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Abstract

Tool presentation: Safety-critical systems often require guaranteed state estimation
instead of estimating the most-likely state. While a lot of research on guaranteed state
estimation has been conducted, there exists no tool for this purpose. Since guaranteed state
estimation is in many cases a reachability problem or closely related to reachability analysis,
this paper presents its implementation in the continuous reachability analyzer (CORA).
We present how we integrated different types of observers, different set representations,
and linear as well as nonlinear dynamics. The scalability and usefulness of the implemented
observers is demonstrated for a scalable tank system.

1 Introduction

The knowledge of the state of a cyber-physical system is often indispensable for its control,
prediction, and monitoring. Since typically not all states are measured—due to physical con-
straints or economic reasons—one often designs state observers to estimate the state of a system.
Classical observer designs, such as Kalman filters, estimate the most likely state of a system.
However, this is not sufficient for safety-critical systems for which one has to use guaranteed
state estimation providing sets in which the state has to lie. These observers are also referred
to as set-based observers. We will use the term guaranteed state estimation to emphasize that
the true state can be enclosed and the term set-based observers to emphasize that this feature
is realized by designing observers that compute with sets.

The knowledge of state bounds can be used for many applications. Robust control can use
the set of possible states to ensure that the system will reach a goal region with certainty
[17, 32, 38, 54, 66]. In fault tolerant control, the set of possible states can be used to reduce the
false alarm rate in fault detection [13,14,21,46,47,55–57,60,61]. Prediction algorithms are often
used by autonomous systems to avoid conflicts with surrounding entities. To ensure safety, one
has to start the prediction from the entire set of possible states [6, 44].

We survey the existing literature by categorizing set-based observers into three categories. The
first category are strip-based observers, which propagate reachable sets and intersect them
with strips of states possible from the current measurement. In essence, three operations are
required: linear maps and Minkowski sum for the set propagation and intersection to correct
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the sets based on measurements. This observer type has already been used in the 60s for
linear time-invariant systems bounded by ellipsoids [53]. Since then, this approach has been
improved by many researchers [11, 12, 18, 24, 29, 45]. The main disadvantage of using ellipsoids
as a set representation is that they are not closed under Minkowski sum and intersection so
that the obtained sets are often too over-approximative. Most recent strip-based observers
use zonotopes since they are closed under linear maps and Minkowski sum; the computational
complexity for linear maps is cubic and linear for Minkowski sums in the number of state
variables [5, Tab. 1]. To the best knowledge of the author, the first paper proposing zonotopes
for set-based observers is [20]. The subsequent approaches presented in the literature mostly
differ in the way the intersection with strips is over-approximated [1, 34–37]. By extending
zonotopes to constrained zonotopes, one not only inherits the computational complexity for
linear maps, but also obtains exact intersections with strips [5, Tab. 1]. However, to obtain
explicit bounds, one has to solve a linear program, so that this set representation is often not
real-time capable when explicit bounds are required [55, eq. (25),(26)].

We refer to the second type of set-based observers as propagation-based observers. In essence,
these observers evaluate Luenberger observers in a set-based fashion. Thus, these observers do
not require intersections anymore and computing the set of possible states can be done by a
reachability analysis of the Luenberger observer [22, 48]. The gain of the Luenberger observer
can be computed online [22] of offline [64]. Most offline techniques ensure the stability by matrix
inequalities so that this technique can typically only be applied to linear systems [57,62,64,65].

The last category we review are interval observers. These observers compute the upper and
lower bound for each state variable separately [25, 30, 43, 50, 67]. This can be done by, e.g.,
exploiting monotonicity of the system dynamics if possible [58, Sec. VI]. Since often the
dynamics is not monotone, a new method is presented in [58, Alg. 1], which is proven to be at
least as good as the classical interval observers exploiting monotonicity.

Although there exists a lot of research on set-based observers, there exists no tool for them—
this is in contrast to reachability analysis, for which many tools have been implemented, see,
e.g., [3, 9, 10, 15, 19, 26, 27, 49, 52]. By integrating set-based observers into CORA, we hope
to make this fascinating method more accessible. Another contribution is to showcase the
methodological overlap of reachability analysis and guaranteed state estimation, which should
encourage more cross-fertilization of both disciplines. We have previously compared set-based
observers of linear systems in [7]. In this work, we extend the comparison to nonlinear systems
and focus more on the use of the tool rather than the underlying theory.

2 Types of Set-Based Observers

In principle, all observer types work for linear, nonlinear, and hybrid systems. However, to
facilitate the introduction of different observer types, we limit ourselves in this section to linear
discrete-time systems that are observable and time-invariant. Although this section is similar
to [7, Sec. 2], we present the essence of each observer here as well for the convenience of the
reader. Extensions to nonlinear systems are later discussed. We assume that the disturbance
is bounded by the set W and the noise is bounded by the set V . Using matrices A, B, and C

of proper dimensions, the time step k ∈ N, the state x ∈ R
n, the measured output y ∈ R

m, the
disturbance vector w ∈ R

n, and the sensor noise v ∈ R
m, the system dynamics and measurement
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function can be written as

xk+1 = Axk +Buk + wk,

yk = Cxk + vk.
(1)

Please note that other works use Ẽw̃k and F̃ ṽk instead of wk and vk in (1). This, however, is
covered by our form when simply choosingW = ẼW̃ and V = F̃ Ṽ. One way to find appropriate
sets W and V is to use conformance checking, see, e.g., [33, 39, 51]. To formalize the problem
of set-based state estimation, we introduce the operator to receive the next state of (1) as
χ(xk, uk, wk). Our goal is to obtain the set of states Sk at time step k enclosing the true state
from a set of initial states S0 ⊂ R

n, which we define inductively:

Sk =
{

xk = χ
(

xk−1, uk−1, wk−1

)∣

∣

∣
xk−1 ∈ Sk−1, wk−1 ∈ W , vk ∈ V , yk = Cxk + vk

}

.

A reachability problem is a special case, which does not require to check the consistency with
the measurement to obtain the reachable set as

Rk =
{

xk = χ
(

xk−1, uk−1, wk−1

)∣

∣

∣
xk−1 ∈ Sk−1, wk−1 ∈ W

}

.

Please note that one often unifies uk and wk for reachability analysis by changing the system
dynamics to xk+1 = Axk + uk and defining the set of possible inputs using the Minkowski
sum1 as Uk = Buk ⊕W . As we will see subsequently, set-propagation observers and interval
observers reformulate the problem of guaranteed state estimation as a reachability problem,
while strip-based observers combine reachability analysis with set intersection—similarly to
guard intersections when computing reachable sets of hybrid systems [5].

2.1 Strip-Based Observers

Strip-based observers intersect the possible set of states according to the system dynamics with
the set of states possible from the current measurement:

1. Prediction: We obtain the set of reachable states by evaluating (1) in a set-based fashion:

Sp = ASk−1 ⊕Buk−1 ⊕W .

2. Measurement update: The linear measurement function in (1) makes it possible to effi-
ciently bound the state by measurements. To this end, let us introduce Cj as the jth

row of the measurement matrix C and the symmetric bound [−σ, σ] = box(V) of the box
enclosing the sensor noise. The possible states from the measurement of the jth output
signal yk,j at time step k are bounded by a strip of width σj [1, Property 2]:

Ŝj =
{

x ∈ R
n
∣

∣

∣
|Cjx− yk,j | ≤ σj

}

. (2)

The entire measurement set Sy is computed by over-approximatively intersecting all strips:

Ŝ ⊆ Ŝ1 ∩ Ŝ2 . . . ∩ Ŝm. (3)

1A⊕ B = {a+ b|a ∈ A, b ∈ B}.
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Algorithm 1 Interval observer from [58, Alg. 1].

Input: input sequence uk, output sequence yk
Output: sequence of state bounds xk, xk

1: x̂0 ← center(X0), D0 ← W ⊕ (−L)V
2: Sx,0 ← X0, Swv,0 ← 0

3: for all k ≥ 0 do

4: [ek, ek] = box(Sx,k)⊕ Swv,k

5: [xk, xk] = x̂k + [ek, ek]
6: x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k)
7: Sx,k+1 = (A− LC)Sx,k
8: Swv,k+1 = Swv,k ⊕ box(Dk)
9: Dk+1 = (A− LC)Dk

10: end for

3. Correction: The set consistent with the reachable set Sp and the measurement set Ŝ is
simply their intersection, which is often over-approximated for computational reasons [1,
Sec.3]:

Sk ⊇ Sp ∩ Ŝ. (4)

Next, we present set-propagation approaches, which do not require intersections.

2.2 Set-Propagation Observers

Because set-propagation approaches do not require intersections, one can more easily integrate
set representations which are not closed under intersection, such as ellipsoids and zonotopes.
These approaches are typically based on the update equation of a Luenberger observer:

x̂k+1 = Ax̂k +Buk + wk + L(yk − Cx̂k − vk), (5)

where x̂ is the estimated state and the observer gain L is designed such that the estimated state
quickly converges to the true state. It is fairly easy to see that the set-based evaluation of (5)
as

Sk+1 = (A− LC)Sk ⊕Buk ⊕ Lyk ⊕ (−L)V ⊕W (6)

returns a guaranteed bound if x̂0 ∈ S0 and V as well asW contain the origin [22, Sec. 4.1]: The
true solution is xk+1 = Axk + Buk + wk according to (5). Since V and W contain the origin,
their set-based evaluation only inflates the true evolution of the state. Because this holds for
any L, its values can be optimized for estimation accuracy—either offline (constant gain) or
online (time-varying gain).

2.3 Interval Observers

As mentioned in the introduction, it has been shown in [58, Alg. 1] that there exists no interval
observer with a better performance than the one presented in Alg. 1. This observer is based on
(6) and avoids the wrapping effect by re-arranging the computation of (6) and using the box
operator analogously to [28]. In essence, the estimated sets are represented by multi-dimensional
intervals, which are split into their center x̂k and the multi-dimensional error intervals [ek, ek]
(see line 5 of Alg. 1). The error intervals are composed of the boxed set box(Sx,k) from the
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homogeneous solution and the set Swv,k bounding the input solution as shown in line 4 of
Alg. 1. After replacing Sk in (6) with x̂k ⊕ Sx,k, we obtain the center in line 6 and the set of
homogeneous solutions relative to x̂k+1 in line 7. The input solution is realized in line 8-9 using
the same rearrangement presented in detail in [28].

2.4 Discussion

Because strip-based observers can only finish their computation of the estimated set Sk after the
measurement yk, their result is always delayed. When a set-propagation observer or interval
observer is real-time capable, the set Sk is obtained ahead of time. This issue can be fixed
for strip-based observers when additionally computing a one-step prediction and use this set
as the initial set as shown in [54, Sec. III]. Since some practitioners may want to ignore the
delayed computation (e.g. in fault-detection algorithms), we list the computation times in
Sec. 4 without the additional prediction step, but list these algorithms as not ready for control.
Interestingly, there exists a parameterization of both approaches such that exactly the same
result is produced [62, Sec. 5] so that in this case, the propagation-based approach is clearly
preferable.

3 Implemented Observers

The current list of observers implemented in CORA is presented in Tab. 1. The observers using
zonotopes as a set representation are named by the cost function for bounding the states as
tightly as possible. After defining a zonotope using the Minkowski sum and the r-dimensional
unit box Br = [−1, 1]r as Z = c⊕GBr, we can define the used cost functions:

• Volume: The volume of a zonotope (see [1, Sec. 6.2]).

• FP -radius: Given a symmetric weighting matrix P ∈ R
n×n, P = PT ≻ 0, the FP -radius

is the weighted Frobenius norm of G [22, Def. 2]:

FP = ‖G‖F,P =
√

trace(GTPG).

Typically one chooses P = I ∈ R
n×n and then just refers to this measure as the F -radius.

• P -radius: Given a positive definite matrix P = PT ≻ 0, the P -radius [37, Sec. 2] is

Θ = max
z∈Z

(‖z − c‖2P ) = max
z∈Z

(

(z − c)TP (z − c)
)

.

The observers implemented in CORA so far have been developed for linear systems. Approaches
requiring an offline-computed observer gain cannot adapt to an over-approximative on-the-fly
linearization of a nonlinear system. However, all other approaches have been extended to non-
linear systems by using an over-approximated on-the-fly linearization of the nonlinear dynamics
at every time step k. This works well in practice, as shown in the numerical experiments in
Sec. 4, however, one can no longer guarantee that the set of estimated states converges. By
adding a fail-safe layer as, e.g., proposed in our previous works [4, 54], one can ensure a safe
operation even in the event that the set of estimated states grows unacceptably large.

To demonstrate how easy it is to obtain estimated states with guaranteed bounds, we provide an
example that implements the observer in [1, Sec. 7.1]. The subsequent code produces the plots
of the state bounds over time shown in Fig. 1. A more in-depth analysis of the implemented
observers is presented in the subsequent section for a scalable water tank system.
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Table 1: Set-based observers currently implemented in CORA.

Ready
Set repre- for Supported

Technique sentation control dynamics Reference

strip-based observers

VolMin-A zonotope ✗ linear/nonlinear [1]
VolMin-B zonotope ✗ linear/nonlinear [16]
FRad-A zonotope ✗ linear/nonlinear [1]
FRad-B zonotope ✗ linear/nonlinear [62]
PRad-A zonotope ✗ linear [37]
PRad-B zonotope ✗ linear [36]
PRad-C zonotope ✗ linear [59]
PRad-D zonotope ✗ linear [63]
CZN-A constr. zono. ✗ linear/nonlinear [55]
CZN-B constr. zono. ✗ linear/nonlinear [2]
ESO-A ellipsoid ✗ linear [29, 40]
ESO-B ellipsoid ✗ linear [40]

set-propagation observers

FRad-C zonotope ✓ linear/nonlinear [22]
PRad-E zonotope ✓ linear [64]
Nom-G zonotope ✓ linear [62]
ESO-C ellipsoid ✓ linear [41]
ESO-D ellipsoid ✓ linear [42]

interval observer

Hinf-G zonotope ✓ linear [58]

1 %% Parameters
2 params . tF i na l = 20 ; % f i n a l time
3 params .R0 = zonotope ( z e r o s (2 , 1 ) ,3∗ eye (2) ) ; % i n i t i a l s e t
4 params .V = 0.2∗ zonotope ( [ 0 , 1 ] ) ; % sensor no i s e s e t
5 params .W = 0.02∗ [ −6; 1 ]∗ zonotope ( [ 0 , 1 ] ) ; % di s turbance s e t
6 params . uTransVec = ze r o s (2 , 1 e3 ) ; % input vector
7 params . yVec = [ 0 . 7 9 , 5 . 00 , 4 . 35 , 1 . 86 , −0.11 , −1.13 , −1.17 , −0.76 , . . .
8 −0.12 , 0 . 72 , 0 . 29 , 0 . 19 , 0 . 09 , −0.21 , 0 . 05 , −0.00 , −0.16 , 0 . 01 , . . .
9 −0.08 , 0 . 1 3 ] ; % measurement vector

10

11

12 %% Algor i thmic Se t t i ng s
13 opt i ons . zonotopeOrder = 20 ; % zonotope order
14 opt i ons . timeStep = 1 ; % step s i z e
15 opt i ons . a l g = ’FRad−C’ ; % observer approach
16

17 %% System Dynamics
18 A = [0 −0.5; 1 1 ] ;
19 B = 1 ;
20 c = ze r o s (2 , 1 ) ;
21 C = [−2 1 ] ;
22 sys = linearSysDT ( ’ sys ’ ,A, B, c , C, opt i ons . timeStep ) ;
23

24 %% Observe
25 EstSet = observe ( sys , params , opt i ons ) ;
26

27 %% Plot Resu l t s
28 f o r iDim = 1:2
29 f i g u r e ; hold on ;
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30 % plo t time e l ap s e
31 plotOverTime ( EstSet , iDim , ’ FaceColor ’ , [ . 6 . 6 . 6 ] , ’ EdgeColor ’ , ’ none ’ ) ;
32

33 % l ab e l p l o t
34 x l abe l ( ’ t ’ ) ;
35 y l abe l ( [ ’ x { ’ , num2str ( iDim ) , ’ } ’ ] ) ;
36 end
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Figure 1: State bounds for the example in [1, Sec. 7.1].

4 Numerical Experiments

To investigate the scalability of the implemented methods, we are testing them on a water tank
system shown in Fig. 2 to which one can add arbitrarily many tanks. This example is inspired
by [8] and could, e.g., model the water levels in between hydroelectric power stations. The
state vector x consists of the water levels of each tank, u is the water inflow vector, and w is
the disturbance vector. To obtain the ith element of an expression in parentheses, we use the
notation (·)i. After introducing the cross-sectional area Ai of the i

th tank and the corresponding
cross-sectional area of the outflow κi, the differential equation for the water level of the first
tank is given by Toricelli’s law [23]:

ẋ1 =
1

A1

(

− κ1

√

2gx1 + (Bu+ w)1
)

.

The differential equation for the ith tank is

ẋi =
1

Ai

(

κi−1

√

2gxi−1 − κi

√

2gxi + (Bu + w)i
)

.

To obtain a discrete-time model, we simply assume that the flow is constant for one time step
of duration h = tk+1 − tk so that we obtain

xk+1,1 = xk,1 +
h

A1

(

− κ1

√

2gxk,1 + (Buk + wk)1
)

for the first tank and

xk+1,i = xk+1,i +
h

Ai

(

κi−1

√

2gxk,i−1 − κi

√

2gxk,i + (Buk + wk)i
)
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Figure 2: Tank system.

Table 2: Indices of tanks with water inflow and water level measurement.

tank indices

water inflow 1, 4, 5, 7, 9, 10, 13, 15, 16, 19, 21, 22, 25, 27, 28
water level measurement 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29

for all other tanks. For simplicity, all parameters are chosen to be identical for all tanks. The
cross section of the tanks is Ai = 1 [m2], the cross section of the outflow is κi = 0.015 [m2],
the time step is h = 0.5 [s], the initial set is bounded by xi(0) ∈ [16, 24] [m], the disturbance
is bounded by wi ∈ [−1, 1] · 10−3 [m3/s], and the measurement noise is bounded by vi ∈
[−0.2, 0.2] [m]. The list of tanks that are measured and have water inflow for the 30-tank
system is presented in Tab. 2. Smaller tank systems have the same configuration, with the
trivial difference that tank indices beyond the number of tanks are ignored. The water inflow
trajectory u(.) is not presented since it only has a minor effect on the performance of the set-
based observers; besides, its presentation would be space-consuming and thus is only provided
in CORA 2021.

We evaluate all observers with respect to tightness of the estimated sets and computation time.
Since computing the volume is infeasible for many dimensions [31], the relative root-mean-
square (rms) values of the interval radius ri,k,l of the ith state variable at step k out of N time
steps of observer l are computed as:

υi,l =
r̃i,l

min(r̃i,1, . . . , r̃i,nl
)
, r̃i,l =

√

√

√

√

(

1

N

N−1
∑

k=0

r2i,k,l

)

. (7)
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All computations were performed on an Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz with
MATLAB 2020b with single thread executions. The code for the comparison is available in
CORA (cora.in.tum.de). Some results for the 30-tank system when using the FRad-C technique
are shown in Fig. 3 together with the true state.
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Figure 3: State bounds for the first six tanks of the 30-tank example when using the FRad-C
approach.

The results for the linearized six-tank system and the original dynamics are shown in Tab. 3
and 4, respectively. For the higher-dimensional problems, we cannot present the rms values
of the interval radii of all dimensions due to space limitations. Instead, we only present the
average result across all dimensions and the computation times for the linearized and the original
dynamics in Tab. 3 and 4, respectively.

It can be seen that all observers are real-time capable since new measurements are collected
every 500 [ms]. Another obvious observation is that approaches using zonotopes obtain tighter
results compared to approaches using ellipsoids. For strip-based observers, most approaches
using zonotopes were not only more precise, but also faster than the approaches using ellipsoids.
In contrast, the investigated ellipsoidal techniques for set-propagation observers (ESO-C and
ESO-D) were significantly faster. The considered interval observer (Hinf-G) is filling the gap
between high accuracy and low computational costs: In terms of accuracy and computation
time it is between the group ESO-C and ESO-D and the remaining observers—only PRad-A
had a worse accuracy.
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Table 3: Linearized 6-tank system: Relative rms values υi according to (7) and their average
(avg). Indices of unmeasured states: 1, 3, 6. Indices of measured states: 2, 4, 5.

set repre- in
technique sentation time υ1 υ2 υ3 υ4 υ5 υ6 avg tc [ms]

strip-based observers

VolMin-B zonotope ✗ 1.000 1.182 1.000 1.029 1.692 1.011 1.152 298.7
FRad-A zonotope ✗ 1.060 1.293 1.428 1.862 1.344 1.002 1.332 0.885
FRad-B zonotope ✗ 1.396 1.277 1.457 1.823 1.307 1.006 1.378 0.748
PRad-A zonotope ✗ 6.314 9.302 6.882 6.258 1.157 1.415 5.221 0.995
PRad-B zonotope ✗ 2.230 1.171 2.351 1.171 1.114 1.005 1.507 0.536
PRad-C zonotope ✗ 2.220 1.000 1.728 1.007 1.000 1.004 1.326 0.422
PRad-D zonotope ✗ 2.335 1.016 1.430 1.000 1.004 1.004 1.298 0.447
ESO-A ellipsoid ✗ 15.42 27.09 3.576 29.54 28.84 2.584 17.84 1.014
ESO-B ellipsoid ✗ 12.39 21.34 3.482 19.55 16.50 2.516 12.63 0.864

set-propagation observers

FRad-C zonotope ✓ 1.272 1.843 1.430 2.264 1.822 1.002 1.605 0.594
PRad-E zonotope ✓ 2.321 2.016 2.165 1.747 1.691 1.000 1.823 0.411
Nom-G zonotope ✓ 2.414 1.955 1.545 1.613 1.590 1.000 1.686 0.366
ESO-C ellipsoid ✓ 37.11 61.53 4.287 57.65 59.49 2.549 37.10 0.046
ESO-D ellipsoid ✓ 39.81 66.01 4.598 61.85 63.81 2.734 39.80 0.039

interval observer

Hinf-G zonotope ✓ 2.631 2.581 1.711 2.210 2.166 1.027 2.055 0.227

smallest absolute radii

0.3596 0.2036 1.940 0.2019 0.2004 2.737

Table 4: Nonlinear 6-tank system: Relative rms values υi according to (7) and their average
(avg). Indices of unmeasured states: 1, 3, 6. Indices of measured states: 2, 4, 5.

set repre- in
technique sentation time υ1 υ2 υ3 υ4 υ5 υ6 avg tc [ms]

strip-based observers

VolMin-B zonotope ✗ 1.000 1.000 1.000 1.000 1.316 1.010 1.054 385.2
FRad-A zonotope ✗ 1.027 1.019 1.527 1.869 1.000 1.000 1.240 3.938
FRad-B zonotope ✗ 1.358 1.004 1.576 1.867 1.013 1.004 1.304 5.202

set-propagation observers

FRad-C zonotope ✓ 1.228 1.427 1.523 2.237 1.358 1.000 1.462 3.848

smallest absolute radii

0.3795 0.2647 2.117 0.2082 0.2661 2.837

The above-mentioned observations are amplified for larger systems. The ellipsoidal techniques
become increasingly inaccurate and the average of rms errors over all states is in some cases
more than 50 times higher. It should also be noted that we could only find gains for the PRad-A
technique when the system had 12 or less tanks and the solution for the 12-tank system was
already instable. Due to numerical issues, we also could not compute the solution of the ESO-B
approach for the 18-tank system. A particular good ratio of accuracy and efficiency for the
linear use case was achieved by PRad-B, PRad-C, and PRad D.
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Table 5: Scalability of the implemented techniques for linear systems. The average (avg) of the
rms values υi according to (7) and the computation times tc in [ms] are shown.

set repre- in
12 tanks 18 tanks 24 tanks 30 tanks

technique sentation time avg tc avg tc avg tc avg tc

strip-based observers

VolMin-B zonotope ✗ 1.413 1409 - - - - - -
FRad-A zonotope ✗ 1.799 1.997 1.611 3.708 1.550 6.586 1.559 14.94
FRad-B zonotope ✗ 1.835 0.994 1.655 1.253 1.609 1.833 1.594 2.675
PRad-A zonotope ✗ Inf - noGain - noGain - noGain -
PRad-B zonotope ✗ 2.035 0.859 1.501 1.136 1.280 1.444 1.262 2.108
PRad-C zonotope ✗ 1.662 0.771 1.294 1.040 1.153 1.454 1.130 2.427
PRad-D zonotope ✗ 1.515 1.085 1.258 1.119 1.144 1.522 1.399 1.989
ESO-A ellipsoid ✗ 22.78 2.822 29.49 2.299 32.33 8.543 35.09 9.004
ESO-B ellipsoid ✗ 14.16 1.176 NaN - 17.70 5.424 22.02 7.517

set-propagation observers

FRad-C zonotope ✓ 2.039 0.977 1.888 1.049 1.878 1.765 1.879 2.654
PRad-E zonotope ✓ 2.242 0.687 1.859 0.878 1.716 1.309 1.703 1.748
Nom-G zonotope ✓ 1.911 0.614 1.711 1.076 1.615 1.309 1.610 1.936
ESO-C ellipsoid ✓ 5.268 0.036 10.84 0.047 20.09 0.026 29.40 0.034
ESO-D ellipsoid ✓ 35.07 0.033 42.92 0.039 60.42 0.035 73.41 0.035

interval observer

Hinf-G zonotope ✓ 2.337 0.330 2.081 0.465 1.971 0.708 1.952 1.304

Table 6: Scalability of the implemented techniques for nonlinear systems. The average (avg) of
the rms values υi according to (7) and the computation times tc in [ms] are shown.

set repre- in
12 tanks 18 tanks 24 tanks 30 tanks

technique sentation time avg tc avg tc avg tc avg tc

strip-based observers

VolMin-B zonotope ✗ 1.184 3451 - - - - - -
FRad-A zonotope ✗ 1.259 10.60 1.002 19.51 1.005 23.22 1.002 36.43
FRad-B zonotope ✗ 1.314 8.273 1.071 13.21 1.062 20.05 1.072 22.65

set-propagation observers

FRad-C zonotope ✓ 1.482 9.043 1.196 12.45 1.207 20.29 1.223 21.46

For the nonlinear use case, we could only directly apply the approaches minimizing the F-
radius and the volume minimization. As mentioned before, volume computation and volume
approximation are computationally expensive so that only the F-radius techniques can be used
for higher-dimensional problems. Since all F-radius techniques compute with zonotopes, the
results are very similar for all F-radius approaches (FRad-A, FRad-B, FRad-C). Interestingly,
although FRad-C is a set propagation technique, the performance is similar to the techniques
using strip intersections. The FRad-C technique additionally has the advantage that the results
are obtained in time and are not delayed as for strip-based observers.
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5 Conclusions

This paper presents the first tool for set-based observers for linear and nonlinear systems using
various set representations. Obviously, constrained zonotopes ensure the most accurate results
since they are closed under all required operations, but they are often not real-time capable when
one requires explicit bounds. In contrast, zonotopes are often real-time capable and typically
more accurate than ellipsoids. If only a very basic microcontroller can be used, ellipsoidal
observers might be the best choice due to the smallest possible computation times. By sharing
as much code as possible for different observer types, the implementation is easy to maintain.
We also added several unit tests and all required set operations are already implemented in
CORA since many years, helping to ensure a good code quality. Due to the similarities between
reachability analysis and set-based observers, one can be hopeful that both research communities
have a more intensive exchange in the future.
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