceeds the resource bounds
while attempting to solve a formula, it is killed and the corresponding result is left undefined.
In the main track, we rank the solvers using the YASMv2 [19] in order to declare the winner. As
shown in [19], YASMv2 is more robust than other common scoring methods, including simple
criteria based on the number of problems solved and the CPU time spent solving them. The
evaluation runs on a farm of 9 identical PCs locally available at the University of Genoa. The
PCs are equipped with a processor Intel Core2Duo running at 2.13 GHz, with 4 GB of RAM,
and running GNU Linux Debian 2.6.18.5.
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Solver main 2qbf sh rnd
# Time # Time # Time # Time

AIGSolve 329 22786.60 na na 37 1140.01 na na
aqme’10 434 33346.60 128 2323.11 11 30132.40 407 20078.90
depqbf 370 21515.30 24 690.42 4 41448.00 342 12895.10
depqbf-pre 356 18995.90 51 877.02 4 33371.90 343 9438.62
nenofex 225 13786.90 50 3545.65 3 30194.20 149 34502.80
qmaiga 361 43058.10 na na na na na na
quantor3.1 205 6711.37 48 3689.30 5 57960.90 134 2830.97
QuBE7∗ 410 52142.10 173 1981.88 9 80570.70 359 27092.90
QuBE7-c∗ 389 34926.80 172 3340.89 16 27207.10 339 29495.20
QuBE7-m∗ 393 40786.30 171 4109.16 16 21458.50 340 29393.30
StruQS’10 240 32839.70 132 1399.30 5 26257.30 117 15480.40

Table 3: First stage results for all prenex CNF solvers. For each track, we report the number
of formulas solved within the time limit (“#”) and the total CPU time (“Time”) spent on the
solved instances. Results in boldface are those of the best three solvers in each track – according
to number of problems solved and total time only. na means that the solver did not participate
in a track. Solvers marked with an asterisk are those whose output gave rise to discrepancies.

3 Evaluation: first stage results

Table 3 presents the raw results of the evaluation, considering all the prenex CNF solvers and
the four tracks where prenex CNF QBFs were tested. Looking at the results, we can see that in
the main track all the competitors were able to solve at least 33% of the test set. On the other
hand, nenofex, quantor3.1 and StruQS’10 were not able to solve more than 50% of the
instances. In terms of number of problems solved, the best solver is aqme’10, which can solve
about 76% of the test set. This is interesting if we consider that aqme’10 combines solvers that
used to be state-of-the-art four years ago. However, we can also see that some solvers that do
not exploit a multi-engine paradigm like, e.g., QuBE7, depqbf and qmaiga are getting close
to the performances of aqme’10. This indicates a clear progress in the field over the past four
years. The performance of the solvers is also quite diverse: there are 229 instances – 40% of
the test set – separating the strongest solver, from the weakest one.

Still looking at Table 3, in the track 2qbf we can see that QuBE7, QuBE7-m and QuBE7-
c are able to solve more than 85% of the test set, while StruQS’10 and aqme’10 both solve
slightly more than 60% of the test set. On the other hand, all the remaining solvers cannot do
better than a mere 25%. This indicates that given the current state of the art in QBF reasoning,
the performance demand of these encodings is still exceeding the capabilities of most solvers. As
for the sh track, we see that AIGSolve was able to solve a considerable number of previously
open problems, whereas all the remaining solvers did not perform particularly well. On one
hand, this indicates that AIGSolve is particularly suited for this kind of problems – probably
due to its internals which are fairly different from all the other solvers that participated in the
track. On the other, it also shows a clear progress over previous QBFEVAL events. Looking
at the results on random instances, we can see that all the solvers, with the only exception
of StruQS’10 and quantor3.1, were able to conquer at least 25% of the instances in this
category, and six solvers were able to conquer more than 50% of the instances. Only aqme’10
is able to solve 74% of the instances. Overall it seems that the choice of parameters for the
generation of random instances yielded a performance demand within the capabilities of most
solvers. Considering the contestants which solved more than 50% of the test set, but excluding
the multi-engine solver, we see that the performance of the solvers is similar: only 19 instances
separate the worst solver (QuBE7-m) from the best (QuBE7). Finally, if we consider the
npncnf results – not shown in Table 3 – we have that CirQit2.1 solved 291 instances and

24



Designing a solver competition: the QBFEVAL’10 case study Peschiera, Pulina and Tacchella

Solver Points

depqbf 2896.68
depqbf-pre 2508.96
aqme’10 2467.96
qmaiga 2117.55

Solver Points

AIGSolve 2037.22
quantor3.1 1235.14
StruQS’10 947.83
nenofex 829.11

Table 4: Final ranking of QBFEVAL’10. The first column (“Solver”) reports the solvers
participating in main, while the second one (“Points”) is filled with the points computed by
using YASMv2.

qpro solved 153 instances, i.e., 61% and 32% of the test set, respectively. Also if CirQit2.1
solves a noticeable amount of instances more than qpro, it does not dominate it, because qpro
is able to solve 30 instances uniquely.

As we have anticipated in Section 1, a few discrepancies in the results of the solvers were
detected during the analysis of the first stage results. A total of 3 discrepancies were detected
in the main track, and 4 discrepancies in the sh track. For each of the discrepancies we
reran the solvers reporting a result different from the majority of the other solvers and/or the
expected result of the instance. We also inspected the instances, looking for weird syntax and
other pitfalls that may lead a correct solver to report an incorrect result. In particular, the
instances which gave rise to discrepancies belong to three different suites: “Letombe”, “Katz”
and “Mneimneh-Sakallah”. We ran on such instances state-of-the-art QBF certifiers in order to
get a definite answer on them. The only instance for which we obtained a push-button result is
par8-4-90 (suite “Letombe”), certified by qbd [28] as false. By performing some manually-
assisted reasoning, we found out that test3 quant2 is false as well. At the end of this analysis
we excluded from the second stage the following solvers: QuBE7, QuBE7-m and QuBE7-c,
responsible for all discrepancies detected. Clearly, for instances that were conquered by just
one solver, and for which we do not know the satisfiability status in advance, the possibility
that the solver is wrong still exists, but we consider this as unavoidable given the current state
of the art.1

4 Evaluation: second stage results

Table 4 shows the results obtained computing YASMv2 on the competitive track. Looking at
the table, we declare depqbf as the winner of QBFEVAL’10, followed by depqbf-pre, and
aqme’10. Notice that, even if aqme’10 is able to solve more problems that both depqbf
and depqbf-pre, the setup time of the engine-selection strategy may considerably increase the
runtime in most short-to-solve instances, and YASMv2 is designed to penalize this behavior.
In the remainder of the section, we look in detail at each track, considering both solver- and
instance-centric views. When we say that “solver A dominates solver B” we mean that the set
of problems solved by B is a subset of those solved by A.

4.1 Solver-centric view

Table 5 shows the results of the main track dividing the formulas into three categories. As
we can see, in terms of number of problems solved, aqme’10 is the strongest solver: it leads
the count in Formal Verification and Planning, and it is second best in Miscellanea category.

1Notice that the same problem exists in the SAT competition when a solver is the only one to report about
an instance, the answer is “unsatisfiable”, and the solver cannot produce a checkable proof.
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Category Solver Total True False Unique
# Time # Time # Time # Time

aqme’10 134 9056.00 49 3938.94 85 5117.06 3 639.97
qmaiga 130 10611.28 55 5374.21 75 5237.07 – –
AIGSolve 123 7129.58 56 4189.91 67 2939.67 2 1006.30

Formal StruQS’10 92 16501.98 39 8722.64 53 7779.34 6 2205.45
Verification depqbf 89 4109.93 17 959.61 72 3150.31 5 505.70

(197) quantor3.1 73 4236.95 31 3096.88 42 1140.07 – –
nenofex 70 7928.03 27 4744.43 43 3183.60 3 350.89
depqbf-pre 65 4195.32 20 1032.27 45 3163.05 – –

depqbf-pre 222 12179.63 117 10735.33 105 1444.31 – –
aqme’10 219 20210.17 95 11698.52 124 8511.64 1 5.22
depqbf 208 14063.50 110 12234.42 98 1829.08 – –

Miscellanea qmaiga 162 27280.91 89 13087.86 73 14193.05 1 859.00
(270) AIGSolve 145 13569.84 81 6386.08 64 7183.76 – –

StruQS’10 90 11597.60 39 3751.63 51 7845.97 – –
nenofex 88 4786.58 45 2985.23 43 1801.35 – –
quantor3.1 62 1087.27 31 678.05 31 409.22 – –

aqme’10 81 2824.92 40 188.10 41 2636.81 2 892.65
depqbf 73 3341.86 37 577.74 36 2764.12 1 434.81
quantor3.1 70 1387.15 38 355.70 32 1031.46 1 585.96

Planning depqbf-pre 69 2620.92 35 686.16 34 1934.76 – –
(101) qmaiga 69 5165.87 36 2234.56 33 2931.31 – –

nenofex 67 1072.33 37 512.21 30 560.12 – –
AIGSolve 61 2087.13 34 1515.49 27 571.64 – –
StruQS’10 58 4740.17 31 1331.23 27 3408.94 – –

Table 5: main track second stage results. “Category” reports the application domain, and for
each solver, the table shows the number of instances solved (“#”) and the total CPU time spent
to solve them (“Time”). Total number of formulas solved (“Total”) is also split into true, false,
and uniquely solved formulas (“True”, “False” and “Unique”, respectively). A dash means that
a solver did not solve any instance in the related group. Solvers are sorted according to the
number of instances solved, and, in case of a tie, according to CPU time.

Overall, the strongest solver in Formal Verification category is able to solve 68% of the total
number of instances, while depqbf-pre is able to solve about 82% of the Miscellanea category,
and aqme’10 solves 80% of instances in Planning category. Focusing on Formal Verification
category, 68 instances separate the strongest solver from the weakest one. If we consider the
problems that are uniquely solved, and the five best solvers, then we see that no solver is
dominated by the others, with the noticeable exception of qmaiga (dominated by aqme’10).
Finally, we report that depqbf yields the smallest average CPU time (about 46s). In the
Miscellanea category, the first thing to be observed is that the strongest solver is depqbf-
pre, which ranks last in the Formal Verification category. The first three solvers are pretty
much in the same capability ballpark: only 14 instances separate the first one from the third
one. Finally, considering the Planning category, we can see that only 23 instances separate
the strongest solver from the weakest one. We also report that quantor3.1 seems to perform
better in the Planning category w.r.t. the other ones, because in this category we find it in the
group of the best three solvers.

Considering now the 2qbf2 track, we have that the test set is mostly composed by Formal
Verification formulas (177 out of 200). StruQS’10 turns out to be the strongest solver in this
category in the 2qbf track, with 126 instances solved (71% of the test set). aqme’10 trails
with 111 instances solved, and nenofex is third best with 44 instances solved. StruQS’10 is
very close to dominate all remaining solvers: it uniquely solves 20 formulas, but both aqme’10

2For the lack of space, we do not show tables about the non-competitive tracks, and we made them available
on-line at [21].
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and nenofex are also able to uniquely solve 1 formula. If we compare this result with the
main track, where aqme’10, qmaiga and AIGSolve are stronger than StruQS’10, then
we may conjecture that this is due to StruQS’10 becoming less effective when the number
of alternations increases. As for the remaining formulas in the 2qbf track, we have that
StruQS’10, quantor3.1, aqme’10, and nenofex were able to solve all the 6 instances in the
“Miscellanea” category, whereas depqbf-pre is able to solve all 17 formulas in the “Planning”
category, and it also dominates all the other solvers. In particular, quantor3.1, nenofex,
and StruQS’10 were not able to solve any formula in this category. These formulas are all
sortnetsortXX.AE (Family “Sorting Network”, suite “Rintanen”), for which is confirmed their
hardness for non-DPLL based solver, as we can see from results of previous QBFEVALs. Also
in the sh track Formal Verification formulas are prevalent (42 out of 50). The main result of
this track is that AIGSolve is able to globally solve 37 open problems of QBFEVAL’08. In
particular, 35 out of 37 fall in the Formal Verification category, mainly belonging in “Biere”
and “Katz” suite.

Looking at the rnd track, and focusing on the Chen-Interian family, we report that aqme’10
is the strongest solver, and it is able to solve about 60% of the test set. It also dominates all
remaining solvers. It is followed by a group of three solvers, namely depqbf-pre, depqbf, and
StruQS’10, which are able to solve the same set of 100 formulas. The remaining solvers are
not able to deal with more than 25% of the test set. There are also 61 formulas uniquely solved
by aqme’10 (by using ssolve), which are the ones supposedly close to the phase transition
in the random generation model. No other solver is able to return a solution in this range of
formulas. Concerning other random formulas, we report the following.

• In the family “ASP Program Inclusion”, depqbf-pre, aqme’10 (mainly using QuBE3.1),
and depqbfare able to solve 100% of the test set, while the remaining three are not able
to solve any formula.

• In the family “NestedCounterFactual” the strongest solver is depqbf-pre, able to cope
with all the test set. The other solvers able to solve at least 50% of the test set are
depqbf, which solves 79 out of 80 instances, and aqme’10, with 58 out of 80 solved
instances.

• Finally, regarding the Planning category, the picture is very close to the one described
for the Chen-Interian category. The strongest solver is aqme’10, coping with 92% of the
dataset, followed by depqbf-pre and depqbf, having solved both 77% of the dataset.
In this case, aqme’10 also dominates all the remaining solvers. The noticeable difference
with “Chen-Interian” family is that now StruQS’10 ranks last, solving only 15 formulas.

Concluding, in the npncnf track there are two categories of formulas, namely “Formal Ver-
ification”, composed by 342 out of 478 instances, and “Miscellanea”, composed by the suite
Kontchakov. For both categories, the strongest solver is CirQit2.1. Concerning “Formal
Verification”, CirQit2.1 solves 205 formulas, against 72 solved by qpro, which is also domi-
nated by CirQit2.1. The picture slightly changes in the case of “Miscellanea” because, even if
CirQit2.1 is still the strongest solver (86 solved instances), being the gap with qpro of only
5 formulas. Finally, for the Miscellanea category we also report that CirQit2.1 and qpro
uniquely solve 35 and 30 formulas, respectively. Therefore, no solver dominates the other in
this category.
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Family Overall Time Hardness Family Overall Time Hardness
N # EA ME MH N # EA ME MH

Abduction 52 50 25.19 14 35 1 k grz p 3 3 3.16 1 2 –
Adder 15 15 568.79 – 12 3 k lin n 5 5 283.95 – 5 –
blackbox-01X-QBF 59 53 807.66 8 39 6 k lin p 4 4 0.40 2 2 –
blackbox design 2 2 82.35 – 1 1 k path n 3 3 0.12 – 3 –
Blocks 5 5 16.05 1 4 – k path p 4 4 0.14 – 4 –
BMC 18 17 64.16 7 10 – k ph n 6 6 7.86 6 – –
C432 4 4 0.52 1 3 – k ph p 4 2 6.11 2 – –
C499 2 2 0.90 – 2 – k poly n 4 4 0.09 – 4 –
C5315 7 3 3.80 1 2 – k poly p 2 2 0.06 – 2 –
C6288 4 2 21.09 – 1 1 k t4p n 4 4 5.62 – 4 –
C880 1 1 0.20 – 1 – k t4p p 5 5 3.01 – 5 –
Chain 1 1 0.02 – 1 – Logn 1 1 1.12 – 1 –
circuits 3 3 18.00 1 2 – mqm 136 136 7953.95 – 136 –
comp 2 2 0.03 2 – – s1196 1 – – – – –
conformant planning 15 10 1042.32 2 7 1 s1269 1 – – – – –
Connect4 11 9 125.77 6 3 – s27 1 1 0.02 – 1 –
Counter 4 4 937.36 – 3 1 s298 4 4 158.09 – 4 –
Debug 5 4 462.59 – 4 – s3330 2 – – – – –
evader-pursuer-4x4-logarithmic 3 2 2.86 – 2 – s386 1 1 715.71 – 1 –
evader-pursuer-4x4-standard 7 1 5.75 – 1 – s499 2 2 160.23 – 2 –
evader-pursuer-6x6-logarithmic 4 3 721.25 – 2 1 s510 3 2 403.96 – 2 –
evader-pursuer-6x6-standard 2 2 892.65 – – 2 s713 2 1 60.28 – 1 –
evader-pursuer-8x8-logarithmic 6 4 40.12 – 4 – s820 2 – – – – –
FPGA PLB FIT FAST 2 2 0.05 1 1 – Sorting networks 6 6 51.65 2 4 –
FPGA PLB FIT SLOW 1 1 1.61 – 1 – SzymanskiP 2 2 527.78 – 1 1
Impl 1 1 0.00 1 – – term1 3 3 0.34 1 2 –
jmc quant 2 2 1.15 – 2 – tipdiam 14 14 102.15 1 13 –
jmc quant squaring 1 1 8.38 – 1 – tipfixpoint 24 22 2282.68 4 12 6
k branch n 4 4 870.06 – 3 1 Toilet 4 4 0.49 3 1 –
k branch p 7 7 380.20 – 7 – ToiletA 10 10 0.72 7 3 –
k d4 n 10 10 15.63 – 10 – ToiletC 23 23 1.32 22 1 –
k d4 p 5 5 1.63 1 4 – ToiletG 4 4 0.01 4 – –
k dum n 2 2 0.04 – 2 – VonNeumann 2 2 5.92 1 1 –
k dum p 4 4 0.74 – 4 – z4ml 1 1 0.00 1 – –
k grz n 4 4 4.86 2 2 –

Table 6: Classification of main formulas considering second stage data. The table consists of
seven columns where for each family of instances we report the name of the family in alphabetical
order (column “Family”), the number of instances included in the family, and the number of
instances solved (group “Overall”, columns “N”, “#”, respectively), the CPU time taken to
solve the instances (column “Time”), the number of easy, medium and medium-hard instances
(group “Hardness”, columns “EA”, “ME”, “MH”).

4.2 Instance-centric view

In Table 6 we show the classification of formulas included in main according to the solvers
admitted to the second phase. In the table, the number of instances solved and the cumulative
time taken for each family is computed considering the “SOTA solver”, i.e., the ideal solver
that always fares the best time among all the participants. An instance is thus solved if at least
one of the solvers solves it, and the time taken is the best among the times of the solvers that
solved the instances. The instances are classified according to their hardness with the following
criteria: easy instances are those solved by all the solvers, medium instances are those non-easy
instances that could still be solved by at least two solvers, medium-hard instances are those
solved by one reasoner only, and hard instances are those that remained unsolved.

According to the data summarized in Table 6, main consisted of 568 instances, 523 of which
have been solved, resulting in 105 easy, 393 medium, 25 medium-hard, and 45 hard instances.
These results indicates that the selected instances are not trivial for current state-of-the-art
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Track Family Overall Time Hardness Family Overall Time Hardness
N # EA ME MH N # EA ME MH

irqlkeapclte 7 1 0.46 – 1 – Sorting networks 17 17 107.19 – 11 6
2qbf MutexP 7 7 5.08 3 4 – terminator 57 51 427.64 – 38 13

Qshifter 6 6 2.51 2 4 – wmiforward 46 27 159.21 11 15 1
RankingFunctions 60 55 72.50 – 47 8

Abduction 2 2 142.85 – 2 – k branch n 2 2 9.50 – 2 –
C499 3 3 17.92 – – 3 Sorting networks 4 3 5133.28 – 2 1
C880 6 4 54.19 – – 4 tipdiam 1 1 0.44 – – 1

sh circuits 1 1 187.02 – 1 – tipfixpoint 13 9 102.25 – 4 5
Counter 4 4 429.15 – 1 3 uclid 2 1 12.09 – – 1
jmc quant 5 5 6.61 – – 5 wmiforward 2 2 0.67 – – 2
jmc quant squaring 5 5 32.44 – – 5

ASP Program Inclusion 40 40 47.99 – 40 – RobotsD3 30 29 259.31 – 29 –
rnd CounterFactual 80 80 205.06 2 77 1 RobotsD4 30 30 202.22 5 22 3

q2k3k3 270 161 12317.15 30 70 61 RobotsD5 30 30 290 7 23 –
RobotsD2 30 29 1292.02 – 26 3 Strategic Companies 40 30 1300.85 3 12 15

npncnf mqm 136 116 14943.18 51 – 65 QLTL safety 250 116 38217.74 6 – 110
NuSMV diam 92 89 385.37 66 – 23

Table 7: Classification of formulas related to 2qbf, sh, rnd, and npncnf tracks, considering
second stage data. The table is organized as Table 6, with the only difference that in the
leftmost column (“Track”) is reported the related track.

QBF solvers since there is about 18% of easy instances. At the same time, the test set is not
overwhelming, since most of the non-easy instances (about 69%) are solved by at least two
solvers. Some “old” instances are still pretty hard for current state-of-the-art solvers, like the
ones coming from the Mneimneh-Sakallah suite (families s641, s1196, s1269, and s3330). As a
final consideration, we report that the main contributors to the SOTA solver, in percentage,
were depqbf, depqbf-pre, and quantor3.1, with 28%, 18%, and 15%, respectively. This is
the main explanation of the differences in the ranking positions between Table 3 and Table 4.

Concerning the 2qbf track, looking at the Table 7, we can see that, out of 200 instances, 164
have been solved, resulting in 16 easy, 120 medium, 28 medium-hard, and 36 hard instances.
In particular, we report that the families in the suite “Basler” are the ones with the highest
number of open formulas, while 92% of the formulas in the new family “RankingFunctions”
(suite “Wintersteiger”) are solved. Notice that 100% of the formulas in “legacy” families, i.e.,
“MutexP”, “Qshifter”, and “Sorting networks” are solved by the SOTA solver. Finally, the
three main contributors to the SOTA solver are StruQS’10, aqme’10 and depqbf-pre with
54%, 21%, and 20%, respectively. As regards the sh track, we can see in Table 7 that, out of 50
instances, 42 have been solved, resulting in 12 medium, 30 medium-hard, and 8 hard instances.
These 8 open instances are mostly located in the “tipfixpoint” family (4). Notice that 1 hard
instance is in the “uclid” family, that was submitted to the first QBFEVAL in 2003. The
SOTA solver is mainly composed by AIGSolve, while other contributions do not exceed 5%.
Looking now at the classification of formulas included in rnd, in the related section of Table 7
we can see that, out of 550 instances, 429 have been solved, resulting in 47 easy, 299 medium,
83 medium-hard, and 121 hard instances. We report that the main contributors to the SOTA
solver are aqme’10 and depqbf-pre, with 42% for each one. Finally, concerning npncnf
track, in Table 7 we can see that, out of 478 instances, 321 have been solved, resulting in 123
easy, 198 solved by only one solver, and 157 hard instances. The contribution of CirQit2.1
and qpro to the SOTA solver is 64% and 36%, respectively. Noticeably, there has been a leap
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forward in solving the “QLTL safety”. In QBFEVAL’08, only 6 instances were solved3, while
we now report 116 solved formulas with “only” a factor 2× in the CPU time limit. Another
interesting observation is about “mqm” formulas. If we compare the total amount of solved
formulas with the one reported in Table 6, we can see that, even if the results achieved using
prenex CNF solvers are better than those achieved with non-prenex non-CNF solvers, the two
values are comparable.

5 Conclusions

The final balance of QBFEVAL’10 can be summarized as follows:

• 13 solvers participated, 11 requiring QBFs in prenex CNF format.

• 136 formulas obtained by encoding minimal query inseparability module extraction in
DL-Lite were submitted, both with an encoding in prenex CNF and their corresponding
non-prenex non-CNF.

• State-of-the-art solvers for each track have been identified; also, a total of 367 challenging
hard instances have been identified to set the reference point for future developments in
the field.

All the information contained in this paper can be retrieved at the QBFEVAL’10 web portal [21].
Despite some long-standing limitations it is our opinion that the development of QBF solvers
has reached its maturity, in the sense that QBF solvers are now dependable and effective tools
which have a concrete potential for applications. The main question to be addressed by future
research is whether the current state-of-the-art solvers, alone or in combinations among them,
can solve industrial-sized and practically relevant problems. While QBF-based automation
techniques can be regarded as a promising research direction, the lack of applications may
discourage further developments, so it is important for researchers in the field to come out with
“killer applications” wherein QBF solvers have an edge over competing technologies, e.g., SAT
solvers or BDDs.
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