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Abstract

This paper presents a comparative analysis of two lattice-based post-quantum digital
signature schemes: FALCON and SOLMAE. FALCON which was finallty selected by
NIST for PQC standardization, represents an efficient realization of the GPV framework
over NTRU lattices. SOLMAE, inspired by FALCON, Mitaka, and Antrag, aims
to improve implementation simplicity and performance while preserving strong security
guarantees.

Adopting a pedagogical approach, we provide algorithmic insights into both schemes
and conduct practical evaluations using their Python implementations, focusing on key
generation, signing, and verification procedures. Performance comparisons at two NIST
security levels (512 and 1024 bits) highlight SOLMAE’s potential advantages in simplic-
ity and execution time, suggesting its suitability for deployment in resource-constrained
environments.

1 Introduction

In 1999, Shor [1] proposed an efficient randomized algorithm on a hypothetical quantum com-
puter to integer factorization and discrete logarithm problems in a polynomial time. Currently
the threat of attacking the legacy (or classical) secure system by using the quantum computer
is expected to be right at our fingertips due to the aggressive road map by IBM quantum com-
puting [2] and other notorious ICT companies. We are very concerned about so-called Harvest
Now, Decrypt Later attack [3] which is a surveillance strategy that relies on the acquisition and
long-term storage of currently unreadable encrypted data awaiting possible breakthroughs in
decryption technology that would render it readable in the future.

In 2016, NIST initiated Post Quantum Cryptography (PQC) project [4] to solicit, evaluate,
and standardize one or more quantum-resistant cryptographic algorithms for KEM and DS. Af-
ter several evaluation rounds, NIST announced in 2022 the selection of CRYSTALS-Kyber [5]
for KEM and CRYSTALS-Dilithium [6], FALCON [7] and SPHINCS+ [8] for digital signa-
tures. In 2024 the FIPS PUB standard of Kyber, Dilithium and SPHINCS+ were released
at [9], [10] and [11], respectively. As of writing this paper, the FIPS PUB standard of FALCON
is still in process.

SOLMAE [12] is conceived with inspiration from FALCON’s design; Some of the new
theoretical foundations were influenced by the proposals of Mitaka [13] and Antrag [14]
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while maintaining the FALCON’s security level across NIST’s five level (I to V). In order to
thoroughly comprehend FALCON and SOLMAE, one needs not only knowledge of algebra and
Gaussian sampling techniques, but also a solid understanding of lattice theory and polynomial
arithmetic.

Since Python packages implementing both signature schemes are publicly available, this
paper deliberately minimizes complex mathematical exposition. Instead, we adopt a peda-
gogical approach by focusing on practical, script-based explanations. The primary goal is to
make the underlying mechanisms of FALCON and SOLMAE accessible to a broader au-
dience—including students, educators, and developers—through clear Python examples that
illustrate key generation, signing, and verification procedures.

The organization of this paper is as follows: Section II introduces the notations and definition
used throughout the paper. Sections III and IV provide concise overviews of the FALCON
and SOLMAE signature schemes, respectively, including their key generation, signing, and
verification procedures. In Section V, we present the implementation details of FALCON–512
and FALCON–1024, along with SOLMAE–512 and SOLMAE–1024, based on their Python
code. Section VI offers a performance comparison between FALCON and SOLMAE at two
security levels by executing each scheme 1,000 times on a random message. Finally, Section
VII provides concluding remarks.

2 Notations

Matrices, vectors, and scalars

Matrices will usually be in bold uppercase (e.g., B), vectors in bold lowercase (e.g., v), and
scalars (which include polynomials) in italic (e.g. s). We use the row convention for vectors.
The transpose of a matrix B is denoted Bt. The ℓ2-norm of a vector x = (x1, . . . , xd) is

∥x∥ =
(∑

i |xi|2
)1/2

.

Lattice

A lattice is a discrete subgroup of the set of n-dimensional real numbers, Rn. Equivalently,
it is the set of integer linear combinations obtained from a basis B of Rn. The volume (or
determinant) of a lattice is detB (which is invariant for all bases of the lattice).

Ring lattices

For the rings Q = Q[x]/(ϕ) and Z = Z[x]/(ϕ), positive integers m ≥ n, and a full-rank matrix
B ∈ Qn×m, we denote by Λ(B) (the lattice generated by B), the set Zn ·B = {zB | z ∈ Zn}.
By extension, a set Λ is a lattice if there exists a matrix B such that Λ = Λ(B). We may say
that Λ ⊆ Zm is a q-ary lattice if qZm ⊆ Λ.

NTRU lattices

Let q be an integer, and let f ∈ Z[x]/(xd + 1) be a polynomial that is invertible modulo q
(equivalently, det[f ] is coprime with q). Let h = g/f mod q and consider the NTRU lattice
associated to h:

LNTRU = {(u,v) ∈ Z2d : [h]u− v = 0 mod q}.
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This lattice has volume qd. Over R[x]/(ϕ), where ϕ is a monic minimal polynomial,it is gener-
ated by (f, g) and any (F,G) such that fG− gF = q. For such a pair (f, g), (F,G), this means
that LNTRU has a basis of the form

Bf,g =

[
[f ] [F ]
[g] [G]

]
.

One checks that ([h],−Idd) · Bf,g = 0 mod q, so the verification key is h. The NTRU-search
problem is : given h = g/f mod q, find any (f ′ = xif, g′ = xig). In its decision variant,
one must distinguish h = g/f mod q from a uniformly random h ∈ Rq := Z[x]/(q, xd + 1) =
(Z/qZ)[x]/(xd + 1). These problems are assumed to be intractable for large d.

3 FALCON Signature Scheme

3.1 Overview

FALCON follows a framework introduced in 2008 by Gentry, Peikert, and Vaikuntanathan [15]
which we call the GPV framework for short over the NTRU lattices and uses a typically hash–
and–sign paradigm. Only the signer should be able to efficiently compute a lattice point close
enough to an arbitrary target. This is a decoding problem that can be solved when a basis of
short vectors is known. On the other hand, anyone wanting to check the validity of a signature
should be able to verify lattice membership. The KeyGen, Sign and Verif procedures for
FALCON will be introduced in brief later by restating the original specification [7].

3.2 Key Generation of FALCON

For the class of NTRU lattices, a trapdoor pair is (h,Bf,g) where h = f−1g,Bf,g is a trapdoor
basis over LNTRU and Pornin & Prest [16] showed that a completion (F,G) can be computed in
O(d log d) time from short polynomials f, g ∈ Z. In practice, their implementation is as efficient
as can be for this technical procedure: it is called NtruSolve in FALCON. Their algorithm
only depends on the underlying ring and has now a stable version for Z[x]/(xd + 1), where
d = 2n.

Algorithm 1 describes the pseudo–code for key generation of FALCON. Readers can
refer to Algorithms 5 and 6 in [7] for details on how to perform NtruGen and NtruSolve,
respectively. Additionally, Algorithms 9 in [7] explain the procedures for ffLDL*.

3.3 Signing of FALCON

Algorithm 2 sketches the pseudo-code for FALCON signing procedure.
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Algorithm 1 KeyGen of FALCON

Input: A monic polynomial ϕ ∈ Z[x], a modulus q
Output: A secret key sk, a public key pk

1: f, g, F,G← NtruGen(ϕ, q) // Solving the NTRU equation

2: B←
[
g −f
G −F

]
;

3: B̂← FFT(B) // Compute FFT for each {g,−f,G,−F}
4: G← B̂× B̂∗;
5: T← ffLDL∗(G) // Compute the LDL* tree
6: for each leaf of T do
7: leaf.value← σ/

√
leaf.value // Normalization step

8: sk← (B̂,T);
9: h← gf−1mod q;

10: pk← h;
11: return sk, pk

Algorithm 2 Sign of FALCON

Input: A message M ∈ {0, 1}∗, secret key sk, a bound γ.
Output: A pair (r, Compress(s1)) with r ∈ {0, 1}320 and ∥(s1, s2)∥ ≤ γ.
1: r ← U({0, 1}320)
2: c← HashToPoint(r||M, q, n)
3: t← (− 1

q FFT(c)⊙ FFT(F ), 1
q FFT(c)⊙ FFT(f)) // t = (FFT(c),FFT(0)) · B̂−1

4: do
5: do
6: z← ffSamplingn(t,T)

7: s = (t− z)B̂ // At this point, s follows Gaussian distribution.
8: while ||s||2 > γ
9: (s1, s2)← FFT-1(s)

10: s← Compress(s2, 8 · sbytelen− 328) // Remove 1 byte for the header, and 40 bytes
for r

11: while(s = ⊥)
12: return (r, s)

The signing procedure in FALCON is at first to compute a hashed value c ∈ Zq[x]/(ϕ)
from the message, M and a salt r, then using the secret key, f, g, F ,and G to generate two
short values (s1, s2) such that s1 + s2h = c mod q. An interesting feature is that only the
first half of the signature (s1, s2) needs to be sent along the message, as long as h is available
to the verifier. This comes from the identity hs1 = s2 mod q defining these lattices, as we
will see in the Verif algorithm description. The core of FALCON signing is to use ffSampling
(Algorithm 11 in [7]) which applies a randomizing rounding according to Gaussian distribution
on the coefficient of t = (t0, t1) ∈ (Q[x]/(ϕ))2 stored in the FALCON Tree, T at the KeyGen

procedure of FALCON. This fast Fourier sampling algorithm can be seen as a recursive version
of Klein’s well–known trapdoor sampler, but cannot be computed in parallel also known as the
GPV sampler. Klein’s sampler uses a matrix L and the norm of Gram–Schmidt vectors as a
trapdoor while FALCON are using a tree of non-trivial elements in such matrices.
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3.4 Compress and Decompress Algorithms

The specification [7] of FALCON suggests encoding and decoding algorithms to reduce the size
of keys and signatures. For the sake of simplicity, we skip their detailed description here. The
Compress and Decompress techniques are generic and have no impact on the security level.

3.5 Verification of FALCON

The last step of the scheme is thankfully simpler to describe. Upon receiving a signature (r, s)
and message M , the verifier decompresses s to a polynomial s1 and c = (0, H(r||M)), then
wants to recover the full signature vector v = (s1, s2). If v is a valid signature, the verification
identity is (h,−1) · (c − v) = −H(r||M) − hs1 + s2 mod q = 0, or equivalently the verifier can
compute

s2 = H(r||M) + hs1 mod q.

This is computed in the ring Rq, and can be done very efficiently for a good choice of modulus q
using the Number Theoretic Transform (NTT). FALCON currently follow the standard choice
of q = 12, 289, as the multiplication in NTT format amounts to d integer multiplications in
Z/qZ. The last step is to check that ∥(s1, s2)∥2 ≤ γ2: the signature is only accepted in this
case. The rejection bound γ comes from the expected length of vectors outputted by Sample

described as Algorithm 4 in [12]. Due to the page limit, the pseudo–code of verification
procedure of FALCON is skipped.

4 SOLMAE signature Scheme

4.1 Overview

SOLMAE removes the inherent technicality of the sampling procedure, and most of its in-
duced complexity from an implementation standpoint, for free, that is with no loss of efficiency.
This simplicity translates into faster operations while preserving signature and verification key
sizes, in addition to allowing for additional features absent from FALCON, such as enjoying
less expensive masking, and being parallelizable. In 2023, Espitau et al. suggested so–called
Antrag in order to improve Mitaka without loss of security covering all NIST 5 levels of
security using the degree of cyclotomic ring from 512 to 1024 over specific cyclotomic polyno-
mials under the prime modulus but is not limited to the power of 2. Taking all advantages
of FALCON, Mitaka and Antrag, SOLMAE is yet another quantum–safe signature based
on NTRU trapdoor and achieves better performance for the same security and advantages as
FALCON which focused only on NIST I and V levels of security. More precisely, SOLMAE
offers the “best of three worlds” between FALCON, Mitaka and Antrag. For details on
SOLMAE, refer to [12]. The main ingredients of SOLMAE are as follows:

• An optimally tuned key generation algorithm, enhancing the security of the new
sampler to that of FALCON’s security level;

• The hybrid sampler is a faster, simpler, parallelizable and maskable Gaussian sampler
to generate signatures;

• Easy implementation by assembling all the advantages of Mitaka and Antrag to
make faster and simpler for practical purposes.
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4.2 Key Generation of SOLMAE

An important concern here is that not all pairs (f, g), (F,G) gives good trapdoor pairs for
Sample described as Algorithm 4 in [12]. Schemes such as FALCON and Mitaka solve
this technicality essentially by sieving among all possible bases to find the ones that reach
an acceptable quality for the Sample procedure. This technique is costly, and many tricks
were used to achieve an acceptable KeyGen. This sieving routine was bypassed by redesigning
completely how good quality bases can be found. This improves the running time of KeyGen and
also increases the security offered by Sample. In any case, note that NtruSolve’s running time
largely dominates the overall time for KeyGen: this is not avoidable as the basis completion
algorithm requires working with quite large integers and relatively high-precision floating-point
arithmetic. At the end of the procedure, the secret key contains not only the secret basis but
also the necessary data for Sign and Sample. This additional information can be represented
by elements in KR and is computed during or at the end of NtruSolve. All-in-all, KeyGen
outputs:

sk = (b1 = (f, g),b2 = (F,G), b̃2 = (F̃ , G̃),Σ1,Σ2, β1, β2),

pk = (h, q, σsig, η),

where we recall that h = g/f mod q.

These parameters and a table of their practical values are described more thoroughly in [12].
Informally, they correspond to the following:

• (f, g), (F,G) is a good basis of the lattice LNTRU associated to h, with quality Q(f, g) = α,

and b̃2 is the Gram-Schmidt orthogonalization of (F,G) with respect to (f, g);

• σsig, η are respectively the standard deviation for signature vectors, and a tight upper
bound on the “smoothing parameter of Zd”;

• Σ1,Σ2 ∈ KR represent covariance matrices for two intermediate Gaussian samplings in
Sample;

• the vectors β1, β2 ∈ K2
R represent the orthogonal projections from K2

R onto KR · b1 and

KR · b̃2 respectively. In other words, they act as “getCoordinates” for vectors in K2
R.

They are used by Sample and are precomputed for efficiency.

Algorithm 3 computes the necessary data for signature sampling, then outputs the key
pair. Note that NtruSolve could also compute the sampling data and the public key, but for
clarity, the pseudo-code gives these tasks to KeyGen of SOLMAE.
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Algorithm 3 KeyGen of SOLMAE

Input: A modulus q, a target quality parameter 1 < α, parameters σsig, η > 0
Output: A basis ((f, g), (F,G)) ∈ R2 of an NTRU lattice LNTRU with Q(f, g) = α;
1: while f is invertible modulo q do
2: b1 := (f, g)← PairGen(q, α,R−, R+) // Secret basis computation between R− and R+

3: end while
4: b2 := (F,G)← NtruSolve(q, f, g):
5: h← g/f mod q // Public key data computation
6: γ ← 1.1 · σsig ·

√
2d // tolerance for signature length

7: β1 ← 1
⟨b1,b1⟩K · b1 // Sampling data computation, in Fourier domain

8: Σ1 ←
√

σ2
sig

⟨b1,b1⟩K − η2

9: b̃2 := (F̃ , G̃)← b2 − ⟨β1,b2⟩ · b1

10: β2 ← 1

⟨b̃2,b̃2⟩K
· b̃2

11: Σ2 ←
√

σ2
sig

⟨b̃2,b̃2⟩K
− η2

12: sk← (b1,b2, b̃2,Σ1,Σ2, β1, β2)
13: pk← (q, h, σsig, η, γ)
14: return sk, pk

4.3 Signing of SOLMAE

Recall that NTRU lattices live in R2d. Their structure also helps to simplify the preimage
computation. Indeed, the signer only needs to compute m = H(M) ∈ Rd, as then c = (0,m) is
a valid preimage: the corresponding polynomials satisfy (h, 1) · c = m.

As the same with Sign procedure of FALCON, an interesting feature is that only the first
half of the signature (s1, s2) ∈ LNTRU needs to be sent along the message, as long as h is
available to the verifier. This comes from the identity hs1 = s2 mod q defining these lattices,
as we will see in the Verif algorithm description.

Because of their nature as Gaussian integer vectors, signatures can be encoded to reduce
the size of their bit-representation. The standard deviation of Sample is large enough so that
the ⌊log√q⌋ least significant bits of one coordinate are essentially random.

In practice, Sign adds a random “salt” r ∈ {0, 1}k, where k is large enough that an un-
fortunate collision of messages is unlikely to happen, that is, it hashes (r||M) instead of M as
identical to FALCON. A signature is then to be shortened sig = (r, Compress(s1)) using the
same compression algorithm in FALCON. SOLMAE cannot output two different signatures
for a message like FALCON as mentioned before. Algorithm 4 shows its pseudo–code of
signing procedure in SOLMAE.
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Algorithm 4 Sign of SOLMAE

Input: A message M ∈ {0, 1}∗, a tuple sk = ((f, g), (F,G), (F̃ , G̃), σsig,Σ1,Σ2, η), a rejection
parameter γ > 0.

Output: A pair (r, Compress(s1)) with r ∈ {0, 1}320 and ∥(s1, s2)∥ ≤ γ.
1: r ← U({0, 1}320)
2: c← (0, H(r||M))
3: ĉ← FFT(c)
4: while ∥(FFT-1(ŝ1),FFT

-1(ŝ2))∥2 ≤ γ2 do
5: (ŝ1, ŝ2)← ĉ− Sample(ĉ, sk) // (s1, s2)← DLNTRU,c,σsig

6: end while
7: s1 ← FFT-1(ŝ1)
8: s← Compress(s1)
9: return (r, s)

4.4 Verification of SOLMAE

The verification procedure used in SOLMAE is identical to that of used in FALCON.

5 Python Implementation

Using the Kim’s monograph[17], we will discuss how to verify the functionality of both FAL-
CON and SOLMAE by utilizing their Python modules as well as scheme-specific Python
implementations. This includes examining the common interface used for key generation, sign-
ing, and verification, along with the distinct internal components and optimizations that are
unique to each scheme.

5.1 Checking FALCON with Python

https://github.com/tprest/falcon.py contains an implementation of the FALCON signa-
ture scheme in Python at github repository. This repository contains the following files (roughly
in order of dependency):

1. common.py contains shared functions and constants

2. encoding.py contains compression and decompression

3. rng.py implements a ChaCha20-based PRNG, useful for KATs (standalone)

4. samplerz.py implements a Gaussian sampler over the integers (standalone)

5. fft constants.py contains precomputed constants used in the FFT

6. ntt constants.py contains precomputed constants used in the NTT

7. fft.py implements the FFT over R[x]/(xn + 1)

8. ntt.py implements the NTT over Zq[x]/(x
n + 1)

9. ntrugen.py generate polynomials f, g, F,G in Z[x]/(xn + 1) such that f ·G− g · F = q

10. ffsampling.py implements the fast Fourier sampling algorithm

11. falcon.py implements FALCON

12. test.py implements tests to check that everything is properly implemented

194



Comparison of Post-Quantum Signature Kwangjo Kim

5.1.1 Checking falcon.py

This section describes the correctness of executing FALCON–512 and FALCON–1024 from
the predetermined polynomials, f, g, F , and G which is provided as falcon.py in the FALCON
Python package simply. The value of n is fixed at 512 or 1024 depending on which version of
FALCON you are verifying.

By setting the value of n to 512 or 1024, Figs. 1 and 2 present an example of generated key
pairs, a random message, its signature in hexadecimal notation, the verification of signature for
FALCON–512 and FALCON–1024, respectively.

** Testing keygen, sign and verify procedures of Falcon-512
Test Case : 1
== Leading 10 values of private key
f = [1, -3, 0, 4, 0, 5, -3, -4, 4, -2, ...]
g = [-4, -7, 4, -2, 3, 3, -2, 4, -7, -1, ...]
F = [30, -32, -19, 0, -14, 46, -28, -18, 1, 19, ...]
G = [-25, -14, 10, 8, 28, 18, 7, 12, 34, -18, ...]
== Leading 10 values of public key
h = [11496, 8750, 6367, 8513, 9698, 2801, 11184, 7720, 3044, 6551, ...]
Messge = b’zyggautvsowlwphccrpgbaxlcj’
Signature = 393d488cde1b60858f3c5c23944a81 ... 00000000000000000000
Length of Signature: 666 Bytes
Verification passed!!

Figure 1: An example of KeyGen, Sign and Verif of Falcon-512

** Testing keygen, sign and verify procedures of Falcon-1024
Test Case : 1
== Leading 10 values of private key
f = [2, 1, 3, 3, 2, 2, 2, -4, 2, 0, ...]
g = [3, -3, -3, -1, 2, 3, 1, -2, 0, 2, ...]
F = [14, -13, -33, 46, 31, 8, 12, 29, 22, -2, ...]
G = [-58, 19, -8, 0, 6, -11, 2, 1, -1, 20, ...]
== Leading 10 values of public key
h = [3680, 7862, 6250, 919, 1038, 11753, 2971, 2770, 12273, 2831, ...]
Messge = b’rtkczofilqmoajhnnjrzycsojd’
Signature = 3a0b6d34bfc1b8baf6c08a409f9bbf ... bc24999fe5424e1a0000
Length of Signature: 1280 Bytes
Verification passed!!

Figure 2: An example of KeyGen, Sign and Verif of Falcon-1024

5.2 Checking SOLMAE with Python

SOLMAE Python package is available at web page: https://solmae-sign.info. To imple-
ment the SOLMAE in Python, the modules used for FALCON such as 1) common.py ... 9)
ntrugen.py are re-used, as their functionalities are also essential for the basic operation of
SOLMAE.

The SOLMAE-specific modules are as follows:

1. params.py contains security parameters

2. Unifcrown.py implements Unifcrown sampler and its test script

3. Pairgen.py implements Pairgen and its test script

4. keygen.py implements keygen and its test script

5. PeikertSampler.py implements Peikert Sampler

6. N sampler.py implements N-sampler

7. Sampler.py implements Sampler

195



Comparison of Post-Quantum Signature Kwangjo Kim

8. solmae.py implements keygen, sign and verify procedures of SOLMAE–512 or
SOLMAE–1024

9. test.py contains how to use and to check that everything is properly implemented.(same
as FALCON Python Package)

5.3 Checking solmae.py

This section describes the KeyGen, Sign, and Verif procedures of SOLMAE–512 and
SOLMAE–1024 from the randomly generated private and its corresponding public key.

The value of SOLMAE D in params.py is fixed at 512 or 1024 depending on which type of
SOLMAE you are verifying. Depending on the value of SOLMAE D in params.py, Figs. 3 and 4
present one test of randomly generated key data, a random 512 byte message, its signature in
hexadecimal notation, the verification of signature for SOLMAE–512 and SOLMAE–1024,
respectively.

**Testing of keygen, sign and verify procedures of SOLMAE-512
<< Test Case : 1 >>
==Leading 5 values of keygen function for SOLMAE-512
f = [-5, 5, 3, 0, 2, ...]
g = [-2, -1, 0, -5, -3, ...]
F = [15, -3, 17, -36, -9, ...]
G = [-29, -4, 22, -4, -37, ...]
h = [10584, 7983, 3214, 11619, 2601, ...]
f_fft = [18.000-106.311j, 51.018-54.726j, 98.702-53.016j, ...]
g_fft = [33.266+53.408j, -56.722+65.946j, -0.474+5.675j, ...]
F_fft = [491.941+455.316j, 251.152+124.845j, 239.141+322.386j, ...]
G_fft = [-372.041+103.780j, -185.559-13.212j, 76.266+53.164j, ...]
beta10_fft = [18.000-106.311j, 51.018-54.726j, 98.702-53.016j, ...]
beta11_fft = [33.266+53.408j, -56.722+65.946j, -0.474+5.675j, ...]
beta20_fft = [491.941+455.316j, 251.152+124.845j, 239.141+322.386j, ...]
beta21_fft = [-372.041+103.780j, -185.559-13.212j, 76.266+53.164j, ...]
Sigma1 = [0.377, 0.705, 0.776, ...]
Sigma2 = [1.148, 0.914, 0.848, ...]
Message = 3ec29088765e80f921aeb648ea26a2f990774b0f ... c24af424a492e304a
Length of Message: 512
Signature = 3904988187c26069f7c51cca41f625f9f53096c2 ... 5b880000000000000
Length of Sig. = 666 Bytes
Verification passed!!

Figure 3: An example of KeyGen, Sign and Verif of SOLMAE–512

6 Comparison of FALCON and SOLMAE

While performance evaluation using Python implementations may not provide an exact measure
of the true performance of FALCON and SOLMAE, it offers a rough indication of their
relative efficiency. The platform used for our comparison features an Intel Xeon E3-1230 v3
CPU running at 3.3GHz with 32GB RAM under Windows OS. We conducted experiments to
measure the average execution time in msec of the KeyGen, Sign, and Verif procedures for
both FALCON and SOLMAE, iterating 1,000 times on random messages ranging from 512 to
1024 bytes. Tables 1 and 2 summarize the average times in msec for KeyGen, Sign, and Verif

procedures for FALCON–512 vs SOLMAE–512 and FALCON–1024 vs SOLMAE–1024
(successful KeyGen’s count only by removing deadlock count), respectively. Our experimental
results indicate that, in terms of execution time across the three procedures, the two signature
schemes exhibit similar performance.
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**Testing of keygen, sign and verify procedures of SOLMAE-1024
<< Test Case : 1 >>
==Leading 5 values of keygen function for SOLMAE-1024
f = [-3, -2, -4, -1, 5, ...]
g = [2, -1, -2, 1, -2, ...]
F = [-22, 10, -21, -9, 3, ...]
G = [30, 3, 58, -15, -14, ...]
h = [6723, 11180, 8130, 1914, 7378, ...]
f_fft = [-104.280-96.797j, -69.196-56.365j, 34.935-44.066j, ...]
g_fft = [21.710+25.918j, 67.878+30.724j, -55.365+120.224j, ...]
F_fft = [-226.288+2151.829j, 35.686+60.839j, -400.363+278.509j, ...]
G_fft = [53.959-441.838j, -148.546+45.477j, 896.346-688.553j, ...]
beta10_fft = [-104.280-96.797j, -69.196-56.365j, 34.935-44.066j, ...]
beta11_fft = [21.710+25.918j, 67.878+30.724j, -55.365+120.224j, ...]
beta20_fft = [-226.288+2151.829j, 35.686+60.839j, -400.363+278.509j, ...]
beta21_fft = [53.959-441.838j, -148.546+45.477j, 896.346-688.553j, ...]
Sigma1 = [0.998, 1.624, 1.045, ...]
Sigma2 = [2.592, 1.891, 2.537, ...]
Message = 9ba020beb78f34e3b1f52596c519c754cd6079ed ... d8ba0867d484b8fc6
Length of Message: 1024
Signature = 3adeee535b7f475a7cdcf9fb6ac0874885711af9 ... 0000000000000000
Length of Sig. = 1375 Bytes
Verification passed!!

Figure 4: An example of KeyGen, Sign and Verif of SOLMAE–1024

Table 1: Comparison of FALCON–512 vs SOLMAE–512

FALCON–512 SOLMAE–512
KeyGen 6,029.52 4,100.78
Sign 35.38 47.33
Verif 9.52 9.88

7 Concluding Remark

In this work, we explored the design, implementation, and performance of two prominent lattice-
based post-quantum digital signature schemes: FALCON and SOLMAE. Through Python-
based simulations, we demonstrated that both schemes are efficient and secure, with SOLMAE
offering notable improvements in implementation simplicity and marginal gains in key gener-
ation performance. These findings suggest that SOLMAE may be a strong candidate for de-
ployment in resource-constrained systems. Future work will involve low-level implementations
(e.g., in C), as well as comprehensive evaluations of side-channel resistance and hardware-level
optimizations to assess practical deployment feasibility.
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