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Abstract

We consider a zero-sum finite horizon linear-quadratic differential game. Suboptimal
state-feedback controls of the players in this game are derived. This derivation is based
on the approximate solution (with a novel error’s estimate) of the corresponding Riccati
matrix differential equation by the method of artificial parameter. The theoretical results
are illustrated by the approximate solution of the problem of pursuit-evasion engagement
between two flying vehicles.

1 Introduction

The solution of a finite horizon zero-sum linear-quadratic differential game with fixed initial
and free terminal states is one of the fundamental results in the theory of differential games.
This solution reduces the original game to qualitative analysis and solution of the terminal-
value problem for the game-theoretic Riccati matrix differential equation (see, e.g., [3, 9] and
references therein). More precisely, if the solution of this terminal-value problem exists in the
entire time-interval of the game’s duration, then the game has the saddle point in the state-
feedback controls. The solution of the aforementioned terminal-value problem for the game-
theoretic Riccati matrix differential equation determines the gains of the players’ optimal state-
feedback controls, as well as the game’s value. However, to verify the existence of the solution
to the terminal-value problem for the game-theoretic Riccati matrix differential equation in the
aforementioned time-interval and to derive this solution (if it exists) is a rather complicated
task. This task cannot be treated, in general, by an exact analytical method because of high
dimension and nonlinearity of the Riccati equation. In the literature, there are known different
conditions for the existence of the solution to the game-theoretic Riccati matrix differential
equation in the entire time-interval of the game’s duration (see, e.g., [2, 5, 7, 19, 20, 22] and
references therein). However, these conditions are not based directly on the game’s data.
Moreover, the verification of their validity requires rather complicated analytical/numerical
calculations.
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In the recent work [10], the method of auxiliary (artificial) parameter is developed for the
qualitative analysis and approximate analytical solution of the terminal-value problem for the
game-theoretic Riccati matrix differential equation associated with the finite horizon linear-
quadratic differential game. The easily verified sufficient condition for the existence of the
solution to this terminal-value problem in the entire time-interval of the game’s duration is
obtained. Different versions of the artificial parameter method, as well as their applications
to approximate analytical solution of various initial/boundary-value problems for ordinary and
partial differential equations (mainly scalar ones), are studied extensively in several recent
decades (see, e.g., [11, 16, 17, 13, 15, 24, 23, 25] and references therein). To the best of our
knowledge, the application of the artificial parameter method to the approximate solution of a
Riccati matrix differential equation with a terminal condition was proposed for the first time
by [8]. In this short conference paper, the method of continuation in parameter was applied
for the approximate solution of the terminal-value problem for the Riccati matrix differential
equation associated with the finite horizon linear-quadratic optimal control problem.

In the present paper, based on the auxiliary (artificial) parameter method, proposed in [10],
we obtain a novel sufficient condition for the existence of the solution to the terminal-value
problem for the game-theoretic Riccati matrix differential equation in the entire time-interval
of the game’s duration. Like the condition of the work [10], the condition of the present
paper is easily verified, and these conditions can complement each other in the qualitative
analysis and approximate analytical solution of the aforementioned terminal-value problem.
Using the condition for the existence of the solution to this problem, obtained in the present
paper, we derive a novel estimate of the error in its approximate solution. Furthermore, using
this approximate solution, we design the suboptimal state-feedback controls of the players in
the original differential game and establish novel estimates of the closeness of the guaranteed
results of these controls to the game value. The theoretical results of the paper are applied to
qualitative analysis and approximate solution of a real-life pursuit-evasion game.

The paper is organized as follows. In the next section, the problem is rigorously formulated.
In Section 3, the sufficient condition for the existence of the solution to the terminal-value
problem for the game-theoretic Riccati matrix differential equation in the entire time-interval
of the game’s duration is established. The approximate analytical solution to this problem
and the estimate of the approximation’s error are derived. In Section 4, using the results of
Sections 2 and 3, the suboptimal state-feedback controls of the players in the considered game
are presented. The closeness of the guaranteed results of these controls to the value of the game
is established. In Section 5, the results of Sections 2 – 4 are applied to qualitative analysis and
approximate solution of a pursuit-evasion engagement problem between two flying vehicles.
Section 6 is devoted to the conclusions.

2 Problem statement

Consider the following dynamic system controlled by two decision makers:

dx

dt
= A(t)x+B(t)u+ C(t)v, t ∈ [0, tf ], x(0) = x0, (1)

where x ∈ Rn is a state variable; u ∈ Rr and v ∈ Rs are controls of the decision makers
(players); A(t), B(t) and C(t) are given matrices of corresponding dimensions; x0 ∈ Rn is a
given vector; tf > 0 is a given time instant; the matrix-valued functions A(t), B(t) and C(t)
are continuous in the interval [0, tf ].
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The cost functional, to be minimized by the control u (the minimizer) and maximized by
the control v (the maximizer), is

J(u, v) = xT (tf )Fx(tf )

+

∫ tf

0

[
xT (t)D(t)x(t) + uT (t)Gu(t)u(t)− vT (t)Gv(t)v(t)

]
dt, (2)

where F is a given symmetric positive semi-definite matrix of corresponding dimension; D(t),
Gu(t) and Gv(t) are given matrix-valued functions of corresponding dimensions, continuous in
the interval [0, tf ]; for any t ∈ [0, tf ], D(t) is symmetric positive semi-definite, while Gu(t) and
Gv(t) are symmetric positive definite.

Let Ωu be the set of all functions ωu(t, x) : [0, tf ]×Rn → Rr, which are measurable w.r.t.
t ∈ [0, tf ] for any fixed x ∈ Rn and satisfy the local Lipschitz condition w.r.t. x ∈ Rn uniformly
in t ∈ [0, tf ]. Similarly, let Ωv be the set of all functions ωv(t, x) : [0, tf ]×Rn → Rs, which are
measurable w.r.t. t ∈ [0, tf ] for any fixed x ∈ Rn and satisfy the local Lipschitz condition w.r.t.
x ∈ Rn uniformly in t ∈ [0, tf ]. In what follows, we assume that u(t, x) ∈ Ωu, v(t, x) ∈ Ωv.

We assume that both players are aware of all the data, presenting in (1) – (2), and of
the current (time, state)-position

(
t, x

)
of the system (1). In what follows, we call the problem,

consisting of the system (1), the cost functional (2), the aforementioned objectives of the players
and the information pattern, the Linear-Quadratic Differential Game (LQDG). The sets Υu

and Υv of the players’ state-feedback admissible controls, the saddle point (u∗(t, x), v∗(t, x))
consisting of the optimal players’ state-feedback strategies, the game value J∗(x0) are defined
in a standard fashion (see, e.g., the book [9] and references therein).

Let

D̃(t) ≜ D(t) + FA(t) +AT (t)F − FS(t)F, t ∈ [0, tf ] (3)

and the matrix-valued function Φ(t), t ∈ [0, tf ] be the unique solution of the terminal-value
problem

dΦ(t)

dt
= −

(
A(t)− S(t)F

)T
Φ(t), t ∈ [0, tf ], Φ(tf ) = In,

where S(t) = B(t)G−1
u (t)BT (t)− C(t)G−1

v (t)CT (t), t ∈ [0, tf ].
Matrix Φ(t) is invertible for all t ∈ [0, tf ].
Define the matrices

S(t) = ΦT (t)S(t)Φ(t), D(t) = Φ−1(t)D̃(t)
(
ΦT (t)

)−1
.

Proposition 1. Assume that the terminal-value problem

dK

dt
= KS(t)K −D(t), t ∈ [0, tf ], K(tf ) = 0, (4)

has the solution K = K(t) in the entire interval [0, tf ], and

M(t) = Φ(t)K(t)ΦT (t) + F, t ∈ [0, tf ]. (5)

Then the functions

u∗(t, x) = −G−1
u (t)BT (t)M(t)x ∈ Ωu, (t, x) ∈ [0, tf ]× Rn (6)
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and

v∗(t, x) = G−1
v (t)CT (t)M(t)x ∈ Ωv, (t, x) ∈ [0, tf ]× Rn (7)

are the optimal controls of the minimizer and maximizer, respectively, in the LQDG. Moreover,
the pair

(
u∗(t, x), v∗(t, x)

)
is the saddle point of the LQDG, the value of this game has the form

J∗(x0) = J
(
u∗(t, x), v∗(t, x)

)
= xT

0 M(0)x0 (8)

and, for any u(t, x) ∈ Υu

(
v∗(t, x)

)
and any v(t, x) ∈ Υv

(
u∗(t, x)

)
, the following saddle-point

inequality is valid:

J
(
u∗(t, x), v(t, x)

)
≤ J∗(x0) ≤ J

(
u(t, x), v∗(t, x)

)
.

Remark 1. The matrix function M(t) given by (5) satisfies the terminal value problem

dM

dt
= −MA(t)−AT (t)M +MS(t)M −D(t), M(tf ) = F. (9)

The known LQDG solvability condition [6] assumes the existence of the solution of (9) in the
entire interval [0, tf ]. The condition, based on the Riccati equation in (4), having the zero
terminal condition, is considerably simpler. The solution of (4), if exists, is unique.

Following [10], along with the problem (4), let us consider the terminal-value problem

dK
dt

= εKS(t)K −D(t), t ∈ [0, tf ], K(tf ) = 0, (10)

where ε is an artificial parameter varying in the interval [0, 1].
For ε = 1, the problem (10) becomes the problem (4), while, for ε = 0, the problem (10)

becomes the simplest terminal-value problem

dK0

dt
= −D(t), t ∈ [0, tf ], K0(tf ) = 0,

which has the unique solution

K0 = K0(t) =

∫ tf

t

D(ξ)dξ (11)

in the entire interval [0, tf ].
The objectives of the paper are:

(a) using the formal expansion of the solution to the problem (10) in the power series of ε,
to derive a novel sufficient condition for the existence of the solution to the problem (4)
in the entire interval [0, tf ];

(b) using this condition, to construct the approximation of the solution to the problem (4)
and to obtain a novel estimate for the approximation’s error;

(c) using the approximation of the solution to the problem (4), to design the suboptimal
players’ controls in the LQDG and to obtain novel estimates for the closeness of the
guaranteed results of these controls to the game value.
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3 Solution of the problem (4)

Similarly to [10], we look for the solution to the terminal-value problem (10) in the form of the
power series with respect to ε

K(t, ε) =

+∞∑
k=0

Kk(t)ε
k, (12)

where K0(t) is given by (11).
Substituting (12) into the problem (10) and equating the coefficients for εk, (k = 1, 2, ...) on

both sides of the resulting differential equation and terminal condition yield the terminal-value
problems for the matrix-valued coefficients of the series (12):

K̇k(t) =

k−1∑
j=0

Kj(t)S(t)Kk−j−1(t), Kk(tf ) = 0, k = 1, 2, ... (13)

Solving these problems, we obtain the expressions for the matrix-valued coefficients in the
series (12)

Kk(t) =

k−1∑
j=0

∫ t

tf

Kj(ξ)S(ξ)Kk−j−1(ξ)dξ, t ∈ [0, tf ], k = 1, 2, .... (14)

Since the matrix-valued functions S(t) and D(t) are continuous in the interval [0, tf ], then
there exist the following finite values:

αS ≜ max
t∈[0,tf ]

∥∥S(t)∥∥, α0 ≜ max
t∈[0,tf ]

∥∥K0(t)
∥∥. (15)

Lemma 1. The matrix-valued coefficients (11), (14) of the series (12) satisfy the following
estimates: ∥∥Kk(t)

∥∥ ≤ αk+1
0 αk

S(tf − t)k, t ∈ [0, tf ], k = 0, 1, 2, .... (16)

The lemma is proved by the induction over k, based on the explicit solution (14) of the
problems (13).

For given ε ∈ [0, 1] and t ∈ [0, tf ], the series (12) is called to be strong convergent [18] if the
series

+∞∑
k=0

∥∥Kk(t)
∥∥εk

is convergent. Based on the results of [18] and using Lemma 1, we directly have the following
assertion.

Proposition 2. Let, for given ε ∈ [0, 1] and t ∈ [0, tf ], the series

+∞∑
k=0

αk+1
0 αk

S(tf − t)kεk, k = 0, 1, 2, ... (17)

converge. Then, for these ε and t, the series (12) strongly converges.

Lemma 2. Let, for given ε ∈ [0, 1] and t ∈ [0, tf ], the following inequality be satisfied:

α0αS(tf − t)ε < 1.

Then, for these ε and t, the series (17) converges.
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The lemma is proved by exploiting the d’Alembert (ratio) criterion (see, e.g., [14]).
Setting formally ε = 1 in (12), we obtain the series

K(t, 1) =

+∞∑
k=0

Kk(t). (18)

Corollary 1. Let the following inequality be satisfied:

β ≜ α0αStf < 1. (19)

Then, the series (18) strongly converges uniformly with respect to t ∈ [0, tf ]. Moreover, the sum
K(t, 1) of this series is a differentiable matrix-valued function in the interval [0, tf ].

The main result of this section is as follows.

Theorem 1. Let the inequality (19) be satisfied. Then, the terminal-value problem (4) has the
unique solution in the entire interval [0, tf ] and this solution is K = K(t) = K(t, 1).

By differentiating the series (18) and exploiting the Cauchy product (see, e.g., [14]), it is
proved that the function K(t, 1), given by (18), satisfies the Riccati equation (4). This, along
with Corollary 1, proves the theorem.

Remark 2. Note, that the condition (19) for the existence of the solution to the terminal-value
problem (4) in the entire interval [0, tf ] is the novel one and it considerably differs from such a
condition obtained in the work [10].

Consider the matrix-valued function

Km(t) ≜
m−1∑
k=0

Kk(t), t ∈ [0, tf ], m ≥ 1. (20)

The following statement on the approximation of the function K(t) is a consequence of
Theorem 1.

Theorem 2. Let the inequality (19) be satisfied. Then, the following inequality is valid:∥∥K(t)−Km(t)
∥∥ ≤ µm(t), t ∈ [0, tf ], m ≥ 1, (21)

where

µm(t) = α0

(
α0αS(tf − t)

)m
1− α0αS(tf − t)

, (22)

and

lim
m→+∞

µm(t) = 0 (23)

uniformly with respect to t ∈ [0, tf ].

Proof. Due to (18) and (20),

K(t)−Km(t) = K(t, 1)−Km(t) =

+∞∑
k=m

Km(t),
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yielding by (16) and (19) the estimate

∥∥K(t)−Km(t)
∥∥ ≤

+∞∑
k=m

αk+1
0 αk

S(tf − t)k =

α0

(
α0αS(tf − t)

)m
1− α0αS(tf − t)

= µm(t).

The limit equality (23) is a direct consequence of the inequality (19). This completes the proof
of the theorem. 2

Remark 3. Note, that the estimate (21)-(22) for the error in the approximation of the solution
to the terminal-value problem (4) in the entire interval [0, tf ] is the novel one and it considerably
differs from such an estimate obtained in the work [10]

4 Main results: suboptimal players’ controls in the LQDG

Due to the equations (5), (20) and Theorem 2, the matrix function M(t) is approximated by
the matrices

Mm(t) ≜ Φ(t)Km(t)ΦT (t) + F, t ∈ [0, tf ], m ≥ 1. (24)

Remark 4. Due to Theorem 2 and the equations (5) and (24), the following estimate holds:∥∥∆Mm(t)
∥∥ ≤ c2Φα0β

m

1− β
, t ∈ [0, tf ], m ≥ 1, (25)

where
∆Mm(t) ≜ M(t)−Mm(t), (26)

cΦ ≜ maxt∈[0,tf ]

∥∥Φ(t)∥∥.
4.1 Suboptimal maximizer’s control of the LQDG

Using the equations (7) and (24), we construct (similarly to [10]) the maximizer’s linear feedback
control

vm(t, x) = G−1
v (t)CT (t)Mm(t)x, (t, x) ∈ [0, tf ]×Rn. (27)

The control (27) is admissible in the LQDG.
Substituting v = vm(t, x) into the system (1) and the cost functional (2), we obtain after a

routine algebra the following new system and cost functional:

dx

dt
= Av,m(t)x+B(t)u, t ∈ [0, tf ], x(0) = x0, (28)

Jv,m(u) = xT (tf )Fx(tf )

+

∫ tf

0

[
xT (t)Dv,m(t)x(t) + uT (t)Gu(t)u(t)

]
dt, (29)

where

Av,m(t) = A(t) + Sv(t)Mm(t),

Dv,m(t) = D(t)−Mm(t)Sv(t)Mm(t),

Sv(t) = C(t)G−1
v (t)CT (t). (30)
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In (28) and (29), x ∈ Rn is a state variable, while u ∈ Rr is a control.
Consider the optimal control problem of the minimization of the cost functional (29) with

respect to u along trajectories of the system (28).
Let

Su(t) = B(t)G−1
u (t)BT (t).

By virtue of the results of [12], we have the following proposition.

Proposition 3. If the terminal-value problem for the Riccati matrix differential equation

dL

dt
= −LAv,m(t)−AT

v,m(t)L+ LSu(t)L−Dv,m(t),

t ∈ [0, tf ], L(tf ) = F. (31)

has the solution L = Lm(t) in [0, tf ], then the optimal control in the problem (28), (29) is

u = u∗
m(t, x)

△
= −G−1

u (t)B(t)TLm(t)x, (t, x) ∈ [0, tf ]×Rn.

The optimal value of the cost functional in the optimal control problem (28), (29) is

J∗
v,m(x0) ≜ Jv,m

(
u∗
m(t, x)

)
= xT

0 Lm(0)x0. (32)

The value J∗
v,m(x0) is called the guaranteed result of the control vm(t, x) in the LQDG. If,

for any x0 ∈ Rn, limm→+∞ J∗
v,m(x0) = J∗(x0), then the control vm(t, x) is called a suboptimal

maximizer’s control in the LQDG.

Theorem 3. Let the inequality (19) be satisfied. Then, there exist an integer mv,0 ≥ 1 and a
number cv,0 > 0 such that the guaranteed result of the control vm(t, x) satisfies the inequality∣∣J∗(x0)− J∗

v,m(x0)
∣∣ ≤ cv,0∥x0∥2β2m, m ≥ mv,0, (33)

meaning that vm(t, x) is the suboptimal maximizer’s control in the LQDG.

Proof. Let us denote

∆Lm(t) ≜ M(t)− Lm(t), t ∈ [0, tf ], m ≥ 1.

Due to (3), (9), (30), (31), we obtain after a routine algebra the terminal-value problem for
∆Lm(t)

d∆Lm(t)

dt
= −∆Lm(t)

(
A(t)− S(t)M(t)

)
−
(
A(t)− S(t)M(t)

)T
∆Lm(t)

−∆Lm(t)Sv(t)∆Mm(t)−∆Mm(t)Sv(t)∆Lm(t)

−∆Lm(t)Su(t)∆Lm(t)−∆Mm(t)Sv(t)∆Mm(t),

∆Lm(tf ) = 0.

(34)

By virtue of the results of [1], we can rewrite the problem (34) in the equivalent integral form

∆Lm(t) =

∫ tf

t

ΨT (σ, t)
[
∆Lm(σ)Sv(σ)∆Mm(σ)

+∆Mm(σ)Sv(σ)∆Lm(σ) + ∆Lm(σ)Su(σ)∆Lm(σ)

+∆Mm(σ)Sv(σ)∆Mm(σ)
]
Ψ(σ, t)dσ, t ∈ [0, tf ],
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where, for any given t ∈ [0, tf ], the n× n-matrix-valued function Ψ(σ, t) satisfies the problem

dΨ(σ, t)

dσ
=

(
A(σ)− S(σ)M(σ)

)
Ψ(σ, t), σ ∈ [t, tf ],

Ψ(t, t) = In.

By applying the successive approximations method [4] with the zero initial guess, it is shown
that there exist an integer mv,0 ≥ 1 and a number cv,0 > 0 such that

max
t∈[0,tf ]

∥∥∆Lm(t)
∥∥ ≤ cv,0β

2m, m ≥ mv,0. (35)

Due to (8) and (32), the inequality (35) directly yields the estimate (33). 2

Remark 5. Due to (25)–(26), the matrix-valued function Mm(t) approximates the matrix-
valued function M(t) with the accuracy of the order of βm. However, as it is seen from the
inequality (33), the suboptimal maximizer’s control vm(t, x), based on Mm(t), yields its guar-
anteed result J∗

v,m(x0) in the LQDG which approximates the value J∗(x0) of this game with the
accuracy of the order of β2m. Moreover, due to Remark 2, this accuracy differs considerably
from such an accuracy obtained in the work [10].

4.2 Suboptimal minimizer’s control of the LQDG

Using the equations (6) and (24), we construct (similarly to [10]) the minimizer’s linear feedback
control

um(t, x) = −G−1
u (t)BT (t)Mm(t)x, (t, x) ∈ [0, tf ]×Rn. (36)

The control (36) is admissible in the LQDG. Substituting u = um(t, x) into the system (1) and
the cost functional (2) yields the following new system and cost functional:

dx

dt
= Au,m(t)x+ C(t)v, t ∈ [0, tf ], x(0) = x0, (37)

Ju,m(v) = xT (tf )Fx(tf )

+

∫ tf

0

[
xT (t)Du,m(t)x(t)− vT (t)Gv(t)v(t)

]
dt, (38)

where

Au,m(t) = A(t)− Su(t)Mm(t),

Du,m(t) = D(t) +Mm(t)Su(t)Mm(t).

In (37) and (38), x ∈ Rn is a state variable, while v ∈ Rs is a control.
Consider the optimal control problem of the maximization of the cost functional (38) with

respect to v along trajectories of the system (37). The following statement holds, similar to
Proposition 3.

Proposition 4. If the terminal-value problem for the Riccati matrix differential equation

dN

dt
= −NAu,m(t)−AT

u,m(t)N −NSv(t)N −Du,m(t),

t ∈ [0, tf ], N(tf ) = F,
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has the solution N = Nm(t) in [0, tf ], then the optimal control problem (37), (38) has the
solution (the optimal control)

v = v∗m(t, x)
△
= G−1

v (t)C(t)TNm(t)x, (t, x) ∈ [0, tf ]× Rn.

The optimal value of the cost functional in the optimal control problem (37), (38) is

J∗
u,m(x0)

△
= Ju,m

(
v∗m(t, x)

)
= xT

0 Nm(0)x0.

The value J∗
u,m(x0) is called the guaranteed result of the control um(t, x) in the LQDG. If,

for any x0 ∈ Rn, limm→+∞ J∗
u,m(x0) = J∗(x0), then the control um(t, x) is called a suboptimal

minimizer’s control in the LQDG.

Theorem 4. Let the inequality (19) be satisfied. Then, there exist an integer mu,0 ≥ 1 and a
number cu,0 > 0 such that the guaranteed result of the control um(t, x) satisfies the inequality∣∣J∗(x0)− J∗

u,m(x0)
∣∣ ≤ cu,0∥x0∥2β2m, m ≥ mu,0, (39)

meaning that um(t, x) is the suboptimal minimizer’s control in the LQDG.

The theorem is proved in the same lines as Theorem 3.
Similarly to Remark 5, the following should be noted.

Remark 6. Due to (25)–(26), the matrix-valued function Mm(t) approximates the matrix-
valued function M(t) with the accuracy of the order of βm. However, as it is seen from the
inequality (39), the suboptimal minimizer’s control um(t, x), based on Mm(t), yields its guar-
anteed result J∗

u,m(x0) in the LQDG which approximates the value J∗(x0) of this game with the
accuracy of the order of β2m. Moreover, due to Remark 2, this accuracy differs considerably
from such an accuracy obtained in the work [10].

5 Example: pursuit-evasion engagement of two flying ve-
hicles

Consider the following system:

dx1

dt
= x2, t ∈ [0, tf ], x1(0) = 0,

dx2

dt
= −u+ v, t ∈ [0, tf ], x2(0) = x20.

(40)

The system (40) is a linearized kinematic model of a planar pursuit-evasion engagement
between two flying vehicles called a pursuer and an evader. In this model, it is assumed that
the pursuer and the evader are directly controlled by their lateral accelerations u = u(t) and
v = v(t), respectively. The state coordinates x1 = x1(t) and x2 = x2(t) are the relative
lateral separation and the relative lateral velocity of the vehicles. For more details of such an
engagement, one can see, for instance, the work [21] and references therein.

Let the 2 × 2-matrix-valued function P(t) be the unique solution of the terminal-value
problem

dP(t)

dt
= −P(t)

[
0 1
0 0

]
, t ∈ [0, tf ], P(tf ) = I2.
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A scalar state variable, playing an important role in analysis and solution of linear pursuit-
evasion problems, is the so-called zero-effort miss distance (ZEMD) defined for the system (40)
as follows (see, e.g., [21]):

z(t) = [1, 0]P(t)

[
x1(t)
x2(t)

]
, t ∈ [0, tf ],

yielding z(t) = x1(t) + (tf − t)x2(t), t ∈ [0, tf ].
The state variable z(t) satisfies the initial-value problem

dz

dt
= −(tf − t)u+ (tf − t)v, t ∈ [0, tf ], z(0) = z0

△
= tfx20. (41)

Furthermore, z(t) satisfies the equality

z(tf ) = x1(tf ),

and it has the following physical interpretation. If players’ controls u(t) ≡ 0 and v(t) ≡ 0 in
the interval [t̄, tf ], (t̄ ∈ [0, tf )), then the miss distance |x1(tf )| equals to |z(t̄)|.

In what follows in this section, we consider the pursuit-evasion engagement described by the
scalar system (41). The behaviour of the players in this engagement is evaluated by the cost
functional

J(u, v) =

∫ tf

0

[
gz,1 exp

(
gz,2t

)
z2(t) + guu

2(t)− gvv
2(t)

]
dt, (42)

where the scalar coefficient gz,1 > 0 is a given constant; gu and gv are given positive constants
and gu ̸= gv; the scalar coefficient gz,2 is a given nonzero constant. Thus, in this example,
n = r = s = 1, A(t) ≡ 0, B(t) = −(tf − t), C(t) = tf − t, F = 0, Gu = gu, Gv = gv, and
D(t) = gz,1 exp

(
gz,2t

)
.

Remark 7. It should be noted that the equation of dynamics (41) in the differential game
(41),(42) is similar to such an equation in the example of the work [10]. However, the cost
functional (42) differs considerably from the cost functional in the example of the work [10]
meaning that the game (41),(42) considerably differs from the differential game in the example
of the work [10].

Since F = 0, in this example, the functions M(t) = K(t) satisfy the terminal value problem

dM

dt
= S(t)M2 −D(t), M(tf ) = 0. (43)

where

S(t) = guv(tf − t)2,

guv = 1/gu − 1/gv.

Due to [12], for gu < gv, the solution of (43) exists in the whole interval [0, tf ] for any tf > 0. If
gu > gv, then for sufficiently large tf , the interval [0, tf ] can contain a conjugate point, meaning
that the solution of (43) does not exist in the whole interval [0, tf ]. In general, a task of checking
the game solvability is difficult. In this case, the sufficient condition (19) serves as a practical
instrument of verifying the LQDG solvability.
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In this example, we chose the following parameters:

tf = 1.1, gz1 = 0.5, gz2 = 0.1, gu = 0.11, gv = 0.1.

For these parameters, by direct integration in (11),

K0(t) = 5 (exp(0.11)− exp(0.1t)) .

The estimates (15) are αS = 1.1, α0 = 0.5814 (see Figure 1), yielding β = 0.7035.

Figure 1: Functions |S(t)| and K0(t).

In this example, the approximating functions Mm(t) are

Mm(t) =

m−1∑
k=0

Kk(t), m ≥ 1.

In Figure 2, the absolute values of the approximation errors ∆Mm(t) are depicted form = 1, 2, 3.
It is seen that for m = 3 the approximation is very accurate.

Figure 2: Approximation errors |∆Mm(t)|, m = 1, 2, 3.

The values

δMm = sup
t∈[0,tf ]

|M(t)−Mm(t)|
|M(t)|
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are presented for m = 1, 2, 3 in Table 1.

δM1 δM2 δM3

0.1452 0.0227 0.0033

Table 1: Values of δMm, m = 1, 2, 3.

The LQDG value along with the guaranteed results (32) for the suboptimal maximizer are
presented in Table 2. The relative approximation errors

δJ∗
v,m =

|J∗ − J∗
v,m|

J∗ , (44)

are shown in Table 3. The corresponding outcomes for the suboptimal minimizer are presented
in Table 4. The relative approximation errors

δJ∗
u,m =

|J∗ − J∗
u,m|

J∗

are shown in Table 5. These results illustrate Theorems 3 and 4 on the approximation of the
game value by the guaranteed results of the suboptimal maximizer and minimizer, respectively.

Optimal Suboptimal maximizer
J∗ J∗

v,1 J∗
v,2 J∗

v,3

0.680378 0.671404 0.680239 0.680377

Table 2: Game outcomes for suboptimal maximizer.

δJ∗
v,1 δJ∗

v,2 δJ∗
v,3

0.0132 2.039 · 10−4 1.453 · 10−6

Table 3: Comparison results for suboptimal maximizer.

Figure 3: Trajectories: optimal and suboptimal maximizer, m = 1, 2, 3.
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Optimal Suboptimal minimizer
J∗ J∗

u,1 J∗
u,2 J∗

u,3

0.680378 0.690811 0.680509 0.680379

Table 4: Game outcomes for suboptimal minimizer.

δJ∗
u,1 δJ∗

u,2 δJ∗
u,3

0.0153 1.922 · 10−4 1.362 · 10−6

Table 5: Comparison results for suboptimal minimizer.

Figure 4: Trajectories: optimal and suboptimal minimizer, m = 1, 2, 3.

The optimal and suboptimal trajectories are depicted in Figures 3 and 4 for the suboptimal
maximizer and minimizer, respectively. These figures justify a reasonable conjecture that the
convergence J∗

v,m → J∗ and J∗
u,m → J∗ for m → ∞, guaranteed by Theorems 3 and 4, leads to

the C-norm convergence of the trajectories.

In Figures 5 and 6, the values of the solvability parameter β and the game value J∗ are
depicted as functions of tf . It is seen that β < 1 for tf < 1.19, and the LQDG is solvable
in accordance with Theorem 1. For tf > t∗f = 1.72, the solution of the problem (4) does not
exist in the whole interval [0, tf ] (it contains a conjugate point), and the LQDG is not solvable.
For tf ∈ [1.19, 1.71], the LQDG is solvable, although β > 1, demonstrating that the solvability
condition (19) is sufficient and not necessary.

6 Conclusions

In this paper, the zero-sum finite horizon linear-quadratic differential game was considered.
The existence of solution to this game and its approximation were studied. This study is based
on the qualitative analysis and approximate solution of the terminal-value problem for the
game-theoretic Riccati matrix differential equation associated with the considered game by the
solvability conditions. Using the artificial (auxiliary) parameter method [10], the novel sufficient
condition for the existence of solution to this terminal-value problem in the entire time-interval
of the game’s duration was obtained. The analytical form’s approximation of this solution was
derived. The novel estimate for the error of this approximation was established. Based on
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Figure 5: The value of β.

Figure 6: The game value J∗.

the approximate solution to the aforementioned terminal-value problem for the game-theoretic
Riccati matrix differential equation, the players’ suboptimal state-feedback controls in the con-
sidered differential game were designed. The guaranteed results of these controls were derived.
The novel estimates for the closeness of these guaranteed results to the value of the game were
established. It was shown that the error in the approximation of the game value by each of these
guaranteed results is the square of the order of smallness in the approximation’s error of the
solution to the terminal-value problem for the game-theoretic Riccati matrix differential equa-
tion. Based on the theoretical results of the paper, the linear-quadratic pursuit-evasion game,
modeling the planar engagement of two flying vehicles with zero-order (ideal) linear control dy-
namics, was considered. The existence of the game’s solution was established and its analytical
approximation was derived. The obtained numerical results show that three (and even two)
iterations in the approximation of the solution to the corresponding terminal-value problem
for the game-theoretic Riccati differential equation yield very accurate approximation of the
game value by the guaranteed results of the corresponding pursuer’s and evader’s suboptimal
state-feedback controls. In the future research, the presented results will be applied to a gener-
alized zero-sum linear-quadratic differential game and to the Nash Equilibrium linear-quadratic
differential game.
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Dynamic Game Approach. Birkhäuser, Boston, MA, USA, 1995.
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