
EPiC Series in Computing

Volume 104, 2024, Pages 221–242

Proceedings of 3rd International Workshop on
Mathematical Modeling and Scientific Computing

Linear Differential Games with Multi-Dimensional

Terminal Target Set: Geometric Approach

Anton V. Mikhailov1,2 and Sergey S. Kumkov1,3

1 Krasovskii Institute of Mathematics and Mechanics,
Russian Academy of Sciences, Yekaterinburg, Russia

2 tigr-mav@yandex.ru
3 sskumk@gmail.com

Abstract

The paper deals with linear differential games with a fixed terminal instant, convex
geometric constraints of the players’ controls, and convex terminal target set. The first
player tries to guide the system to the target set at the terminal instant, the second one
hinders this. In the 1960’s, L. S. Pontryagin proposed a theoretic geometric procedure
for approximate constructing time sections of the maximal stable bridge for games of this
type. This procedure is known as the second Pontryagin’s method. At the beginning of
the 1980’s in the Krasovskii Institute of Mathematics and Mechanics (Yekaterinburg, Rus-
sia), a computational algorithm for the procedure has been suggested and implemented
as a computer program. However, this algorithm is suitable only for games with two-
dimensional equivalent phase vector. The authors suggest a procedure suitable for games
with a multi-dimensional phase vector. For an implementation of this method, one needs
implementations of convex hull construction, Minkowski sum and difference. The authors
have taken known algorithms for convex hull construction and Minkowski sum. An al-
gorithm for Minkowski difference as well as some procedures for conversion of different
representations of multi-dimensional polytopes to each other have been suggested. All
these algorithms have been implemented as a computer library in C# by the authors. A
series of model differential games has been computed.

1 Introduction

The authors are interested in numerical study of differential games [11, 19, 13, 14]. More exactly,
the main goal is games with multi-dimensional phase vector, linear dynamics, fixed terminal
instant, geometric constraints for the players’ controls, and convex terminal target set. In this
case, the main element of the solution is the maximal stable bridge [13, 14] (the solvability set).
Also, it is possible to consider problems with quasiconvex terminal payoff. (A function is called
quasiconvex if it has convex level sets (Lebesgue sets).) In this case, the solution of the game
is defined by its value function (the optimal result function).

Nowadays, the most widespread approaches for constructing the value function are of grid
kind [4, 1, 2]. The algorithms of this type are very universal with respect to the class of the
problems to be solved, to the dimension of the phase vector, to the type of dynamics, etc.

V.L. Turova, A.E. Kovtanyuk and J. Zimmer (eds.), MMSC 2024 (EPiC Series in Computing, vol. 104),
pp. 221–242

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

But their main disadvantage is their performance, which decreases rapidly with growth of the
dimension of the phase vector. Also, in this case, the memory demands are affected by the
curse of dimension. The size of necessary memory is defined by the requirement to store the
entire grid covering the domain where the problem is solved. Time expenditures are caused by
recomputations at each iteration of the algorithm of the data over the entire grid, not only the
area where some changes might happen indeed.

Potentially, geometric methods do not possess these disadvantages, totally or to some extent.
In the framework of a geometric approach, the main solution element is the maximal stable
bridge constructed for the given dynamics, players’ constraints, and terminal set. To construct
a time section of the maximal stable bridge for a linear differential game, in the second half
of the 1960’s, L.S. Pontryagin suggested [19] a theoretic procedure; he named the time section
to be constructed as alternating integral. This procedure has a geometric nature and now is
called the second Pontryagin’s method. The convergence of this procedure for the case of convex
terminal set (and linear dynamics) has been proved by B.N.Pshenichnyi in [20]. For the general
case of non-convex target set, the convergence is not proved yet.

The second Pontryagin’s method involves the operations of Minkowski sum and difference
(called by L.S. Pontryagin as algebraic sum and geometric difference, respectively). When
geometric methods are applied, one deals with the evolution of a set described by its boundary.
Such a description potentially is much more saving than a grid one. (However, there are grid
methods dealing with the boundary of an evolving set, see [21].) In general, performance of
geometric procedures is higher, but their realization needs for much subtler algorithms and data
structures.

In the case of a two-dimensional phase vector, in the 1980’s, geometric methods have been
developed for differential games of many classes. For games with dynamics linear on the phase
vector and players’ controls, two-dimensional phase vector, fixed terminal instant, geometric
constraints for the players’ controls, and convex terminal (two-dimensional) set, a quite effective
procedure has been suggested [12] to construct the maximal stable bridges (the Lebesgue sets
of the value function for games with quasiconvex terminal payoff). But the second dimension of
the phase vector is constitutive for this procedure since some specifics of the Euclidean plane are
used. Further attempts [24, 3] to transit these ideas to a multi-dimensional space, unfortunately,
were not well enough.

In [24], algorithms for the Minkowski sum and difference are suggested for the case when the
second summand and subtrahend are zonotopes, that is, they are representable as a Minkowski
sum of several segments. So, actually, in this case, one needs algorithms for the Minkowski sum
and difference with a segment, which are not general enough.

In [3], a general case of polytope operands is considered. But the suggested algorithms
essentially involve the Fourier-Motzkin procedure for eliminating inequalities from a system,
which is quite heavy-weight even for modern computers.

At the end of 1990’s in Moscow State University (Moscow, Russia) [10] and in Moscow
Institute of Physics and Technology (Moscow, Russia) [18], some algorithms similar to each
other have been worked out. They implement some approximate construction of Minkowski
sum and difference of two multi-dimensional polytopes. The (upper) approximation is obtained
by replacing the true polytopes by ones with a fixed grid of outer normals to their facets.

For time-optimal problems in the plane, some algorithms have been suggested [16, 17] for
constructing level sets of the value function. However, the concepts behind these algorithms
are primarily conditioned by specific properties of the Euclidean plane. Further on their basis,
a procedure for linear differential games in the plane with a non-convex terminal target set
has been suggested [9] that uses algorithms for Minkowski sum and difference of a convex and

222

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

a non-convex polygons. But, eventually, these algorithms were connected too tightly with a
problem, for which they were developed, to be used for arbitrary problems even in the plane.
Similar ideas have been set forth in [7], but they work in the plane principally and cannot be
propagated into higher dimensions.

Thus, now, the authors do not know any effective algorithms for constructing the maximal
stable bridges for linear differential games with a multi-dimensional phase vector. Therefore,
to have such a procedure, algorithms for Minkowski sum and difference of multi-dimensional
polytopes have to be found in the literature and implemented or to be worked out independently.
Also, a procedure for constructing the convex hull of a set of points in a multi-dimensional space
is necessary.

Concerning the convex hull construction, it seems that only one family of effective algorithms
exists; it is the GiftWrapping algorithm. The most detailed description of some classic version
of this algorithm can be found in [22]. This algorithm has been implemented by the authors.

The only reasonable algorithm for the Minkowski sum has been found in [5, 6]. This al-
gorithm is not ideal since it demands an extremely rich description of polytopes-summands as
face lattices. Therefore, some preparation of the polytopes is necessary if they are obtained
from other algorithms in some other form.

And, finally, the authors were unable to find in the modern literature a description of a
general Minkowski difference procedure for multi-dimensional polytopes. So, the main result of
this paper is a description of some version of such an algorithm.

All algorithms: convex hull construction, Minkowski sum and difference, as well as some
supplementary procedures — have been implemented by the authors in C# 12.0 for .NET 8.0.

An essential point when performing geometric procedures in a computer is the calculation
accuracy. During testing of the implemented algorithms, it became clear that the accuracy of the
standard 8-byte floating type (double) is insufficient for these computations. So, the created
library has been rewritten using template (generic) technology. With that, one of the type
parameters is the numeric type used for computations. A 16-byte floating type ddouble [23]
and longer types have been tested. However, in the latter case, the performance drastically
decreases. Also, further usage of rational arithmetic is considered by own implementation or
by third-party libraries.

The paper has the following structure. Section 2 contains a formulation of the original
problem from the differential game theory, which stipulates geometric studies. Some basic
definitions and denotations are given in Section 3. In Section 4, representations of multi-di-
mensional polytopes are discussed those are used in the involved geometric algorithms. The
algorithms themselves are described in Section 5; those taken from literature have quite short
descriptions, the author’s one is set forth in more details. The structure of the created com-
puter library and difficulties appeared during its creation are given in Section 6. Section 7
presents some results obtained for model differential games by means of the library written by
the authors. The paper is finalized by a conclusion and a list of references.

2 Problem formulation

A linear differential game is considered:

ż = A(t)z +B(t)u+ C(t)v,

t ∈ [t0, T], z ∈ Rn,

u ∈ P ⊂ Rp, v ∈ Q ⊂ Rq,

z(T) ∈M+M⊥.

(1)

223

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

The instant T of game termination is fixed. The controls u and v of the first and second players
are constrained by convex compacta P and Q in their spaces. A terminal target set is given,
which is an infinite cylinder with the base M, which, in its turn, is a convex compact subset of
a d-dimensional linear subspace of some d coordinates, d ⩽ n.

The objective of the first player is to guide the system at the terminal instant T to this
target set. Vice versa, the second player tries to deviate the system from the target set at the
terminal instant T .

Consider the variable change

x(t) = Xs1,s2,...,sd(T, t)z(t) (2)

defined by the matrix combined of d rows of the fundamental Cauchy matrix X(T, t) for the
system ż = A(t)z. The chosen rows correspond to the components of the phase vector of the
subspace where the base M of the target set is located.

After such a change, one obtains a differential game equivalent (in some sense) to the original
one (1):

ẋ = D(t)u+ E(t)v,

t ∈ [t0, T], x ∈ Rd, u ∈ P, v ∈ Q,

D(t) = Xs1,s2,...,sd(T, t)B(t),

E(t) = Xs1,s2,...,sd(T, t)C(t),

x(T) ∈M.

(3)

This new game (3) possesses the following pleasant properties:

• the dimension d of the new phase vector x is equal to the dimension of the set M defining
the terminal target set in game (1);

• the phase vector x is absent in the right-hand side of dynamics (3);

• now, M itself is the target set.

The sense of the new coordinates x is following. If the original system (1) is at a posi-
tion

(
t, z(t)

)
, then under zero controls of the players (along the free motion of the system),

the d phase coordinates defining the subspace of M reach the value x(t) at the terminal in-
stant T . Due to this observation, these coordinates x are often called forecast coordinates or
zero effort miss. The players’ controls in game (3) actually affect the final position of the
system.

Equivalence of the original and new coordinates z and x means the following. If the first
player from a position

(
t, z(t)

)
of game (1) is able to guide the system to the target set at

the terminal instant T , then in the equivalent game (3), the first player also can achieve its
goal from the corresponding position

(
t, x(t)

)
. And vice versa, if the first player in game (3)

can guide the system to the target set at the instant T from the position
(
t, x(t)

)
, then in the

original game (1), the first player can succeed from any position
(
t, z(t)

)
such that x(t) and z(t)

are connected by relation (2).
The main element of solution of a differential game with a target set is the maximal stable

bridge [13, 14]. A stable bridge is a set in the space of time t and phase coordinates of the game
consisting of positions such that the the first player can guide the system to the target set from
any such a position despite of the second player’s action. The maximal stable bridge is the
stable bridge maximal by inclusion. Complement of the maximal stable bridge is the maximal
set wherefrom the second player guarantees evasion from the target set. The maximal stable
bridge for game (3) with the target set M is a subset in the space Rd+1 and is denoted below
by W.

224

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

If a problem with a quasiconvex terminal payoff is considered, then maximal stable bridges
constructed from level sets (Lebesgue sets) of the payoff function are the level sets of the value
function of the game. Thus, if one can construct the maximal stable bridge for a given terminal
target set, then for a problem with a terminal payoff, the value function can be approximated
arbitrarily exactly by a family of maximal stable bridges constructed for a family of level sets
of the payoff taken for a quite dense grid of payoff magnitudes.

So, one needs for a numerical procedure for constructing the maximal stable bridge W for
game (3).

A time section W(t) of the maximal stable bridge W at an instant t ∈ [t0, T] is the
set W(t) =

{
x ∈ Rd | (t, x) ∈W

}
.

L.S. Pontryagin has suggested in [19] a theoretic procedure for constructing a time sec-
tion W(t) of a maximal stable bridge W at an instant t ∈ [t0, T]. In that work, the time
section is called alternating integral. Later, this procedure has been called the second Pontrya-
gin’s method.

Introduce a grid in the time interval of the game [t0, T]: T = {t0 < t1 < t2 < . . . < tN = T}.
Denote ∆i = ti+1 − ti, i = 0, . . . , N − 1; diam T = max∆i. The grid can be both uniform and
non-uniform; this does not affect the idea of the procedure. So, below, the gris is assumed to
be uniform with the step ∆.

The idea of the procedure is the following. For the instants ti of the chosen grid T , some
sets Wi = W (ti) are constructed those approximate the time sections W(ti):

WN = M, Wi =
(
Wi+1 + (−∆)D(ti)P

)
∗− ∆E(ti)Q, i = N − 1, . . . , 0. (4)

Here, M , P , Q are some convex approximations of the sets M, P, Q. The symbols “+”
and “ ∗−” denote the operations of Minkowski sum and difference respectively (the algebraic
sum and geometric difference in terms of [19]):

A+B =
{
a+ b ∈ Rd | a ∈ A, b ∈ B

}
, (5)

A ∗− B =
{
x ∈ Rd |x+B ⊂ A

}
. (6)

In [20], convergence of procedure (4) is proven in the following sense.
Consider a sequence of procedures (4) with time grids Tn and approximations Mn, Pn, Qn

such that

diam Tn → 0, h(Mn,M)→ 0, h(Pn,P)→ 0, h(Qn,Q)→ 0

as n→∞. The symbol h(·, ·) denotes the Hausdorff distance between compacta.
Let W (t0; Tn,Mn, Pn, Qn) be the set W0 build by procedure (4) with the corresponding

time grid and approximations. In [20], it is proven that h
(
W (t0; Tn,Mn, Pn, Qn),W(t0)

)
→ 0

as n→∞.
In the general case of non-convex target set M, convergence of procedure (4) is not proved

yet.
In the desired numerical procedure, the approximations M , P , Q can be taken as multi-di-

mensional polytopes. In this case, the resultant sets Wi are polytopes too. This is very conve-
nient for computer calculations.

Thus, an implementation of procedure (4) demands to implement the Minkowski sum (5)
and difference (6) operations as well as a convex hull construction for a set of points, which
is necessary for constructing the polytopes D(ti)P and E(ti)Q. In the text below, some real-
izations of these operations are discussed and some results of application of the corresponding
implementation of procedure (4) to model differential games are given.

225

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

3 Definitions and denotations

We work both with vectors of linear spaces as well as with points. With that, we identify a
point in Rd and its radius-vector. The operations of linear space, addition and multiplication
by a scalar, are denoted in a conventional way: x+ y and α · x. Also, in a traditional way, the
scalar (inner) product is introduced in Rd: ⟨x, y ⟩ =

∑d
i=1 xiyi.

Definition 1. The linear span span(X) of a finite set X = {x(k)}mk=1, X ⊂ Rd of vectors is the
collection of points

span(X) =
{ m∑

k=1

αk · x(k)
∣∣αk ∈ R

}
⊆ Rd.

Definition 2. Let B = {x(k)}mk=1 ⊂ Rd be a set of m linearly independent vectors, o ∈ Rd.
The set

Am = ⟨o;B⟩ =
{
o+

m∑
k=1

αk · x(k)
∣∣αk ∈ R

}
is called affine subspace of the space Rd with the origin o and the linear basis B.

The construction ⟨o;B⟩ is called an affine basis also.
A linear basis is called orthogonal if the scalar product of any two different its vectors x(k)

equals zero. An orthogonal linear basis is called orthonormal if the length of any its vector is
equal to 1. Traditionally, the length of a vector is the square root of its scalar square.

The number m of vectors in a linear basis B of an affine space Am is called the dimension
of this space and is denoted as dimAm.

Note that the same affine space can be defined by different affine bases with different origins
and/or different linear bases.

Definition 3. The dimension dimM of a set M ⊆ Rd is called the dimension of the minimal
by inclusion affine subspace that contains the set M . A set can be of the complete dimension
if its dimension equals d, or of an incomplete dimension otherwise.

Definition 4. An affine subspace ⟨o;B⟩ having the dimension d−1 in the space Rd is called (af-
fine) hyperplane.

A hyperplane can be defined also as a set of points obeying the equation ⟨n, x⟩ = c, where
n ∈ Rd, c ∈ R. The vector n is called the normal of the hyperplane. With that, the vector n is
orthogonal to all vectors of the basis B, the constant c = ⟨o, n⟩.

Such a hyperplane is denoted by hp(n, c).

A hyperplane hp(n, c) separates the space Rd to two open half-spaces defined by the in-
equalities ⟨n, x⟩ > c and ⟨n, x⟩ < c. These half-spaces are denoted as hp+(n, c) and hp−(n, c)
and called positive and negative, respectively. Note that the hyperplanes hp(n, c) and hp(−n, c)
coincide. With that, the positive and negative half-spaces of these hyperplanes are swapped.

Definition 5. A hyperplane hp(n, c) ⊂ Rd is called support to a closed set M if one has
M ∩hp(n, c) ̸= ∅ and M ∩hp+(n, c) = ∅, that is, the set M “touches” the hyperplane and the
interior of M is located entirely in hp−(n, c).

Definition 6. A convex combination of a finite set {x(k)}mk=1 of vectors is some their linear
combination, whose coefficients and non-negative and their sum equals 1:

m∑
k=1

λk · x(k), λk ⩾ 0,

m∑
k=1

λk = 1.

226

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

Definition 7. A set M ⊂ Rd is convex if with any two points belonging to the set, it contains
the entire segment with these endpoints too.

Definition 8. A convex hull convM of a set M is the set of all convex combinations of points
of all finite subsets of this set. An equivalent definition: a convex hull of a set M is the minimal
by inclusion convex set containing M .

Definition 9. The convex hull of a finite number of points in Rd (in particular, in some affine
subspace of Rd) is called a convex polytope. Below, the word “convex” is omitted since we work
with convex polytopes only.

Definition 10. A face of a polytope P is an intersection of P and some its support hyperplane.
Also, it is assumed that the empty set and the polytope P itself are faces of P ; these two faces
are called trivial.

Note that any support hyperplane defines a unique face of P , and each non-trivial face is
generated by a unique support hyperplane if the dimension of the face is d − 1, or by infinite
number of hyperplanes otherwise. Each face of P defines its own affine subspace: as the origin
of the subspace one can take any point of the face, and the basis can be constructed by the
maximal number of linearly independent vectors belonging to this face.

Definition 11. k-face of a polytope P ⊂ Rd, dimP = m ⩽ d, 0 ⩽ k ⩽ m, is a face of P
such that the dimension of its affine subspace equals k. (d − 1)-faces of P are called facets or
hyperfaces. Note that 0-faces are the vertices of the polytope P .

Definition 12. Let us say that a face f of a polytope P is a subface of a face g if f ⊂ g as a
set in Rd.

Below, N (x) denotes the operation of normalization of a vector: N (x) = x
/
∥x∥. Assume

N (0) = 0.
Denote by ON (X) the result of orthonormalizing a set X of vectors, that is an orthonormal

set X ′ of vectors such that span(X ′) = span(X). Generally speaking, after applications of
different procedures, one might obtain different resultant sets X ′ obeying this condition.

4 Representations of polytope

The algorithms discussed below accept the polytopes-operands in some form and produce the
polytope-result in some form. In this section, possible representations of polytopes are enlisted.

1. A vertex representation VrepP of a polytope P (Fig. 1). It is assumed that only vertices of
a polytope P are given without any additional information. In the case of multi-dimensional
space, such a representation is not too substantial because it does not include any information on
the neighborhood of any elements of the polytope (*vertices, facets, faces). Such an information
is vital for performing many operations with polytopes.

Note that in the plane, the vertex representation, vice versa, is quite informative since the
vertex order easily can be reconstructed and neighborhood information can be obtained. This
is the main reason for effectiveness of planar algorithms and difficulties appearing in higher
dimensions.

One can also consider a redundant vertex representation V*repP of a polytope P (Fig. 2). In
this case, the set may contain not the vertices only, but also some inner points of the polytope
including inner points of its faces. The convex hull construction just removes the redundant
points from the set if producing the vertex representation of a polytope.

227

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

Figure 1: The vertex representation Vrep

of a 5-gon in the plane.
Figure 2: A redundant vertex representa-
tion V*rep of a 5-gon in the plane. The
green points are redundant.

2. Any convex set can be obtained by intersecting all its support half-spaces. The collection
of support half-spaces is infinite. For a polytope, this infinite collection can be reduced to a
finite one containing support half-spaces of its facets only. So, any polytope P has a finite
hyperplane representation HrepP (Fig. 3). It is assumed that the descriptions of the support
hyperplanes hp(ni, ci) include the normals ni outer with respect to P (as it is shown in Fig. 3).
Despite such a representation also does not include any neighborhood information, it is, nev-
ertheless, more substantial than the vertex one because the neighborhood information can be
restored in an easier way. The hyperplane representation is sufficient for many algorithms
(however, for many, it is still not sufficiently substantial).

Figure 3: The hyperplane representation
Hrep of a 5-gon in the plane.

Figure 4: A redundant hyperplane repre-
sentation H*rep of a 5-gon in the plane. The
green hyperplanes are redundant.

Also, a redundant hyperplane representation H*repP of a polytope P can be considered.
Such a representation contains not the support hyperplanes of all facets only, but also some
additional hyperplanes, whose hyperspaces do not participate efficiently in the intersection
producing the polytope (Fig. 4). Such a representation can appear from an algorithm operating
with hyperplanes in the hyperplane representation of a polytope.

Procedures for excluding redundant hyperplanes from a redundant hyperplane representa-
tion of a polytope are very important in computational geometry. Again, such procedures in the
plane are relatively simple and efficient and, vice versa, quite complicated in higher dimensions.

3. The most complete description of a polytope P is a structure called face lattice FLrepP .

228

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

The face lattice of a polytope P is a complete lattice, whose elements one-to-one correspond
to all faces of all dimensions of the polytope P . The partial order in this lattice is “to be a
subface”.

An example of the face lattice for a three-dimensional cube (Fig. 5) is given in Fig. 6.

e
a

bf

h d

c
g

ab

Figure 5: A three-dimen-
sional cube.

∅

a b c d hgfe

ab ad ae bc bf cd ghcg dh ef eh fg

abcd abfe adhe efghbcgf cdhg

P

Figure 6: The face lattice of a three-dimensional cube. The
color marks correspond to Fig. 5.

The representation FLrepP contains two others described above. Indeed, the facets of P
correspond to the lattice elements from the layer just below the maximal element corresponding
to the entire P . So, descriptions of hyperplanes can be constructed on the basis of these
elements of the lattice. In the same way, the vertices of P correspond the elements from the
layer just above the minimal element corresponding to the empty set. So, the transformations
FLrepP → HrepP and FLrepP → VrepP are trivial.

However, reverse transformations from HrepP or VrepP to FLrepP are much less simple.
The procedures VrepP → FLrepP and V*repP → FLrepP can be provided by a convex hull
construction. The transformations HrepP → FLrepP and H*repP → FLrepP are even less
evident and some their version is one of the results of this paper described in Subsection 5.3.

5 Geometric operation algorithms

5.1 Convex hull construction algorithm

The first algorithm that needs to be implemented is the procedure for constructing the convex
hull of a set of points in Rd. The algorithm from article [22] has been taken as a basis. The
main idea of the algorithm is as follows:

1. Construct some (d− 1)-face of the convex hull;

2. Construct all (d− 2)-subfaces of the current (d− 1)-face F ; it may be necessary to move
into the subspace of the face F and apply recursively the same algorithm for constructing
convex hull;

3. Go from the current (d − 1)-face F to an adjacent (d − 1)-face through one of the con-
structed (d− 2)-subfaces of F .

Repeat steps 2 and 3 until the entire polytope is constructed.
The complexity of the convex hull construction using the gift-wrapping method is

T (S, k) = O
(
k2dfd−1 + dnfd−1 + kdfd−2 log fd−2 +

∑
i

T (F ′
i , k − 1)

)
,

229

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

where S is the initial set of points, k is the dimension of the space, n = |S| is the number of
points in the set, fk is the number of k-faces in the polytope, and F ′

i is the set of points lying
on the i-th facet of the polytope.

Boundary conditions for this recursive formula is T (S, 2) = O(n log n). We use a two-
dimensional convex hull algorithm based on the Graham’s scan when the set of points to be
processed is in the space R2. In the original work, it was proposed to perform one more step
of the recursive part of the algorithm, and in the one-dimensional space, construct the convex
hull by finding the minimum and maximum points.

The signature of the implemented algorithm looks as follows:

conv : V*repA→ VrepA, HrepA, FLrepA.

As a result of this procedure, all three polytope representations can be formed. If necessary,
it is possible to limit the output to only the vertex representation without building the face
lattice, which slightly speeds up the function execution; “slightly” because inner data structures
actually store the face lattice of the polytope to be constructed.

5.2 Minkowski sum algorithm

The Minkowski sum (algebraic sum) of two sets A and B in Rd is defined as

A+B =
{
a+ b ∈ Rd | a ∈ A, b ∈ B

}
.

The algorithm for constructing the Minkowski sum of two convex polytopes has been taken
from works [5, 6]. The main idea of the algorithm is to iterate through all pairs of faces of
the summands and check quite simply whether their Minkowski sum is a face of the resulting
polytope or not. The face lattice is constructed from top to bottom.

The signature of the implemented algorithm is as follows:

sum : (FLrepA, FLrepB)→ FLrep(A+B).

The enumeration of face pairs of the summands has been somewhat optimized, but the
asymptotic complexity remains the same as when enumerating all pairs of faces. Therefore,
the complexity of the algorithm is O

(
solveLS · | FLrepA| · | FLrepB|

)
where solveLS is the

complexity of solving a system of linear algebraic equations. Typically, it is O(d3), but can be
faster. There are subtle algorithms with asymptotic complexity O(d2.373) [15]. The symbols
| FLrepP | denotes the number of nodes in the face lattice of the polytope P , that is, the total
number of its faces.

However, we only need the (d− 1)-level of the face lattice of the resulting polytope, which
corresponds to the layer of facets. Since the algorithm constructs the face lattice from top to
bottom, we stop the process after building the (d−1)-level, obtaining Hrep(A+B). This speeds
up the algorithm, but in general, the entire complexity stays the same.

5.3 Minkowski difference algorithm

The third algorithm required for the implementation of the procedure for constructing time
sections of maximal stable bridges using the second Pontryagin’s method is the algorithm for
computing the Minkowski difference (the geometric difference) of two convex polytopes.

The Minkowski difference of two sets A, B ⊂ Rd can be defined in two equivalent ways:

A ∗− B =
{
x ∈ Rd |x+B ⊂ A

}
=

⋂
b∈B

(
A+ (−b)

)
.

230

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

The first definition states that it is the largest set C such that C+B ⊂ A. The second definition
says that the geometric difference is the intersection of copies of set A obtained by all possible
shifts by elements of set B.

If B is a polytope, the latter representation can be rewritten as

A ∗− B =
⋂

b∈VrepB

(
A+ (−b)

)
.

No algorithms suitable for our purpose for computing the geometric difference of polytopes
have been found in the literature, so the procedure for constructing the Minkowski difference
has been developed by the authors themselves. The ideas from the work [3] are taken as a basis.

In our terms, it can be described as diffBasic : (HrepA, VrepB)→ H*repC → HrepC. To
perform the transformation H*repC → HrepC, that work proposes to use a procedure based
on the Fourier-Motzkin elimination algorithm for redundant inequalities. Its complexity is

O
(
4(m/4)2

d)
, where m is the number of inequalities and d is the number of variables to be

eliminated. One can see that the complexity is polynomial on the number of inequalities and
double exponential on the dimension of the space. Even for modern computing power, this
algorithm becomes too heavy at relatively small values of m.

The problem of eliminating redundant inequalities is a well-known issue in computational
geometry, for which other approaches also exist. One of these is proposed in book [8]. This
algorithm has a complexity O

(
m× LP(d, s)

)
, where m is the total number of inequalities, d is

the dimension of the space, and s is the number of non-redundant inequalities.
However, in the next iteration of the second Pontryagin’s method (4), it is necessary to add

the polytope obtained from the previous iteration with the polytope of the first player’s actions
(see (4)). Now, only a procedure is available, which demands the summands to be represented
as face lattices. Therefore, even if to take the algorithm of difference from [3], an additional
procedure HrepC → FLrepC is required.

The authors are capable to do the latter transformation only by the GiftWrapping convexifi-
cation procedure of the set of points V*rep / Vrep→ FLrep. This, in its turn, requires the trans-
formation from H*rep or Hrep to Vrep or, at least, V*rep. Instead of a chain H*rep→ Hrep→ Vrep,
we propose to use a direct passage H*rep→ Vrep.

Therefore, we propose the following algorithm for computing the geometric difference.

diff : (HrepA, VrepB)→ H*repC → VrepC → FLrepC

Minkowski difference. First stage
diffStg1(HrepA, VrepB)→ H*repC
This subprocedure is taken from [3].

1. For each hp(ni, ci) ∈ HrepA, find the vertex v∗i ∈ Argmax
v∈B

⟨v, ni⟩.

2. Update the hyperplane hp(ni, ci) by subtracting from ci the value ⟨v∗i , ni⟩. The resultant
set of hyperplanes is just H*repC.

Minkowski difference. Second stage. Naive algorithm
diffStg2 naive : H*repA→ VrepA

1. VrepA← ∅;
2. Iterate over all sets of d hyperplanes from H*repC. For each set, solve the system of linear

equations obtaining the candidate point v to be a vertex of C. If the system has a unique
solution and v ∈ hp−(n, c) ∪ hp(n, c) for all hp(n, c) ∈ H*repC, then the obtained point v
indeed is a vertex of C: VrepA← v.

231

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

The advantage of the naive algorithm is that it can work with a redundant representation of

the polytope. However, its computational complexity is extremely high: O
(
d3
(
H
d

))
= O

(
Hd

d!

)
,

where H = | H*repA|. That is, the complexity is polynomial on the number of facets of the
minuend polytope, which can be very large even in three dimensional space.

Minkowski difference. Second stage. Geometric algorithm
diffStg2 more optimal : H*repA→ HrepA
The idea of this algorithm has a clear geometric sense. At first, find some vertex of C. For

example, by the naive approach. Then, knowing what hyperplanes are incident at this vertex,
the 1-faces (that is, one-dimensional edges of the polytope C) incident to this vertex can be
found. Along them, the procedure can go to neighbor vertices repeating there the search of
1-faces and spreading. Formally, this algorithm can be written as follows.

For brevity, denote H ≜ H*repA, H = |H|.
Stage 1. Find any vertex v of the polytope C and a set of hyperplanes Hv those are

incident to it. The search of vertex can be done by solving a linear programming problem
once or by using the naive procedure until one point is found. The search of hyperplane
set is done simultaneously by the naive algorithm of by substituting v into all hyperplanes
from H. The complexity depends on the certain procedure used for this construction and is
denoted O(VInit).

Stage 2. Find the remaining vertices of the polytope. We suggest do it by width-first search
over the graph whose vertices and edges are the vertices and 1-faces of the polytope C.

Create a queue of pairs (vertex z, set of hyperplanes Hz incident to the vertex z). Initialize
it with the data found in Stage 1.

1. While the queue is not empty, take a pair (z,Hz) from the queue.

2. Iterate over all possible sets H′
z of d− 1 hyperplanes from Hz. For each such a set H′

z:

(a) Build the direction vector l of the one-dimensional line obtained by intersection of
hyperplanes from H′

z. This can be done by finding a vector orthogonal to all normal
vectors of the hyperplanes in H′

z, what requires to solve an underdetermined system
of linear equations.

(b) Check the vector l. For each hyperplane hp(n, c) ∈ Hz, compute the scalar prod-
uct ⟨l, n⟩. If it equals zero, ignore this hyperplane and continue to the next hy-
perplane. The first non-zero scalar product determines the orientation of l: if it is
positive, reverse the direction of l. For all subsequent non-zero products, ensure that
they are non-negative.

(c) If the vector l passes the filtering, that is, for all hyperplanes hp ∈ Hz it is not directed
towards hp+ (outside the polytope C), it together with the current vertex z, defines
a ray containing an 1-face of C. If the vector fails the check, the current set H′

z does
not define a polytope edge, so move on to the next set of hyperplanes, that is, go to
step 2.

(d) Find all hyperplanes from H\Hz closest to z in the direction of l:

J = Argmin

{
ti =

ci − ⟨ni, z⟩
⟨ni, l⟩

∣∣∣ hp(ni, ci) ∈ H\Hz, ti > 0

}
.

Also, a set H∥ is collected including all hyperplanes from H\Hz, which contain the
constructed line. In the case of redundancy of the set H, such hyperplanes might
exist; an edge might be defined by more than (d− 1) hyperplanes.

232

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

The set J together with the sets H′
z and H∥ defines the new vertex.

The algorithm for constructing J is as follows: iterate through H\Hz keeping the
current minimum t∗ of ti and the set of hyperplanes, whose ti equals t

∗.

i. Initially, set t∗ = +∞, J = ∅, H∥ = ∅.
ii. For the next hyperplane hpi = hp(ni, ci), compute its ti. If the denominator

of the fraction is zero, that is, if the plane is parallel to the direction vector l,
assume ti = +∞; this plane does not participate in the search of the minimum.
In this situation, if z ∈ hpi, that is, if the plane contains the constructed one-
dimensional line; add hpi to H∥. If all hyperplanes are enumerated, go to 2(e).

iii. If ti ⩽ 0 or ti > t∗, proceed to the next hyperplane, that is, go to 2(d)ii.
iv. If ti = t∗, add hpi to J and go to 2(d)ii.
v. If ti < t∗, update t∗ ← ti, J = {hpi} and compute the new candidate vertex

z∗ = z + t∗ · l. If z∗ is already in the set of known vertices, stop the algorithm
with no new vertex found; go to 2(f). Otherwise go to 2(d)ii.

(e) Add the found pair (z∗,H′
z ∪J ∪H∥) to the queue as a new polytope vertex and the

set of hyperplanes incident to it. Add z∗ to the set of vertices constructed already.

(f) Pass to spreading along other 1-faces, go to 2.

3. Go to spreading from other vertex, go to 1.

The complexity of the algorithm is O
(
VInit+ V ·

(
k

d−1

)
· d3 · kd ·Hd

)
. Here,

• O(VInit) is the complexity of the procedure for finding some vertex of the polytope C;

• V is the number of vertices of the polytope C; it is the number of iterations of the loop
at the step 1;

• k is the maximal number of facets incident to a vertex;

•
(

k
d−1

)
is the number of sets H′

z enumerated during search of 1-faces for a vertex; it is the
number of iterations of the loop at the step 2;

• O(d3) is the complexity of constructing a direction vector of next 1-face;

• O(kd) is the complexity of checking whether next found vector l indeed defines an 1-face
(computation of k scalar products with normals of hyperplanes from H′

z);

• O(Hd) is the complexity of constructing the set J at the step 2(d); essentially, this con-
struction enumerates (almost) all hyperplanes fromH and computes some scalar products.

Usually, k ≪ H, what provides significantly better performance compared to the naive
procedure.

6 Realization of computational library

Before the algorithms have been implemented, a basic library for geometric computations has
been developed. Necessary geometric primitives and corresponding functions have been imple-
mented within this library.

6.1 General library architecture

All computations in the library are performed using floating point numbers. The library is
designed to work with a variety of such types. More specifically, the type must support the
following interfaces:

233

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

struct, INumber<TNum>, ITrigonometricFunctions<TNum>, IPowerFunctions<TNum>,

IRootFunctions<TNum>, IFloatingPoint<TNum>, IFormattable

which guarantee that necessary classes of functions are available for numbers of this type. Thus,
the library is generic with respect to the numerical type used, which is denoted by TNum.

6.2 On calculation accuracy

Since the library operates with floating point numbers, the problem of comparison of these
numbers arises in a natural way. Within the library, all comparisons are performed with a
predefined precision ε.

Let x and y be two numbers. It is assumed that x < y if x − y < ε, x > y if x −
y > ε, and otherwise x and y are considered equal. In this way, the comparison method
CompareTo(TNumx, TNum y) of the interface IComparable<TNum> is defined for two numbers x
and y of the type TNum.

An alternative variant of the basic numeric type can be a type based on rational arithmetic.
Its advantage is that calculations are performed “precisely” meaning that there is almost no
loss of precision during basic arithmetic operations unlike floating point types. However, these
types have significantly lower performance. Now, the library has not been tested with ratio-
nal numerical types. The possibility of including rational arithmetic into the library is being
considered for the future.

Our algorithms require data structures with fast insertion, deletion, and access to elements.
Of course, they are not arrays or lists, but either hash table based structures, or tree based
structures.

The usage of the hash based structures needs computation of hash (an integer) for each
element inserted into the structure. If two objects are considered equal, then their hashes must
be the same. The hash can be equal for non-equal objects, such a situation is called collision.
But as less collisions appear, the more efficient the hash is and more fast insertion, deletion,
and access operations are.

The tree based structures arrange elements using a comparison function. Potentially, hash-
based structures are faster. That is why we chose them initially.

The main object, for which the hash should be computed, is a floating point number.
Initially, for an arbitrary x ∈ Rd, the following hash function was proposed: Round(xε). For
example, let x = 0.1234567 and ε = 10−4, then the hash would be 1235. However, this function
is unsatisfiable: let y = 0.1234444, the hash is 1234. Thus, there are two different hashes, but
the objects are equal for a given precision ε.

Attempts have been made to construct other hash functions overcoming the mentioned
problem, but they were unsuccessful. The main problem is that transitivity of equality is
violated in the terms of comparison by a precision: 1 ≈ 1− ε and 1 ≈ 1 + ε, but 1− ε ̸≈ 1 + ε,
where “≈” is equality by a precision.

So, eventually, we started to use tree-based structures. Although they offer lower perfor-
mance, they are much more stable. As a result, the current implementation of the library
uses tree based structures when the elements in the case of sets or keys in the case of dic-
tionaries (maps) are floating point numbers. In the basic library of C#, these structures are
SortedSet<T> and SortedDictionary<TKey,TValue>, respectively. This does not solve the
problem of equality transitivity absence, but makes algorithms more stable.

234

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

6.3 Basic computing library

Consider the main data structures and functions provided by the library.

6.3.1 Multidimensional vector class

A vector x ∈ Rd is represented as an array of its coordinates. Two vectors x, y ∈ Rd are
compared in the lexicographic order of their coordinates, where component comparison is per-
formed using CompareTo for numbers of the basic numeric type TNum. The class supports vector
addition and subtraction, multiplication by a scalar, and division by a non-zero number. Func-
tions for finding the length, normalization, and computing the inner and outer products are
also defined.

6.3.2 Matrix class

Matrices are stored in a “dense” representation in a two-dimensional array. The class defines
the operations of matrix addition and subtraction, multiplication by a scalar, division by a
non-zero number, as well as the ability to get a row or column by index. These operations on
matrices are sufficient for the algorithms under consideration.

6.3.3 Linear basis class

A linear basis B is represented by a k × d matrix, where 0 ⩽ k ⩽ d, and its columns form a set
of linearly independent vectors. The basis is stored in an orthonormalized form.

The class supports operations such as projecting a vector onto the subspace spanned by B,
orthonormalizing a vector with respect to the basis B, constructing the orthogonal complement
basis of B, and adding vectors to the basis. Vectors are added one at a time, and if a vector
already lies within the subspace of the current basis, it is not added. A key operation is
the orthonormalization of a vector against the current basis. Initially, the Gram–Schmidt
orthogonalization algorithm was used, but it was soon discovered that it is unstable and lead to
significant loss of calculation accuracy. Therefore, a reflection algorithm, which does not have
such drawbacks, was implemented.

Alternatively, the basis can be specified as a list of vectors; however, the reflection algorithm
relies on matrix operations, and converting data between formats is inefficient.

6.3.4 Affine basis class

An affine basis consists of a vector o and a linear basis B. The operations are similar to
those for a linear basis, but taking into account its affine structure, meaning the work is done
with the vector x − o. The class supports operations such as projecting a vector onto the
subspace spanned by B, orthonormalizing a vector with respect to the basis B, constructing the
orthogonal complement basis of B, and adding vectors to the basis.

6.3.5 Face lattice class

The data structure that stores the face lattice is introduced. It holds a reference to the topmost
node of the face lattice as well as a list of nodes, where the i-th position contains all nodes
of the i-th layer. A face lattice node stores a strictly interior point and an affine basis of the
corresponding face as well as lists of immediate parent nodes and child nodes in the sense of
the face lattice order.

235

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

6.3.6 Auxiliary points class

During the convex hull construction algorithm, it is often necessary to move into the subspace
of a facet and perform the convex hull construction there. After this, one needs to return to
the original space. That is why the class of auxiliary points is introduced as a heritor of the
point class. It stores a reference to the parent point, from which this point is projected. When
returning from the subspace, no calculations are performed; instead, the current point is simply
replaced by its parent.

6.4 Stable bridge construction algorithm

The following algorithm is proposed.

doNextSection(FLrepWi−1, FLrepPi, V*repQi)→ FLrepWi,

Pi = (−∆)D(ti)P , Qi = ∆E(ti)Q
Step by step:

1. sum(FLrepWi−1, FLrepPi)→ FLrepSi

2. FLrepSi → HrepSi

3. diff(HrepSi, VrepQi)→ H*repWi

4. H*repWi → VrepWi

5. conv(VrepWi)→ FLrepWi.

Let us explain how the polytopes Pi and Qi are obtained. Initially, the control constraint
polytopes of the players are located in their spaces Rp and Rq. The fundamental Cauchy
matrix X(T, t) for the system dX(T, t)/dt = A(t)X(T, t), X(T, T) = E, is integrated. From it
the variable change matrix Xs1,s2,...,sd(T, t) is created.

After that, the matrices Di = X(T, ti)B(ti) and Ei = X(T, ti)C(ti) are calculated. Then,
the capabilities of the first player at the ith step are computed as Pi = (−∆)DiP and of the
second player as Qi = ∆EiQ. For Pi, all vertices of P are multiplied by D(ti), and then the
convex hull construction algorithm is performed producing FLrepPi. For Qi, only projection
is performed. Since we need VrepQi only, we can take V*repQi. It is faster to work with
redundant unconvexified set of points, than to try run the GiftWrapping algorithm.

7 Examples

The computations were performed on a computer running Windows 11 64-bit equipped with
an Intel(R) Core(TM) i5-10400F CPU 2.90 GHz max and 32 GB of 2400 MHz RAM.

7.1 Simple motion

Consider the following differential game with a three-dimensional phase vector:

ẋ = u+ v,

M = [−1, 1]× [−1, 1]× [−1, 1],
t ∈ [t0, T] = [0, 4], x ∈ R3,

u ∈ B2(0, 1), v ∈ B2(0, 0.9),

236

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

(a) t = 4 (b) t = 2 (c) t = 0

Figure 7: The game with dynamics of simple motion. A side view of three-dimensional time
sections of the 4-dimensional maximal stable bridge.

where B2(0, R) is the Euclidean ball with the center at the origin and radius R. The program
uses some approximation of these balls by polytopes.

In Figure 7, one can see the evolution of the three-dimensional time sections of the cor-
responding maximal stable bridge. Some section are drawn. All three-dimensional figures
have been visualized in MeshLab after preparation in a popular 3D-format OBJ on the basis of
numerical results produced by the computational program.

Since the first player has the dynamic advantage, that is, Qi ⊂ Pi for all i, the time section
grows in the backward time. All three figures are presented in the same scale.

7.2 Mass point

The second example is connected with a classic model differential game describing a conflict
controlled mass point in a line:

ẋ1 = x2 + v,

ẋ2 = u,

t ∈ [t0, T] = [0, 3], x = (x1, x2)
T ∈ R2,

u ∈ [−1, 1], v ∈ [−0.9, 0.9],
φ
(
x(T)

)
= ∥x(T)∥ → min

u
max

v
.

Here, x1 represents the coordinate of the point in the line, and x2 represents its velocity. There
is the terminal payoff function corresponding to the objective of the first player to bring the
point to the origin at the terminal instant with a small velocity.

This is a game with a two-dimensional phase vector. It is formally out of the class, to
which the algorithm worked out is directed. However, such a game can be transformed into a
three-dimensional game with a terminal target set.

To do this, a new variable x3 is introduced, which represents the value of the payoff function
on a trajectory. It is known that for games with the terminal payoff, this value does not change
along the optimal trajectory. So, the dynamics of the new coordinate is very simple: ẋ3 = 0.

So, the new coordinates are (old phase vector, payoff value). The epigraph epiφ of the payoff
function is the terminal target set M. This set is unbounded, so only some of its bounded part
M = M ∩ {x3 ⩽ 2} is considered as the target set.

237

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

(a) t = 3

(b) t = 1

(c) t = 0

Figure 8: Time section of the maximal stable bridges for the mass point. At the left: the
maximal stable bridge constructed in the original 2D game from the level set of the payoff 2. At
the right: the maximal stable bridge constructed in the 3D game from a part of the epigraph
of the payoff as the terminal target set. All 3D-figures have the same point of view.

(a) t = 3 (b) t = 1 (c) t = 0

Figure 9: The mass point. A bottom view of the three-dimensional time sections.

238

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

The new game is described as follows:

ẋ1 = x2 + v,

ẋ2 = u,

ẋ3 = 0,

t ∈ [t0, T] = [0, 3], x = (x1, x2, x3)
T ∈ R3,

u ∈ [−1, 1], v ∈ [−0.9, 0.9],
x(T) ∈M.

For computations, the circular cone of M is approximated by a right pyramid with 100
side facets. The time sections have been constructed for instants from a uniform grid with the
time step ∆ = 0.1. Number of vertices and faces of the polytope of the time section at t = 0
equal 9690 and 19376, respectively. The computations took about a half of an hour.

Figure 8 shows comparison of time sections of stable bridges in the two- and three-dimen-
sional variants of the game. At the left, time sections of the maximal stable bridges computed
for the target set taken as the level set of the payoff corresponding to the value 2. They are ob-
tained as a top view of the time sections of the maximal stable bridge in the three-dimensional
game. The two-dimensional sets coincide well (in numerical comparison, not a visual one only)
with the ones obtained by the algorithm for two-dimensional games.

At the right, one can see a side view of the section in the three-dimensional game. Thin
black and thick white lines show boundaries of faces of the polytope. The scale and the view
point are the same for all three 3D-figures.

In Figure 9, images of the time sections are given from the bottom (from the negative
direction of the axis x3). These figures demonstrates the structure of the faces appearing
during the evolution of the time sections.

7.3 Oscillator

Another classic model differential game is the conflict controlled oscillator. It has the dynamics
of the mathematical pendulum, where the first player affects the acceleration of the pendulum,
whereas the second player has its control in the velocity row:

ẋ1 = x2 + v,

ẋ2 = −x1 + u,

t ∈ [t0, T] = [0, 3], x = (x1, x2)
T ∈ R2,

u ∈ [−1, 1], v ∈ [−0.9, 0.9],
φ
(
x(T)

)
= ∥x(T)∥ → min

u
max

v
.

Again, x1 is the coordinate of the pendulum, that is, its deviation from the vertical line (which
is supposed to be small to consider a linear dynamics), and x2 is the velocity.

The game has the same terminal payoff as in the previous example. Thus, the objectives of
the players are the same. The first one tries to calm down the system, bringing it as close to
the origin at the terminal instant as possible. The second player, vice versa, tries to swing the
pendulum away.

239

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

(a) t = 3

(b) t = 1

(c) t = 0

Figure 10: Time section of the maximal stable bridges for the oscillator. At the left: the
maximal stable bridge constructed in the original 2D game from the level set of the payoff 2. At
the right: the maximal stable bridge constructed in the 3D game from a part of the epigraph
of the payoff as the terminal target set. All 3D-figures have the same point of view.

(a) t = 3 (b) t = 1 (c) t = 0

Figure 11: The oscillator model game. A bottom view of the three-dimensional time sections.

240

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

In the same way, one can pass to a three-dimensional game with the third coordinate cor-
responding to the payoff:

ẋ1 = x2 + v,

ẋ2 = −x1 + u,

ẋ3 = 0,

t ∈ [t0, T] = [0, 3], x = (x1, x2, x3)
T ∈ R3,

u ∈ [−1, 1], v ∈ [−0.9, 0.9],
x(T) ∈M = epiφ ∩ {x3 ⩽ 2}.

For computations, the circular cone of M is approximated by a right pyramid with 100 side
facets. The time sections have been constructed for instants from a uniform grid with the time
step ∆ = 0.1. The number of vertices and faces of the polytope of the time section at t = 0 are
equal 4354 and 8704, respectively. The computations took about 8 minutes.

In Figure 10, time sections of the maximal stable bridges in the two- and three-dimensional
games are given. In contrast to the mass point game, the diameter of the time section does not
grow so fast. The scale and point of view of the 3D-figures is the same as in Fig. 8. Again, one
has good coincidence of the two-dimensional sets computed by the our and two-dimensional
algorithms.

In Figure 11, the structure of the faces of the three-dimensional time sections is visible.

8 Conclusion

The paper addresses linear differential games with a fixed terminal instant, geometric constraints
on the players’ controls, and a convex terminal target set. Algorithms are implemented for
convex hull construction, Minkowski sum and difference, which are necessary for the second
Pontryagin’s method to construct approximations of time sections of a maximal stable bridge.
Existing methods from the literature have been utilized for the convex hull and Minkowski sum,
while a new algorithm has been developed for the Minkowski difference. These algorithms have
been incorporated into a C# library, and some model examples have been computed.

9 Acknowledgements

The work was performed as part of research conducted in the Ural Mathematical Center with
the financial support of the Ministry of Science and Higher Education of the Russian Federation
(Agreement number 075-02-2024-1377).

References

[1] M. Bardi, M. Falcone, and P. Soravia. Numerical methods for pursuit-evasion games via viscosity
solutions. In M. Bardi, T. Parthasarathy, and T. E. S. Raghavan, editors, Annals of the Inter-
national Society of Dynamic Games, Vol. 6: Stochastic and Differential Games, pages 105–175.
Birkhäuser, Boston, 1999.

[2] N. Botkin, K.-H. Hoffmann, N. Mayer, and V. Turova. Computation of value functions in nonlinear
differential games with state constraints. In D. Hömberg and F. Tröltzsch, editors, System Modeling
and Optimization. CSMO 2011. IFIP Advances in Information and Communication Technology,
volume 391, pages 235–244, 2013.

241

Differential Games with Multi-Dimensional Target Set Mikhailov, Kumkov

[3] N. D. Botkin and E. A. Ryazantseva. An algorithm of constructing the solvability set for linear
differential games of high dimension. Trudy Inst. Mat. i Mekh., 2:128–134, 1992. (in Russian).

[4] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre. Some algorithms for differential games with
two players and one target. RAIRO-Modélisation-Matématique-et-Analyse-Numérique, 28(4):441–
461, 1994.

[5] S. Das, S. R. Dev, and S. Sarvottamananda. A worst-case optimal algorithm to compute the
Minkowski sum of convex polytopes. In A. Mudgal and C. R. Subramanian, editors, Algorithms
and Discrete Applied Mathematics. CALDAM 2021. Lecture Notes in Computer Science, volume
12601, pages 179–195. Springer, Cham., 2021.

[6] S. Das, S. R. Dev, and S. Sarvottamananda. A worst-case optimal algorithm to compute the
Minkowski sum of convex polytopes. Discrete Applied Mathematics, 350:44–61, 2024.

[7] P. E. Dvurechensky and G. E. Ivanov. Algorithms for computing Minkowski operators and their ap-
plication in differential games. Computational Mathematics and Mathematical Physics, 54(2):235–
264, 2014.

[8] K. Fukuda. Polyhedral Computation. Department of Mathematics, Institute of Theoretical Com-
puter Science ETH Zurich, 2020-07-10.

[9] S. A. Ganebny, S. S. Kumkov, S. Le Ménec, and V. S. Patsko. Model problem in a line with two
pursuers and one evader. Dynamic Games and Applications, 2(2):228–257, 2012.

[10] N. L. Grigorenko, Yu. N. Kiselev, N. V. Lagunova, D. B. Silin, and N. G. Trin’ko. Solution methods
for differential games. Computational Mathematics and Modeling, 7(1):101–116, 1996.

[11] R. Isaacs. Differential Games. John Wiley and Sons, New York, 1965.

[12] E. A. Isakova, G. V. Logunova, and V. S. Patsko. Computation of stable bridges for linear differen-
tial games with fixed time of termination. In A. I. Subbotin and V. S. Patsko, editors, Algorithms
and Programs for Solving Linear Differential Games, pages 127–158. Institute of Mathematics and
Mechanics, Ural Scientific Center, Academy of Sciences of USSR, Sverdlovsk, 1984. (in Russian).

[13] N. N. Krasovskii and A. I. Subbotin. Positional Differential Games. Nauka, Moscow, 1974.
(in Russian).

[14] N. N. Krasovskii and A. I. Subbotin. Game-Theoretical Control Problems. Springer-Verlag, New
York, 1988.

[15] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th Interna-
tional Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pages 296–303, New York,
NY, USA, 2014. Association for Computing Machinery.

[16] V. S. Patsko and V. L. Turova. Numerical study of the homicidal chauffeur game. In D. Bainov,
editor, Proceedings of the 8th International Colloquium on Differential Equations, pages 363–371.
VSP, Utrecht, 1998.

[17] V. S. Patsko and V. L. Turova. Level sets of the value function in differential games with the
homicidal chauffeur dynamics. International Game Theory Review, 3(1):67–112, 2001.

[18] E. S. Polovinkin, G. E. Ivanov, M. V. Balashov, R. V. Konstantinov, and A. V. Khorev. An algo-
rithm for the numerical solution of linear differential games. Sbornik: Mathematics, 192(10):1515–
1542, 2001.

[19] L. S. Pontryagin. Linear differential games. 2. Soviet Math. Dokl., 8:910–912, 1967.

[20] B. N. Pschenichnyi and M. I. Sagaidak. Differential games of prescribed duration. Cybernetics,
6(2):72–80, 1970.

[21] J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proc. Natl.
Acad. Sci., 93(4):1591–1595, 1996.

[22] G. Swart. Finding the convex hull facet by facet. J. Algorithms, 6(1):17–48, 1985.

[23] T. Yoshimura. DoubleDouble, 2023. github.com/tk-yoshimura/DoubleDouble.

[24] M. A. Zarkh and A. G. Ivanov. Construction of the value function in the linear differential game
with the fixed terminal time. Trudy Inst. Mat. i Mekh., 2:140–155, 1992. (in Russian).

242

	Introduction
	Problem formulation
	Definitions and denotations
	Representations of polytope
	Geometric operation algorithms
	Convex hull construction algorithm
	Minkowski sum algorithm
	Minkowski difference algorithm

	Realization of computational library
	General library architecture
	On calculation accuracy
	Basic computing library
	Multidimensional vector class
	Matrix class
	Linear basis class
	Affine basis class
	Face lattice class
	Auxiliary points class

	Stable bridge construction algorithm

	Examples
	Simple motion
	Mass point
	Oscillator

	Conclusion
	Acknowledgements

