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Abstract

This paper introduces Phoenix-OC, a novel optimal control software for the solution of
large-scale, multi-phase Optimal Control (OC) problems. Phoenix-OC employs segmented
collocation methods for the state discretization and B-Splines for the control parameteriza-
tion. Each of the parameterized controls is allowed to have a distinct degree and knot grid.
Additionally, control derivatives of arbitrary order can be utilized in the model, as well as
constraint and cost functions. User-defined functions can be modeled either through an
automatic differentiation framework or via a generic C interface supporting the utilization
of virtually arbitrary functions, external models, etc. Among other features, the software
inherently supports table data interpolation, the computation of post-optimal sensitivities
for parametric OC problems, bi-level optimization, homotopy formulations, parallel batch
runs, and job dependencies. Furthermore, jobs can be executed locally or through a job
scheduler on computer clusters.

Phoenix-OC operates on the Phoenix-CORE engine - a generic sparse evaluation frame-
work for both the evaluation and derivative computation of vector-valued functions. Cen-
tral to this computational engine is the notion of an Extended Sparsity Pattern (ESP).
This novel type of sparsity pattern extends traditional binary-valued sparsity patterns to
a new type of floating-point pattern, allowing for advanced structure exploitation. The ex-
ploitation of sparse structures based on the ESP, combined with the multi-level parallelism
implemented in Phoenix-OC, yields high performance across a range of representative
benchmarks from engineering applications.

1 Introduction
The success of direct optimal control methods in solving applied optimal control problems has
led to the development of various general-purpose solvers and frameworks over the last decades
(e.g., [3, 9, 1, 10]).

The key design principles of Phoenix-OC focus on the efficient solution of large-scale optimal
control problems as well as the parallel batch processing of large problem sets. These princi-
ples are realized through a combination of advanced structure exploitation and parallelization
strategies both within and across processes.
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Phoenix-OC implements collocation methods in segmented form. These methods transcribe
infinite-dimensional optimal control problems in continuous time to large-scale and sparse finite-
dimensional parameter optimization problems [4, 7].

Much of the success of direct optimal control methods can be attributed, on the one side, to
the advancements in computer hardware and the development of efficient numerical algorithms
for large-scale and sparse parameter optimization problems (e.g., [8, 6, 11]). On the other side,
efficient evaluation frameworks for direct optimal control methods are required, allowing for the
solution of problems of realistic size arising from engineering applications.

Driving factors in this context include the efficient computation of derivative information
(e.g., based on automatic differentiation), the exploitation of structural information, as well as
parallelization strategies.

Phoenix-OC utilizes a custom automatic differentiation module that provides both first- and
second-order derivatives, along with the associated structural information (sparsity patterns).
A distinctive feature of the computational engine Phoenix-CORE, used by Phoenix-OC, is
that it exploits the information contained in a novel extended form of sparsity pattern, which
exhibits a richer information content compared to regular binary-valued patterns. Moreover,
parallelization strategies are implemented to distribute the computational workload in batch
runs and for individual problems.

This paper is organized as follows: First, several classes of optimal control problems that can
be modeled and solved using Phoenix-OC are introduced in Section 2. Next, Section 3 discusses
modeling aspects in Phoenix-OC related to these problem classes. Computational aspects
regarding the evaluation framework Phoenix-CORE employed by Phoenix-OC are outlined in
Section 4. Finally, Section 5 and Section 6 present numerical experiments as well as several
case studies for advanced optimal control applications.

2 Optimal control problem formulations
Phoenix-OC allows for the solution of general multi-phase optimal control problems in para-
metric form.

Multi-phase optimal control problems can be viewed as single-phase problems connected
by appropriate linkage conditions. A single-phase problem is formulated on a phase interval
t ∈ I = [t0, tf ] , tf > t0: Find controls u : I → Rnu and corresponding states x : I → Rnx

evolving according to the ordinary differential equation

ẋ(t) = f (x(t),u(t), t) , (1)

with boundary conditions
h (x (t0) ,x (tf )) = 0, (2)

and subject to path constraints
g (x(t),u(t), t) ≤ 0, (3)

that minimize the Bolza cost function

J =
∫ tf

t0

L (x(t),u(t), t) dt+M (x(t0),x(tf ), t0, tf ) . (4)

This Bolza cost function is defined as the sum of the Mayer (endpoint) cost function M and
the integral of the Lagrange (running) cost function L.
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The initial time t0 and/or final time tf can be either fixed or free. If the endpoints of
the phase interval are free, a common modeling strategy is to introduce parameters for the
endpoints satisfying tf > t0. The free interval I is then mapped to the fixed interval [0, 1] via
the affine transformation (t−t0)/(tf −t0). It is convenient to collect the parameters of this time
parametrization as well as other static1 parameters in a vector p. If all functions are allowed
to depend on p, the following optimal control problem is obtained:

minimizex,u,p

∫ tf

t0

L (x(t),u(t),p, t) dt+M (x (t0) ,x (tf ) ,p)

subject to ẋ(t) = f (x(t),u(t),p, t) ,
g (x(t),u(t),p, t) ≤ 0,
h (x (t0) ,x (tf ) ,p) = 0,
t ∈ [t0, tf ].

This type of problem can also be considered in parametric form - a form suitable for perform-
ing post-optimal sensitivity analysis. For this purpose, a fixed parameter vector q is introduced
which, in contrast to p, is set to a nominal value in the problem formulation:

minimizex,u,p

∫ tf

t0

L (x(t),u(t),p, t; q) dt+M (x (t0) ,x (tf ) ,p; q)

subject to ẋ(t) = f (x(t),u(t),p, t; q) ,
g (x(t),u(t),p, t; q) ≤ 0,
h (x (t0) ,x (tf ) ,p; q) = 0,
t ∈ [t0, tf ].

Following the successful solution of a problem of this type, post-optimal sensitivity analysis can
then reveal the sensitivities of the optimal states, controls, parameters, and cost with respect
to q.

Phoenix-OC also allows for several extensions to this standard problem. For example, ho-
motopy formulations are inherently supported. This type of formulation is based on a homotopy
parameter ρ that ranges from zero (representing a simple problem) to one (representing a dif-
ficult problem). The optimal control problem is then solved sequentially, starting from ρ = 0
through a sequence of intermediate problems (0 < ρ < 1), and finally for ρ = 1:

minimizex,u,p

∫ tf

t0

L (x(t),u(t),p, t; q, ρ) dt+M (x (t0) ,x (tf ) ,p; q, ρ)

subject to ẋ(t) = f (x(t),u(t),p, t; q, ρ) ,
g (x(t),u(t),p, t; q, ρ) ≤ 0,
h (x (t0) ,x (tf ) ,p; q, ρ) = 0,
t ∈ [t0, tf ].

After each homotopy step, the solution to the next problem is typically obtained very efficiently,
as the previous solution often serves as an excellent initial guess.

1The term “static” should be understood here in the context of a phase interval and implies that the
parameters exhibit the same value for all time points of a phase. Formally, static parameters can also be viewed
as states with an associated zero rate, subject to appropriate bounds.
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Another popular extension supported by Phoenix-OC is the modeling of batch runs. In
this context the same problem is solved for a (potentially large) number of different parameter
values from a batch set B. Introducing the fixed batch parameter vector b ∈ B, the formulation
for each individual problem is:

minimizex,u,p

∫ tf

t0

L (x(t),u(t),p, t; q, ρ,b) dt+M (x (t0) ,x (tf ) ,p; q, ρ,b)

subject to ẋ(t) = f (x(t),u(t),p, t; q, ρ,b) ,
g (x(t),u(t),p, t; q, ρ,b) ≤ 0,
h (x (t0) ,x (tf ) ,p; q, ρ,b) = 0,
t ∈ [t0, tf ].

In Phoenix-OC, the parallelization of batch runs is achieved by distributing the workload across
compute processes using a Message Passing Interface (MPI) implementation. Additionally,
other levels of parallelism are implemented for each process using OpenMP, enabling paral-
lelization within each individual optimal control problem.

Phoenix-OC also supports several extensions regarding the modeling concepts used in opti-
mal control problems. For example, integral constraints of the form∫ tf

t0

r (x(t),u(t),p, t; q, ρ,b) dt ≤ 0, (5)

are natively supported. Moreover, if a control parametrization of sufficient degree is employed,
control derivatives can be directly utilized in model, cost, and constraint functions. In addition,
cost and constraint functions can be introduced on arbitrary subintervals of a phase can and
also mix state and control values at arbitrary points within and across phase boundaries. This
can, for instance, be useful to introduce complex linkage conditions between phases. Another
useful modeling concept is the use of subproblems that can be referenced within each problem
setup. This implies that an optimal control problem can depend on one or more other optimal
control problems. The referenced subproblems can be invoked as regular functions in all cost
and constraint functions within a problem definition.

3 Modeling
There exist two main scopes in Phoenix-OC for modeling optimal control problems: The global
and the local (phase) scope.

Within the global scope, the user can define an arbitrary number of parameters (optimization
variables). Zero or more phases can be specified in a problem setup2.

Parameters from the global scope are accessible in all phases. Conversely, all quantities
(states, controls, etc.) defined within a phase are phase-private3. However, global parameters
can be linked to arbitrary quantities from any phase and at any discretization point, making
them effectively available to all model, cost, and constraint functions throughout the problem
setup. This can be particularly useful to define complex links between phases. Notably, standard

2If no phases are defined, the optimal control problem effectively reduces to an optimization problem defined
solely by the parameters and cost/constraints within the global scope.

3A phase-private parameter can be effectively modeled by introducing a control with B-Spline degree zero
and a single knot interval. This introduces a single free (control) parameter that is only available within the
specific phase scope.
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linkage conditions are also supported for connecting phases. This includes linking the states of
consecutive phases and/or linking the terminal states of the last phase to the initial states of
the first phase for periodic problems.

By default, a parameter is introduced as a free parameter subject to optimization. However,
the treatment of a parameter within the context of the optimal control problem can be altered
by setting the following modifiers:

• Passive: The parameter is treated as a parameterizing constant input fixed to the initial
value. If more than one value is specified for a parameter, the problem is solved for all
values (batch run).

• Morphogenic: The values defined for the parameter create a homotopy sequence for
the problem. This implies that the problem is initially solved for the first value and
subsequently resolved for all other values. Each time the problem is resolved for a new
value, the optimal solution from the preceding problem is used as the initial guess to the
next problem.

• Sensitive: The parameter is fixed and the post-optimal sensitivities of the cost and
optimization variables (parameters, states, and controls) are computed at the optimal
solution.

Each phase requires the definition of an independent variable with defined interval endpoints
(both can be either fixed or subject to optimization). The initial and final values of this variable
can be set to an expression depending on the parameters from the global scope.

Several Legendre-Gauss Lobatto and Radau methods in integral form are available for state
discretization within a phase. These include popular methods such as the Hermite-Simpson
and trapezoidal method, the third-order RadauIIA method, and both the implicit and explicit
Euler method. By default, the state grid points are distributed uniformly. However, the user
has the option to provide a virtually arbitrary distribution for the grid points.

For the controls, Phoenix-OC implements B-Spline parameterizations of essentially arbitrary
degree. B-Splines are often favored in optimal control formulations due to their flexibility in
defining control functions of arbitrary smoothness and their local support property [7]. The
default type of parametrization depends on the discretization defined for the phase. This
default control parametrization can be overwritten for each control individually, meaning that
the degree, the number of knot grid intervals, and the distribution of knot grid points can
be chosen separately for each control. In addition, for each control, the derivatives of the
interpolant can be incorporated into the problem formulation, e.g., to impose limits on the
control rate or set boundary conditions of higher order. Moreover, complete control histories
from one phase can be linked to those in other phases, provided they share the same knot grid
and degree.

4 Evaluation
OC frameworks typically consist of two main components: the optimization module and the
function evaluation module.

The optimization module aims to iteratively improve the optimization variable vector to
ultimately locate a minimizer that satisfies the constraints. Phoenix-OC offers the option
to dynamically link with IPOPT [11]. This optimization module is particularly known for
its effectiveness and efficiency in solving high-dimensional and sparse optimization problems.
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Figure 1: Phoenix Function.

Due to the high dimensionalities of the optimization variables and constraints arising from
direct optimal control methods based on segmented collocation, gradient-based optimization
algorithms are typically favored.

The task of the function evaluator in this context is to return the cost and constraint
values, along with derivative information computed from the current iterate supplied by the
optimization module. Note that during the iterative solution, the function evaluator evaluates
the same functions, including derivatives, based on different input values multiple times. This
fact motivates the exploitation of structural information related to the function evaluation and
derivative computation in a preprocessing step.

In Phoenix-CORE, the primary structure of the function evaluator is represented as a rooted
tree, with each branch corresponding to a vector-valued function. Each of these functions is
a derived type of a base Phoenix Function type (see Fig. 1). A Phoenix Function has two
sets of input arguments (active and passive) and two sets of output arguments (active and
passive). Each input and output has a fixed size and must include a label, which serves as
a unique identifier. Phoenix Functions are required to compute only the derivatives of active
outputs with respect to active inputs. Conversely, passive inputs parameterize the function (i.e.,
’external’ constants), while passive outputs represent additional outputs for which no derivative
information is required (e.g., to make internal variables observable without the need to compute
derivatives). Additionally, constant data can be supplied to each function at build time (i.e.,
“internal” constants).

The Phoenix-CORE library supports a variety of built-in function types, including standard
operators (inversion, addition, multiplication, etc.). In particular, it includes a graph operator
for which an arbitrary number of subfunctions can be specified. This graph operator models a
composite function represented as a directed acyclic call graph4. The connectivity of the call
graph is defined based on the input/output labels assigned to the subfunctions.

4Although the graph operator can only model directed acyclic call graphs, this is essentially non-restrictive
in practice; after all, each Phoenix Function can implement an arbitrary function.
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A central concept heavily employed for structural exploitation throughout Phoenix-CORE
is the notion of an Extended Sparsity Pattern (ESP).

Typically, binary-valued sparsity patterns are used to represent the pattern of zero and
potentially non-zero derivatives of a function: If a derivative value is constant zero, the corre-
sponding entry in the sparsity pattern is zero; otherwise, it is one. Such a binary-valued sparsity
pattern reveals basic structural information about the function.

For example, the pattern regarding the first derivatives indicates whether there is an influ-
ence of a particular input on a particular output (entry one) or not (entry zero). In Phoenix-
CORE, the sparsity pattern concept is extended from binary-valued to floating-point patterns.
This extension allows for encoding more information about the function, thereby increasing the
potential for structural exploitation.

The main advantage of the ESP is that it encodes information regarding constant derivative
values: If a derivative value is a constant number, the corresponding entry in the sparsity pattern
is that number; otherwise, it is Not-a-Number (NaN).

Clearly, the information contained in this type of sparsity pattern is a superset of that
found in binary-valued sparsity patterns. After all, the binary-valued sparsity pattern can
be trivially derived from the ESP. Notably, the ESP permits the automatic classification of
functions as (multivariate) polynomials of degree zero, one, or two. This additional information
can be heavily exploited in function call graphs. For example, it allows for the automatic
elimination/replacement5 of functions in a static call graph. Moreover, it enables the partial
pre-computation of constant values as well as derivatives for evaluating the chain rule regarding
the derivative computation of the composite function modeled by the graph.

Finally, it is worth noting that Phoenix-OC supports different environments for job submis-
sion and execution for a specific instance of an optimal control problem.

A job submission consists of two main parts. The first part is a description of the problem
setup. The second part is a job description that references a specific problem setup and defines
additional properties to execute the job. These job properties include settings related to the
resources to be allocated (e.g., the number of MPI processes and OpenMP threads), custom
initialization and finalization commands executed at the beginning and end of the job’s execu-
tion lifecycle, the environment in which the job is executed (locally or via a load balancer), and
job dependencies. After a job submission, the job (including all dependent jobs) is executed in
the selected environment and the results are written to a file containing the structured output
data. Phoenix-OC also includes a standard postprocessor to facilitate the import/export and
visualization of output data.

5Note that if all outputs of a vector-valued function can be represented as multivariate polynomials of
degree zero, one, or two, both the function and the derivative computation can be replaced by efficient matrix
operations.
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5 Computational experience
In the following, two examples are presented to analyze the computational time spent in
Phoenix-CORE during optimization runs. The focus in this section lies on scalability aspects
related to the number of discretization intervals as well as batch processing capabilities.

All examples are computed on a machine with 32 GB of RAM and a 64-bit x86 desktop
microprocessor with eight cores operating at 1.7 GHz. The optimization module used for all
examples is IPOPT version 3.14.4.

5.1 Discretization intervals
To study the time spent in Phoenix-CORE with respect to the number of intervals, a minimum
time formulation for a vehicle moving in the x-y plane is used. The initial position at t = 0 is
(0,0), and the final position at t = tf is (100,100). At both endpoints, the velocity v must equal
five, and the heading, described by the angle ψ, must align with the direction of the x-axis.
The box-bounded controls are the angular velocity ω and the normal acceleration a. Along
the trajectory, the velocity must not exceed five, and a velocity-dependent rate constraint is
imposed:

minimize tf

subject to ẋ(t) = v(t) cos(ψ(t)),
ẏ(t) = v(t) sin(ψ(t)),
v̇(t) = a(t),
ψ̇(t) = ω(t),
x(0) = y(0) = ψ(0) = ψ(tf ) = 0,
x(tf ) = y(tf ) = 100,
v(0) = v(tf ) = 5,

0 ≤ v(t) ≤ 5,
−0.1 ≤ a(t) ≤ 0.1,
−0.4 ≤ ω(t) ≤ 0.4,

−1 ≤ 2v(t)ω(t) ≤ 1,
t ∈ [0, tf ].

(6)

The initial guess for the final time is set to tf = 30 and the initial guess for the states and
controls are constructed automatically by Phoenix-OC.

For illustration purposes, the optimal solution with 200 discretization intervals is depicted
in Fig. 2. The problem is discretized using a low-order method (implicit Euler) and the compu-
tational time is analyzed with respect to the number of discretization intervals. The number of
optimization variables, the number of constraints (equality and inequality), the number of iter-
ations until convergence, and the total time spent in Phoenix-CORE during the optimization
are reported in Table 1. The total time spent in Phoenix-CORE refers to the time spent on
NLP function evaluations reported by IPOPT, excluding the time spent within IPOPT itself.
This includes the evaluation of the values and gradients of the cost and constraints, as well as
the Hessian of the Lagrangian in Phoenix-CORE.
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Figure 2: Optimal states and controls.

It should be noted that the largest problem in this study exhibits over one hundred thousand
optimization variables, which is clearly excessive for this particular problem.

Intervals Variables Constraints Iterations Time Function Evaluations
20 118 103 20 1 Millisecond
200 1198 1003 23 7 Milliseconds
2000 11998 10003 22 67 Milliseconds
20000 119998 100003 19 559 Milliseconds

Table 1: Time comparison depending on the number of intervals.
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5.2 Batch size
The computation of the backward reachable set for the game of two vehicles moving in a plane
using optimal control methods [2] is studied to illustrate the capabilities of batch runs. The
target state in this problem formulation is the origin x = 0. A pointwise representation of the
set of states from which the target state can be reached on the phase interval [0, 1] is computed
using the Distance Fields on Grids method [2]. Here, the batch set B contains three-dimensional
points from a rectangular grid. For each b ∈ B, the following optimal control problem is solved:

minimize ∥x(tf ) − b∥2
2

subject to ẋ1(t) = −(−5 + 5 cos(x3(t)) + u1(t)x2(t)),
ẋ2(t) = −(5 sin(x3(t)) − u1(t)x1(t)),
ẋ3(t) = −(u2(t) − u1(t)),
x1(0) = x2(0) = x3(0) = 0,

−1 ≤ u1 ≤ 1,
−1 ≤ u2 ≤ 1,

t ∈ [0, 1].

(7)

The problem is discretized using a higher-order method (Hermite-Simpson) with 20 intervals.
The Cartesian grid from which the batch set B is constructed is defined on [−4, 4] × [−4, 4] ×
[−4, 4] with a discretization of 50 × 50 × 50 points.

For illustration purposes, the projections of the pointwise representation of the three-
dimensional reachable set, obtained from the solution of the batch run using Phoenix-OC,
are depicted in Fig. 3.

The solution time for the 125000 problems from the batch set distributed across seven MPI
processes is approximately 52 seconds.

Figure 3: Projections of the reachable set.

93



Phoenix-OC: Applied Optimal Control Diepolder

6 Applications
In this section, several engineering applications are presented to showcase the modeling capa-
bilities of Phoenix-OC. The same computational resources and optimization module are used
as outlined in Section 5.

6.1 Low-thrust orbit transfer
The orbit transfer problem from [4], Chapter 6, considers the minimum-fuel transition from a
low Earth orbit to a mission orbit. The model of the space vehicle has seven states (six modified
equinoctial coordinates and weight) as well as three controls (normalized thrust direction) and
an additional throttle parameter. The optimal trajectory in Cartesian coordinates (x, y, z) in
relation to the Earth (radius RE) computed by Phoenix-OC is shown in Fig. 4.
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Figure 4: Optimal orbit transfer.
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6.2 Manipulator arm
In Reference [7], Chapter 5, the optimal control of a manipulator arm is studied. The config-
uration space features the three angles q1,...,3 of the links. The associated (normalized) torque
controls are u1,...,3. The control objective is to transfer the manipulator, rest to rest, from
an initial configuration to a final position (prescribed in Cartesian space), while minimizing a
combined cost of final time and control effort. The optimal states and controls computed by
Phoenix-OC are shown in Fig. 5.
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Figure 5: Optimal states and controls.

6.3 Air race
The optimization of air race trajectories represents a challenging optimal control problem due
to the high fidelity and large problem size. In Reference [5], Chapter 11, a minimum-time
optimal control problem with seven race gates is defined. Each race gate must be passed wings
level. The problem is modeled with 16 phases and a rigid-body aircraft model featuring thirteen
states (12 rigid-body states and one engine state) and four controls (three inputs for the primary
control surfaces and one engine command). The minimum-time path through the race course
described in Cartesian coordinates (x, y, h) computed by Phoenix-OC is presented in Fig. 6.
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Figure 6: Air race optimal trajectory (rigid-body model).

6.4 Double lane-change
In Reference [7], Chapter 7, the test drive of a car is studied. The problem represents a double
lane-change maneuver that should be completed in minimum time. The vehicle is modeled using
a single-track car model with seven states, three continuous controls (steering angle velocity,
brake force, throttle), and one discrete control (gear setting). The boundaries of the lane and
the optimal trajectory in the x-y plane computed by Phoenix-OC are illustrated in Fig. 7. The
optimal discrete gear setting µ is shown in Fig. 8.
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Figure 7: Optimal lane-change.
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6.5 Heat partial differential equation
Reference [4], Chapter 4, considers the optimal control of a heating process for a probe. The ob-
jective is to control the applied heat on the outside of the probe to obtain a desired temperature
profile on the inside. The partial differential equation for the temperature field is discretized in
the spatial dimensions using the method of lines.

The optimal distribution of temperature T over the spatial and temporal dimensions (x, t)
computed by Phoenix-OC is shown in Fig. 9. The optimal control u is given in Fig. 10.
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7 Summary
Phoenix-OC is a general-purpose optimal control solver with a focus on large-scale optimal
control problems and batch runs over large problem sets. The supported problem classes include
multi-phase problems, parametric formulations (including post-optimal sensitivity analysis),
homotopy sequences, batch analysis, and bilevel problems.

The underlying computational engine (Phoenix-CORE) implements advanced structure ex-
ploitation strategies based on the notion of an extended sparsity pattern to efficiently evaluate
the cost and constraint functions, as well as first- and second-order derivatives.

The computational capabilities of Phoenix-CORE and the ability of Phoenix-OC to solve
realistic optimal control problems arising from engineering applications in various domains,
such as automotive, aerospace, and robotics, are demonstrated by several numerical examples.
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