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Abstract

Piccolo is a 64-bit block cipher proposed by Shibutani et al. in 2011, supporting 80-bit
and 128-bit keys. In higher order differential cryptanalysis, computer experiments have
verified that Piccolo has a 6-round characteristic using the 32-nd order differential, which
was theoretically extended to a 7-round characteristic using the 48-th order differential.
The integral attack is cryptanalysis, similar to a higher order differential cryptanalysis.
An investigation of integral characteristics by establishing the Mixed Integer Linear Pro-
gramming (MILP) model based on bit-based division property has revealed the existence
of a 7-round integral characteristic using a 63-rd order differential, and a search using the
Satisfiability Problem (SAT) has found a same-round integral characteristic using the 56-th
order differential. In this paper, we introduce the integral property based on the frequency
distribution, clarify the reason for the 5-round integral characteristic using the 16-th order
differential we found by computer experiment, and derive the 7-round integral character-
istic by applying the 2-round extension to this. Then, we show that if the property of the
frequency distribution can be used in the attack equation, the key can be identified more
efficiently than the conventional method.

1 Introduction

Information and communication technology has developed notably in recent years. Lightweight
block ciphers are essential in ensuring data security in resource-constrained scenarios like the
Internet of Things.

Piccolo [1], the lightweight block cipher that can be implemented in hardware with a low
circuit size, was proposed at CHES 2011. It has a 64-bit block length supporting key lengths
of 80-bit and 128-bit. The rounds are 25 and 31 for 80-bit and 128-bit keys, respectively.

A higher order differential attack is a generic and one of the algebraic attacks on a block
cipher. It exploits the property of a higher order differential proposed by Lai [2] and utilizes
the degree of output. Knudsen et al. [3] proposed integral cryptanalysis as a similar higher
order differential cryptanalysis method, generalizing square attack [4]. It exploits the integral
property that the Exclusive-OR (XOR) sum of the output sets corresponding to multiple chosen
plaintexts generally becomes zero. Later, Todo proposed the division property [6], [7], which
generalized the integral property in 2015. Todo et al. further proposed the bit-based division
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property (BDP) [8]. Subsequently, Xiang et al. found better integral characteristics of 6
lightweight block ciphers by establishing the MILP model based on BDP [9].

In a previous study, Shibayama et al. [10] reported that Piccolo has been found to have
the 6-round characteristic using the 32-nd order differential by computer experiment and the
7-round characteristic using the 48-th order differential, a theoretical 1-round extension of the
6-round one to the plaintext direction. Exploiting the 7-round characteristic, the 48-th order
differential attack on 11 rounds Piccolo is possible with 251 blocks of plaintext and 2127.9 times of
data processing. Then, Sato et al. [11] investigated the integral property using BDP with MILP
and showed the existence of a 7-round integral characteristic using a 63-rd order differential.
In addition, Utsumi et al. [12] found the same rounds’ characteristic using the 56-th order
differential by searching for BDP using SAT [13].

Our Contributions

This paper reports the integral cryptanalysis on reduced-round Piccolo. By introducing the
integral property based on frequency distribution, we clarify the reason for the 5-round inte-
gral characteristic using the 16-th order differential we discovered by computer experiment.
Then, we obtain the 7-round integral characteristic, which is a theoretical 2-round extension of
the 5-round one and corresponds to the previous best higher order differential characteristic.
Furthermore, we present that if the property of the frequency distribution can be used in the
attack equation, the key can be identified more efficiently than the conventional method. We
also show experimental results of the improved key recovery attack against the 6-round Piccolo.

Organization

This paper is organized as follows. Section 2 illustrates the specification of Piccolo. In Sec-
tion 3, we introduce the definition of the integral property and an explanation of the attack
equation. In Section 4, we show the results of the integral characteristics of Piccolo by com-
puter experimentation and its extension. Then, Section 5 describes the key recovery attack for
the reduced-round Piccolo using the property of the frequency distribution. Section 6 finally
concludes the paper.

2 Piccolo

This section briefly describes the specification of the block cipher Piccolo. Piccolo has a block
length of 64-bit, supporting 80-bit and 128-bit key lengths. The number of rounds varies de-
pending on the key length, with 25 or 31 rounds for 80 or 128 bits, respectively. However,
both variants of Piccolo share similar processes in the data processing part and key schedul-
ing. Piccolo consists of a 16-bit word 4-line generalized Feistel network underlying lightweight
functions, such as the F function and key scheduling, which are designed to be implemented in
hardware with a small number of gates.

Fig. 1 shows the data processing part of Piccolo. X(1) and C(r) represent its input 64-bit
plaintext and output ciphertext, where r=25 and 31 for 80-bit and 128-bit key lengths.

Let X(i)=(X
(i)
0 , X

(i)
1 , X

(i)
2 , X

(i)
3 ), X

(i)
j = (x

(i)
j,0, x

(i)
j,1, x

(i)
j,2, x

(i)
j,3), x

(i)
j,ℓ ∈ GF(2)4 and C(i) =

(C
(i)
0 , C

(i)
1 , C

(i)
2 , C

(i)
3 ), C

(i)
j = (c

(i)
j,0, c

(i)
j,1, c

(i)
j,2, c

(i)
j,3), c

(i)
j,ℓ ∈ GF(2)4 be the i-th round input and

output, respectively, where 1 ≤ i ≤ r, 0 ≤ j ≤ 3, 0 ≤ ℓ ≤ 3. (WK0,WK1, · · · ,WK3), WKj

= (wkj,0, wkj,1, wkj,2, wkj,3), wkj,ℓ ∈ GF(2)4 are four 16-bit whitening keys, (RK0, RK1, · · · ,
RK2r−1), RKj

′ = (rkj′ ,0, rkj′ ,1, rkj′ ,2, rkj′ ,3), rkj′ ,ℓ ∈ GF(2)4 are 2r 16-bit round keys, where

100



Improved Integral Cryptanalysis on Reduced-Round Piccolo N. Shibayama and Y. Igarashi

Figure 1: Data processing part of Piccolo.

Table 1: S-box S.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) E 4 B 2 3 8 0 9 1 A 7 F 6 C 5 D

0 ≤ j
′

< 2r. The symbol ⊕ represents the XOR operation in the figure. The F function is the
16-bit bijective nonlinear function with SPS structure shown in Fig. 2. It consists of two S-box
layers, each applying four 4-bit S-boxes in parallel and a matrix layer between the two S-box
layers. Table 1 shows the S-box S in hexadecimal format, and the diffusion matrix M is given
by (1).
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Figure 2: F function.

Figure 3: Round Permutation.

M =




2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


 , (1)

where the multiplication between matrices and vectors is performed over GF(24) defined by an
irreducible polynomial z4+z+1. Also, RP denotes the round permutation in each round except
the final round. In RP, even bytes (x0(8), x2(8), x4(8), x6(8)) are shifted left (x2(8), x4(8), x6(8),
x0(8)), while odd bytes (x1(8), x3(8), x5(8), x7(8)) are shifted right (x7(8), x1(8), x3(8), x5(8)), as
shown in Fig. 3.

Since the relations between the round keys will not be used in our attack, we omit the key
schedule algorithm here. Please refer to [1] for the details of the specification.
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3 Integral Attack

The idea of integral attack comes from the square attack, which was first proposed by Daemen
et al. [4], and then formulated by Knudsen and Wagner in 2002 [3].

3.1 Integral Property

An integral attack generally takes advantage of the property that the XOR of all outputs
corresponding to the selected inputs becomes zero.

Definition 1 (Integral property)

Let a set of 2ℓ elements of ℓ bits values be X={Xi|Xi∈{0, 1}ℓ, 0≤i<2ℓ}. We categorize a set X
into the following four properties.

• Constant (C ) : if ∀i, j , Xi = Xj,

• All (A ) : if ∀i, j , i 6= j ⇔ Xi 6= Xj ,

• Balance (B ) : if
⊕

i

Xi = 0,

• Unknown (U ) : Others.

In this paper, the symbols c, A(1), b, and u indicate the integral property of 1-bit values,
which are Constant, All, Balance, and Unknown, respectively. Then, if the integral property

of 1-nibble value x
(i)
j,ℓ is Constant, we present this as {x

(i)
j,ℓ} = C. Multiple-nibble values are

expressed similarly. If the integral property of 2ℓ elements of ℓ-bit values is All, it is expressed
as A(ℓ). Moreover, when A(ℓ) is divided into m (≥ 2) nibbles, we denote this as follows.

A(ℓ) = (A0 A1 · · · Am−1), (2)

where ℓ = 4m. For example, 8-th order differential A(8) is written as (A0 A1). Furthermore,
if the integral property of each nibble value in the word (=4-nibble) value is the same, for

example, {X
(i)
j } = (A0 A1 A2 A3), this can be expressed as {X

(i)
j } = A.

Let fi(Xj) be the number of occurrences (frequency distribution) of Xj = i, where 0 ≤ i <

2m, 0 ≤ j < 2ℓ, Xj ∈ GF(2)m, and
∑

fi(Xj) = 2ℓ. Moreover, let f
(2)
i (Xj) be the number of

occurrences of Xj = i modulo 2, which is also known as the modulo 2 frequency distribution.

Hence, f
(2)
i (Xj) is zero if fi(Xj) is even and one if it is odd.

Definition 2 (Integral property based on frequency distribution)

We define the following two properties of the set of 2ℓ elements of m (<ℓ) bits values {Xj|Xj ∈
{0, 1}m, 0 ≤ j < 2ℓ}.

• all ( a ) : if ∀i, j , fi(Xj) = 2ℓ−m,

• Even (E ) : if ∀i, j , f
(2)
i (Xj) = 0.
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For example, let (x0, x1) be 2-nibble data, and its integral property is (A0 A1). Consequently,
the value of 0, 1, · · · , 28− 1 appears once in (x0, x1). On the other hand, if its integral property
is (a a), the value of 0, 1, · · · , 24− 1 appears 24 times in x0 and x1, respectively. Here, if ℓ = m,
the property ‘all’ is the same as the property All. In addition, the property ‘all’ satisfies the
property Even, and has a more distinctive feature than the property Even because the number
of occurrences of all possible m-bit data is equal.

Property 1

If the integral property of the data is Constant, All, Balance, ‘all,’ or Even, the XOR sum is 0.

The attacker first encrypts a set of chosen plaintexts and investigates the propagation of
the integral property. Suppose 2ℓ chosen plaintexts are used, and the integral property of the
output from a reduced r-round cipher is Constant, All, Balance, ‘all,’ or Even. In that case,
we say that the cipher has an r-round integral characteristic using the ℓ-th order differential.
Then, the attacker estimates the key by exploiting the characteristic from Property 1.

3.2 Attack Equation

Consider a block cipher with an iterative r-round. Let H(X)∈GF(2)m be a part of the (r−1)-th
round output, and C(X)∈GF(2)n be the ciphertext corresponding to the plaintext X∈GF(2)n.
The (r−1)-th round intermediate value H(X) is expressed as

H(X) = Er−1(X ;K1,K2, · · · ,Kr−1), (3)

where Ki∈GF(2)s is the i-th round key and Ei(·) is a function of GF(2)n×GF(2)s×i→GF(2)m.
The following equation can be given if Property 1 is observed for Er−1.

⊕

x∈{X}

H(x) = 0 (4)

Let Ẽ(·) be a decryption function that calculates H(X) from a ciphertext C(X).

H(X) = Ẽ(C(X);Kr), (5)

where Kr denotes the r-th round key to decrypt H(X) from C(X). We can derive the following
equation from (4) and (5).

⊕

c∈{C(X)}

Ẽ(c;Kr) = 0 (6)

Since equation (6) holds with probability one if the estimation of the key Ki is correct and with
probability 2−m if the estimation is wrong, the attacker can recover the key Kr by solving (6).
In the following, (6) is called an attack equation.

4 Integral Characteristics of Piccolo

In this section, we explain the distinguisher of Piccolo by using the higher order differential and
BDP.
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4.1 Previous Results

4.1.1 Higher order differential

Shibayama et al. [10] applied a search algorithm of higher order differential and discovered the
characteristics from the 1-st round input to the 6-th round output can be expressed as follows.

(A32-i) (CCAA )
6r
−→ (UUUa ),

(A32-ii) (AACC )
6r
−→ (UaUU ).

In the above characteristics, the left-hand side and the right-hand side of the formula signify the
input property and the 6-th round output property, respectively. Then, by applying a round
extension [5] to these, they derived the following 7-round characteristics using the 48-th order
differential, theoretically extended by one round to the plaintext direction.

(A48-i) ( (A0 A1 CC)A (CCA2 A3)A )
7r
−→ (UUUa ),

(A48-ii) ( (CCA0 A1)A (A2 A3 CC)A )
7r
−→ (UaUU ).

4.1.2 BDP

Sato et al. [11] investigated the number of rounds of the best characteristics using the 8-th,
12-th, 24-th, 32-nd, 48-th, and 63-rd order differential with MILP. Then, they showed that
7-round integral characteristics were obtained using a 63-rd order differential. Moreover, they
claimed that their computer experiments found no 7-round integral characteristics using the
48-th order differential. However, one part of the constraints used in MILP is erroneous1, and
the path of the characteristics available for the attack is not described at all. For this reason,
we expect Sato et al.’s BDP search method using MILP to be improved. Furthermore, Utsumi
et al. [12] also found the following 7-round integral characteristic using SAT.

(A56) ( (CCA0 A1)AAA )
7r
−→ (UBU ((bbuu)(bbuu)(bbuu)(bbuu)) )2

4.2 Search Results

In our search, the secret keys were set randomly, and the integral characteristics using the
word-oriented 16-th and 32-nd order differential were investigated.

Using the 16-th order differential, we found 5-round integral characteristics:

(A16-i) (C (A0 A1 CC)C (CCA2 A3) )
5r
−→ (UUUa ),

(A16-ii) (C (CCA0 A1)C (A2 A3 CC) )
5r
−→ (UaUU ).

The path of (A16-i) is depicted in the circuit from the 3-rd round input to the 7-th round
output of Fig. 4. The keys’ inputs are omitted in Fig. 4 because those do not influence
the characteristic. Then, using the 32-nd order differential, we obtained the 6-round integral
characteristics consistent with those of (A32-i) and (A32-ii).

1In [11], the 13-th linear equation ‘t4 − t10 − t28 − t50 − t77 − y12 = 0’ for XOR operation in the matrix M

is incorrect; ‘t4 + t10 + t28 + t50 + t77 − y12 = 0’ is correct.
2While the output pattern of the characteristic before applying RP is shown in [12], the one after applying

RP is shown here in the same way as another characteristic.
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Figure 4: The 5-round characteristic using the 16-th order differential and its extension.

4.3 Analysis of 16-th Order Differential

By closely analyzing nibble values, we show why the above 5-round integral characteristics using

the 16-th order differential hold. In Fig. 4, let x
(1)
1,0, x

(1)
1,1, x

(1)
3,2, and x

(1)
3,3 be the variable for the

3-rd round input, in which the 16-th order differential is input, and c
(5)
3,k (0 ≤ k ≤ 3) be the

output after the 7-th round encryption, in which the property ‘all’ appears. Here, we explain

why the property ‘all’ appears in c
(5)
3,k of the characteristic of (A16-i).
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Figure 5: Equivalent circuit from (x
(1)
1,0, x

(1)
1,1, x

(1)
3,2, x

(1)
3,3) to c

(5)
3,k (0 ≤ k ≤ 3).

Fig. 5 shows the equivalent circuit from x
(1)
1,0, x

(1)
1,1, x

(1)
3,2, and x

(1)
3,3, where the 16-th order

differential is input to c
(5)
3,k. Then, the matrix m in the figure is a submatrix of the matrix M

and is represented by

m =

(
2 3
1 2

)
. (7)

Although additions of variables in constant terms are included, they were omitted because
they do not affect the characteristic. In Fig. 5, since the S-box is bijective nonlinear and the

matrices M and m are linear, the 16-bit data (x
(1)
1,0, x

(1)
1,1, x

(1)
3,2, x

(1)
3,3) and C

(5)
3 are one-to-one

correspondence. Therefore, by inputting the 16-th order differential to (x
(1)
1,0, x

(1)
1,1, x

(1)
3,2, x

(1)
3,3),

the values 0, 1, · · · , 216−1 appear once in the word data C
(5)
3 . Since the value of 0, 1, · · · , 24−1

appears 24 times in the nibble data c
(5)
3,k, the property ‘all’ appears in c

(5)
3,k.

Likewise, the reasons for the characteristic of (A16-ii) can be clarified.

4.4 32-nd and 48-th Order Differential

This subsection describes the characteristics derived by applying a round extension to the 5-
round integral characteristics using the 16-th order differential.

Let F
(i)
J (·) = (f

(i)
J,0(·), f

(i)
J,1(·), f

(i)
J,2(·), f

(i)
J,3(·)), f

(i)
J,ℓ(·) ∈ GF(2)4 be the output of the F function

in the i-th round, where J ∈ {L,R}, 0 ≤ ℓ ≤ 3. Focusing on the structure of Piccolo, except for

adding the constant terms in the keys, the relations between the 1-st round input x
(1)
j,ℓ (0 ≤ j ≤ 3)

and the 2-nd round input x
(2)
j,ℓ are given by

(x
(2)
0,0, x

(2)
0,1) = (f

(1)
L,0(X

(1)
0 )⊕ x

(1)
1,0, f

(1)
L,1(X

(1)
0 )⊕ x

(1)
1,1), (8)

(x
(2)
0,2, x

(2)
0,3) = (f

(1)
R,2(X

(1)
2 )⊕ x

(1)
3,2, f

(1)
R,3(X

(1)
2 )⊕ x

(1)
3,3), (9)

X
(2)
1 = (x

(1)
2,0, x

(1)
2,1, x

(1)
0,2, x

(1)
0,3), (10)

(x
(2)
2,0, x

(2)
2,1) = (f

(1)
R,0(X

(1)
2 )⊕ x

(1)
3,0, f

(1)
R,1(X

(1)
2 )⊕ x

(1)
3,1), (11)

(x
(2)
2,2, x

(2)
2,3) = (f

(1)
L,2(X

(1)
0 )⊕ x

(1)
1,2, f

(1)
L,3(X

(1)
0 )⊕ x

(1)
1,3), (12)

X
(2)
3 = (x

(1)
0,0, x

(1)
0,1, x

(1)
2,2, x

(1)
2,3). (13)

First, we describe the 6-round integral characteristic theoretically derived by extension of

the characteristic of (A16-i) to 1-round of the plaintext direction. From (8) ∼ (13), if {X
(1)
0 } =
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{X
(1)
1 } = C,

(x
(2)
0,0, x

(2)
0,1) = (c0, c1),

(x
(2)
0,2, x

(2)
0,3) = (f

(1)
R,2(X

(1)
2 )⊕ x

(1)
3,2, f

(1)
R,3(X

(1)
2 )⊕ x

(1)
3,3),

X
(2)
1 = (x

(1)
2,0, x

(1)
2,1, c2, c3),

(x
(2)
2,0, x

(2)
2,1) = (f

(1)
R,0(X

(1)
2 )⊕ x

(1)
3,0, f

(1)
R,1(X

(1)
2 )⊕ x

(1)
3,1),

(x
(2)
2,2, x

(2)
2,3) = (c4, c5),

X
(2)
3 = (c6, c7, x

(1)
2,2, x

(1)
2,3),

where c0, c1, · · · , c7 are constants. Since the F function is a bijective nonlinear function, the

32-bit data (X
(1)
2 , X

(1)
3 ) and (x

(2)
0,2, x

(2)
0,3, x

(2)
1,0, x

(2)
1,1, x

(2)
2,0, x

(2)
2,1, x

(2)
3,2, x

(2)
3,3) are one-to-one correspon-

dence. Hence, by inputting the 32-nd order differential;

{X(1)} = (CCAA ),

the following 32-nd order differential appears in the 2-nd round input after 1-round encryption.

{X(2)} = ( (CCA0 A1) (A2 A3 CC) (A4 A5 CC) (CCA6 A7) )

Thus, the 32-nd order differential (CCAA ) in the 1-st round input will lead to 216 sets
of the 16-th order differential (C (A0 A1 CC)C (CCA2 A3) ) of the input property of (A16-i),
which appear in the 2-nd round input, and we can get the following 6-round characteristic.

(A32-i) (CCAA )
6r
−→ (UUUa )

Similarly, by extending the characteristic of (A16-ii), we can derive the characteristic of (A32-ii).
The computer experiments also confirmed the same characteristics, verifying that the charac-
teristics had been properly extended using the 32-nd order differential.

Next, we discuss the extension of the characteristic of (A32-i) by a similar approach. From

(8) ∼ (13), if {x
(1)
0,2} = {x

(1)
0,3} = {x

(1)
2,0} = {x

(1)
2,1} = C,

x
(2)
0,0 = f

(1)
L,0(x

(1)
0,0, x

(1)
0,1, c0, c1)⊕ x

(1)
1,0,

x
(2)
0,1 = f

(1)
L,1(x

(1)
0,0, x

(1)
0,1, c0, c1)⊕ x

(1)
1,1,

x
(2)
0,2 = f

(1)
R,2(c2, c3, x

(1)
0,2, x

(1)
0,3)⊕ x

(1)
3,2,

x
(2)
0,3 = f

(1)
R,3(c2, c3, x

(1)
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(1)
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(1)
3,3,

X
(2)
1 = (c0, c1, c2, c3),

x
(2)
2,0 = f

(1)
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(1)
0,2, x

(1)
0,3)⊕ x

(1)
3,0,

x
(2)
2,1 = f

(1)
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(1)
0,3)⊕ x

(1)
3,1,

x
(2)
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(1)
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2,3),
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where c0, c1, c2, c3 are constants. Since the F function is bijective, the 48-bit data (x
(1)
0,0, x

(1)
0,1

, X
(1)
1 , x

(1)
2,2, x

(1)
2,3, X

(1)
3 ) and (X

(2)
0 , X

(2)
2 , X

(2)
3 ) are one-to-one correspondence. By inputting the

following 48-th order differential;

{X(1)} = ( (A0 A1 CC)A (CCA2 A3)A ),

the below 48-th order differential appears in the 2-nd round input.

{X(2)} = (ACAA )

Therefore, the 48-th order differential ( (A0 A1 CC)A (CCA2 A3)A ) in the 1-st round input
will lead to 216 sets of the 32-nd order differential (CCAA ) of the input property of (A32-i),
which appear in the 2-nd round input. Accordingly, we can get the 7-round characteristic;

(A48-i) ( (A0 A1 CC)A (CCA2 A3)A )
7r
−→ (UUUa ).

Similarly, by extending the characteristic of (A32-ii), we can derive the characteristic of (A48-ii).
As a result, the 7-round characteristics using the 48-th order differential, equivalent to a theo-
retical 2-round extension of the 5-round integral characteristic using the 16-th order differential
to the plaintext direction, have been reported in [10], as shown in Fig. 4.

5 Key Recovery Attack on Reduced-round Piccolo

This section shows that using the property ‘all’ in the attack equation can identify the key more
efficiently than the conventional method.

5.1 Improved Attack Equation

From Definition 2, the property ‘all’ also satisfies the property Even. We describe the attack
equation using these properties.

Using the ℓ-th order differential, the following attack equation holds if the property ‘all’ is
observed in the m (< ℓ) bits intermediate variable H(X).

fi(Ẽ(C(X);Kr)) = 2ℓ−m, (14)

where 0 ≤ i < 2m. (14) assumes that the number of occurrences of all possible m-bit values
are equally N

2m for N (= 2ℓ) outputs. In a random function, because the number of occurrences

of a certain m-bit values is closely approximated by a normal distribution N ( N
2m , N

2m (1− 1
2m )),

the probability that the number of occurrences of a certain m-bit values becomes accurate N
2m

is (2−(m−1)(1 − 2−m)πN)−
1

2 . Here, if the number of occurrences of the 2m − 1 m-bit values
is determined, the number of occurrences of the remaining one can be uniquely determined by
subtracting their sum from the total N . In other words, the degree of freedom of the frequency
distribution of all possible m-bit values is 2m − 1. Therefore, the probability that the number
of occurrences of all possible m-bit values becomes N

2m , i.e., the probability that (14) holds for

a false key, is (2−(m−1)(1 − 2−m)πN)−
2
m

−1

2 . This probability is significantly smaller than the
probability 2−m that the conventional attack equation using the property Balance holds with
a false key.

109



Improved Integral Cryptanalysis on Reduced-Round Piccolo N. Shibayama and Y. Igarashi

Next, we explain the attack equation using the property Even. If the property Even is
observed in H(X), the attack equation is given by

f
(2)
i (Ẽ(C(X);Kr)) = 0. (15)

The above equation implies that the modulo 2 frequency distribution for all possible m-bit
values is 0, i.e., the number of occurrences of all possible m-bit values is even. In a random
function, the probability that the number of occurrences of a certain m-bit values becomes even
is 1

2 . Furthermore, since the degree of freedom of the modulo 2 frequency distribution for all

possible m-bit values is 2m − 1, the probability that (15) holds with a false key is 2−(2m−1). If
m = 1, the probability is the same as the conventional one since 2−(2m−1) = 2−m; otherwise,
2−(2m−1) < 2−m.

5.2 Attack Model

We demonstrate the key recovery attack against the 6-round Piccolo using the attack equation

shown in 5.1. Here, we use the property ‘all’ appearing in the nibble data c
(5)
3,0 of the fifth round

output of the characteristic of (A16-i).

Fig. 6 shows the equivalent circuit from the 6-th round output (c
(6)
1,0, c

(6)
1,1, c

(6)
3,2, c

(6)
3,3, c

(6)
2,0) to

the 5-th round output c
(5)
3,0. In the figure, S−1 denotes the inverse function of the S-box, and the

square box with a number (2 or 3) denotes the multiplication by the number. Also, as shown
in the figure, the seventh round keys rk12,0, rk12,1, rk13,2, rk13,3, and the whitening key WK2

can move before the S−1, which is a nonlinear operation, where RK
′

11 = (rk
′

11,0, rk
′

11,1, rk
′

11,2,

rk
′

11,3) = (rk12,0 ⊕ wk2,0, rk12,1 ⊕ wk2,1, rk13,2 ⊕ wk2,2, rk13,3 ⊕ wk2,3). From {c
(5)
3,0} = a and

(14), the m (1 ≤ m ≤ 4)-bit attack equation is given by

fi(c
(5)
3,0[m]) = 216−m, (16)

c
(5)
3,0 = S−1(2S−1(c

(6)
1,0 ⊕ rk

′

11,0)⊕ 3S−1(c
(6)
1,1 ⊕ rk

′

11,1)

⊕ S−1(c
(6)
3,2 ⊕ rk

′

11,2)⊕ S−1(c
(6)
3,3 ⊕ rk

′

11,3))⊕ c
(6)
2,0,

where 0 ≤ i < 2m and x[m] denotes the lower m-bit of data x. Then, the keys to be identified
are the four 4-bit keys rk

′

11,j (0 ≤ j ≤ 3). From 5.1 and ℓ = 16, the probabilities that (14) holds

for a false key are 2−8.33, 2−24.35, 2−54.11, and 2−109.19, in the case of 1 ≤ m ≤ 4. Thus, to
reduce the number of 216 candidate keys to the true key, it is sufficient to have 2 (> 16

8.33 ) sets
of the 16-th order differential for m = 1 and 1 set for the rest of the case. On the other hand,
the conventional attack equation requires ⌈ 16

m
⌉ sets of the 16-th order differential.

5.3 Experiments

First, using the property ‘all,’ the 16-bit key RK
′

11 is identified from (16) by computer experi-
ment. Here, the average number of the remaining key candidates is calculated using the n-pair
of m-bit attack equation with 210 trials. Next, the same experiment is performed using the

property Even. At this time, the attack equation is the replacement of fi(·) by f
(2)
i (·) on the

left side and 216−m by 0 on the right side in (16). Then, since the probability that this equation
holds for a false key is 2−(2m−1), we use the ⌈ 16

2m−1⌉ sets of the 16-th order differential.
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Figure 6: Equivalent circuit from the 6-round output (c
(6)
1,0, c

(6)
1,1, c

(6)
3,2, c

(6)
3,3, c

(6)
2,0) to the 5-th round

output c
(5)
3,0.

Table 2: A number of remaining key candidates for n pairs of m-bit attack equation using the
property ‘all.’

n
m

1 2 3 4

1
205.45 1.00 1.00 1.00
(205.26) (1.00) (1.00) (1.00)

2
1.63
(1.64)

5.4 Results

Table 2 shows the results of the key recovery attack using the property ‘all.’ In the table, (·)
represents the expected number of the remaining key candidates. From Table 2, the computer
experiments’ results were approximately consistent with the expectation. Then, Table 3 shows
the results using the property Even, which are closely consistent with their expectations. Note
that when m = 1, the probability that the attack equation using the property Even is the same
as the conventional one using the property Balance. Thus, our computer experiments verify
that the proposed attack equation using the properties ‘all’ and Even can identify the key with
significantly less data than the conventional method.
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Table 3: A number of remaining key candidate for n pairs of m-bit attack equation using the
property Even.

n
m

1 2 3 4

1
32769.74 8192.11 512.35 3.07
(32768.50) (8192.88) (512.99) (3.00)

2
16382.54 1025.57 5.03 1.00
(16384.75) (1024.98) (5.00) (1.00)

3
8195.94 127.99 1.04
(8192.88) (129.00) (1.03)

4
4100.84 16.84
(4096.94) (17.00)

5
2049.39 2.98
(2048.97) (3.00)

6
1024.91 1.26
(1024.98) (1.25)

7
513.02
(512.99)

8
257.49
(257.00)

9
129.46
(129.00)

10
65.13
(65.00)

11
32.67
(33.00)

12
16.77
(17.00)

13
8.98
(9.00)

14
4.92
(5.00)

15
2.96
(3.00)

16
1.97
(2.00)

17
1.50
(1.50)
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6 Conclusion

In this paper, we searched for integral characteristics on the block cipher Piccolo and found
the 5-round integral characteristic using the 16-th order differential. We clarified the reason for
this characteristic through a detailed analysis of the nibble values. We also showed the 6-round
integral characteristic using the 32-nd order differential, equivalent to a theoretical 1-round
extension of the 5-round one in the plaintext direction. This characteristic is consistent with
the one verified by computer experiments. Then, we derived the 7-round integral characteristic
using the 48-th order differential, a similar 1-round extension of the 6-round one that corre-
sponded to the previous best higher order differential characteristic. As a result, the 7-round
characteristic is equivalent to a 2-round extension of the 5-round one using the 16-th order dif-
ferential. Furthermore, introducing the integral property based on the frequency distribution,
we showed that if the property can be used in the attack equation, the key can be identified more
efficiently than the conventional method. To verify this availability, we presented experimental
results of the key recovery attack against the 6-round Piccolo.

Our future work will search for the integral characteristic by establishing a more accurate
MILP model based on BDP.
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