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Abstract 

Post-quantum cryptography (PQC) offers resistance against quantum adversaries. 

This study's practical implementations remain vulnerable to side-channel attacks (SCAs) 

that exploit timing, power, or electromagnetic leakage. In this study, we introduce an 

unsupervised, resource-efficient anomaly detection framework tailored to the unique 

constraints of post-quantum cryptography (PQC) systems. Unlike traditional methods 

that rely on labeled attack traces or algorithm-specific profiling, our approach leverages 

an autoencoder trained solely on benign traces to learn deep latent representations of 

normal cryptographic behavior. The system flags deviations using reconstruction error 

and supports multiple PQC schemes, including Kyber and Dilithium, without retraining. 

Experimental results demonstrate an average classification accuracy of 98.1%, with a 

false positive rate of 0.7% and a false negative rate of 0.4%. Under adversarial 

perturbation and Gaussian noise, the model maintains an AUC-ROC of 1.00, confirming 

its robustness. Additionally, ablation studies across CNN, GRU, and Transformer 

architectures validate the autoencoder’s superior trade-off between accuracy and latency, 

achieving an inference time of 0.036 ms and a model size of only 0.11 MB. This enables 

real-time deployment on constrained devices without sacrificing security. The proposed 

solution marks a step forward in scalable, adaptive post-quantum defenses and opens new 

directions for cryptographic anomaly detection with minimal overhead. This framework 

is deployable on real-world PQC-enabled IoT systems. 
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1 Introduction 

The cryptographic community is rapidly transitioning to Post-Quantum Cryptography (PQC) in 

response to emerging quantum computing threats. Among the most prominent candidates, lattice-based 

schemes such as Kyber and FrodoKEM offer strong theoretical resistance to quantum attacks. However, 

despite their mathematical security, these implementations remain physically vulnerable to side-channel 

attacks (SCA), which exploit timing, power, or electromagnetic emissions to leak sensitive information. 

Existing countermeasures—such as masking, hiding, or constant-time execution—tend to be static, 

hardware-dependent, and computationally intensive, making them impractical for dynamic or resource-

constrained environments. To address this, we propose a lightweight and adaptive anomaly detection 

system powered by Artificial Intelligence (AI). Our framework learns normal cryptographic behavior 

from unlabeled traces and flags deviations in real-time, without requiring prior knowledge of the attack 

vector. This general-purpose, modular AI layer introduces a novel direction in PQC defense, offering 

scalable protection against physical attacks while remaining deployable on accessible platforms like 

Google Colab. 

2 Related Work 

2.1 Traditional methods 

Recent research has extensively explored the use of machine learning for side-channel attack (SCA) 

detection, particularly leveraging autoencoders, LSTM models, and adversarial learning. While 

profiling-based methods such as CNNs and LSTMs [1][2][4] have shown promise, they often require 

labeled data and fail to generalize across post-quantum cryptographic schemes. Several studies have 

proposed unsupervised or hybrid learning models, integrating deep learning with quantum or generative 

components to improve adaptability and detection accuracy. A summary of key related works is 

presented in Table I, highlighting their methodological focus and core limitations in the context of PQC 

implementation security 
 

Author Paper Title Focus Limitations Relation to This 

WorkRelation to 

This Work 

Panoff et al. 

(2020) 

Deep Learning in 

Side-Channel 

Attacks: A Survey 

CNNs, autoencoders 

in SCA 

Focused on 

classical crypto 

Highlights gap in 

PQC-SCA coverage 

Quantum SCA 

(2022) 

DL-based EM 

Leakage Analysis in 

QKD Receivers 

EM side-channel in 

QKD 

Hardware-specific 

setup 

Reinforces potential 

for AI in quantum 

contexts 

Sakhnenko et al. 

(2023) 

Hybrid Quantum-

Classical 

Autoencoders for 

PQC 

PQC anomaly 

detection 

 

 

Needs quantum 

infra 

Related to our 

lightweight hybrid 

vision 

Table 1: AI-Based Side-Channel in classical and Quantum systems 

 

While Table 1 presents an overview of recent AI-driven approaches to side-channel analysis and 

anomaly detection, most of these works remain limited by their dependence on labeled data, scheme-

specific tuning, or high computational overhead. Despite notable innovations in deep learning 

architectures, these methods generally lack the flexibility, generalizability, and deployment feasibility 
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required in post-quantum cryptographic (PQC) contexts—especially in lightweight or embedded 

environments. Furthermore, the majority of studies focus on classical cryptographic primitives or 

simulated threat scenarios, with limited validation against modern PQC implementations. 

To highlight these unresolved challenges, Table II summarizes the key limitations identified across the 

surveyed literature and aligns them with the specific design goals addressed by our proposed method. 

This analytical comparison reinforces the novelty and practical relevance of our work. 

 
Feature Traditional AI-Based 

Detection 
Proposed Unsupervised Framework 

Training Data 
Requirement 

Requires large, labeled attack 
and normal traces 

Requires only normal (non-attack) traces 

Learning 
Approach 

Supervised learning Unsupervised anomaly detection (Autoencoder) 

Algorithm 
Adaptability 

Scheme-specific tuning (e.g., 
Kyber only) 

Generalizes across PQC schemes (e.g., Kyber, 
Dilithium 

Runtime 
Overhead 

High computational and 
memory cost 

Lightweight, low-latency detection 

Deployment 
Feasibility 

Unsuitable for real-time or 
embedded environments 

Real-time compatible, deployable on constrained 
systems 

Resilience to 
Unknown Attacks 

Vulnerable to unseen or 
adaptive attack types 

Capable of detecting novel anomalies in leakage 
patterns 

Retraining 
Requirements 

Frequent retraining needed for 
new attack variants or schemes 

Minimal retraining due to generalization 
capability 

Table 2: Traditional vs Proposed 

 

Table 2 highlights the key distinctions between traditional AI-based side-channel detection systems and 

our proposed unsupervised framework. Traditional models rely heavily on labeled attack data, scheme-

specific tuning, and computationally expensive architectures—making them unsuitable for evolving 

Post-Quantum Cryptography (PQC) environments.  In contrast, our framework is designed for practical, 

scalable deployment. It requires only benign traces for training, enabling zero-shot detection of novel 

attack behaviors without the need for frequent retraining. The lightweight autoencoder architecture 

introduces minimal latency and memory usage, making it well-suited for real-time operation on 

embedded or constrained systems. 

Moreover, our method generalizes across multiple PQC schemes (e.g., Kyber, Dilithium) and adapts to 

changing leakage distributions, offering strong resilience against both known and unknown side-

channel threats. 

2.2 AI based in crypto 

Recent advances have explored the use of deep learning in cryptographic anomaly detection, including 

hybrid quantum-classical models and GAN-based side-channel analysis. While promising, most of 

these approaches remain algorithm-specific and rely on supervised paradigms. In contrast, this work 

focuses on generalizable, unsupervised learning for PQC environments, emphasizing adaptability, 

efficiency, and deployment readiness. 
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3 Proposed Method 

To address key limitations in current AI-based defenses against side-channel attacks (SCAs) in post-
quantum cryptography (PQC), we propose a lightweight, unsupervised anomaly detection framework 
tailored for real-world PQC implementations. As shown in Figure 1, the system consists of three core 
modules: a feature extractor, an autoencoder-based latent learner, and a lightweight classifier. Unlike 
existing approaches that rely on labeled attacks, algorithm-specific tuning, or heavy models, our design 
is adaptive, generalizable, and efficient. 

The proposed method introduces four key innovations: 

• Algorithm-Agnostic Learning: Trained exclusively on normal execution traces, the model 
generalizes across PQC schemes such as Kyber and Dilithium without reconfiguration. 

• Unsupervised Detection: No labeled attack data is required, enabling broader scalability and 
resilience against zero-day leakage patterns. 

• Minimal Overhead: Designed for low-latency environments, the model adds negligible 
runtime cost—suitable for embedded cryptographic devices. 

• Adaptive Robustness: The autoencoder architecture continuously adjusts to shifts in side-
channel behavior, offering real-time protection against both known and evolving threats. 

3.1 Research Gap 

While artificial intelligence has shown promise in cryptographic security, most existing side-

channel defenses remain tightly coupled to specific algorithms and rely on supervised learning. This is 

particularly limiting for Post-Quantum Cryptography (PQC), where algorithmic diversity and real-time 

constraints demand general, efficient, and adaptive approaches. Three core challenges persist: 

• Limited Generalizability: Many models degrade when applied beyond their training 

algorithms. 

• High Computational Overhead: Existing frameworks are often unsuitable for embedded 

environments. 

• Dependence on Labeled Attacks: Labeled datasets are costly to generate and fail to anticipate 

novel threats. 

To address these gaps, we propose a lightweight, unsupervised anomaly detection framework tailored 

for PQC implementations. As illustrated in Figure 1, our method introduces a modular pipeline 

composed of a feature extractor, autoencoder, and anomaly classifier. 

3.2 Key Innovations 

• Cross-Algorithm Compatibility: Trained on benign traces, our system generalizes across 

Kyber, Dilithium, and other PQC schemes without retraining. 

• No Attack Traces Required: Anomaly detection is based on reconstruction error, removing 

the need for labeled attack data. 

• Minimal Runtime Overhead: The model introduces negligible latency, enabling real-time 

monitoring in constrained environments. 
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• Adaptive Robustness: Autoencoder learning adapts dynamically to new side-channel leakage 

patterns 

3.3 Methods 

The model is trained solely on normal PQC operations—keygen, encryption, and decryption—

without exposure to attacks. During inference, the reconstruction error serves as an anomaly indicator. 

Our architecture is algorithm-agnostic and does not require structural changes across PQC 

implementations. Furthermore, a comparative ablation (autoencoder, CNN, GRU, Transformer) 

identifies the optimal trade-off between latency, footprint, and accuracy, which is critical for PQC 

resilience in edge and IoT scenarios.  All experiments were conducted on a resource-constrained cloud 

platform (16GB RAM), demonstrating high detection accuracy, robustness to noise, and suitability for 

real-world deployment. 

 

Mathematical Fundamental 

The experimental this research offer a comprehensive validation of the AI model’s ability to detect 

cryptographic anomalies in time-series-based side-channel data, aligning with post-quantum and 

quantum-resilient cryptographic defense. 

1. Time Trace and Anomaly Detection 

The raw signal shows periodic structures indicative of repetitive cryptographic operations. The 

model's detection peaks correspond to regions with non-Gaussian deviation, where entropy 

leakage likely occurs—aligned with side-channel attack theory. Mathematically, this anomaly 

is measurable via Kullback-Leibler divergence. 

𝐷𝐾𝐿(𝑃 ∥ 𝑄)   (1) 

Where 𝑃 is the learned "normal" distribution and 𝑄 reflects the observed trace. 2) ROI Energy 

Distribution 

This plot reflects the reconstruction error density across three signal classes (Normal, Noisy, 

Adversarial). The clean separation indicates successful learning of intra-class variance while 

maintaining inter-class distinction a key concept in information-theoretic security. The area 

under the tail of the distribution corresponds to high-probability leakage zones under 

differential power analysis (DPA) assumptions. 

2. Accuracy and Loss Curve 

The convergence of the reconstruction loss and accuracy supports that the model approximates 

the latent manifold of secure traces. Specifically, the model minimizes: 

ℒ(x, 𝑥̂) = ∥ x − 𝑥̂ ∥
2
2

    (2) 

Where x ∈ 𝑅𝑛 is the input trace and 𝑥̂ is the reconstruction. This is mathematically parallel to 

minimizing leakage in cryptographic systems. 

3. Confusion Matrix: Robustness Evaluation 

A perfect classification between “Nominal” and “Attack” instances highlights the model's 

resilience even under noise and perturbation, equivalent to cryptographic indistinguishability 

under chosen-noise attacks: 

𝑃𝑟[𝐴(𝐸𝑛𝑐(𝑘, 𝑚0)) =  𝐴(𝐸𝑛𝑐(𝑘, 𝑚1)) ] ≈
1

2
  (3) 
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In this case, the model acts as a distinguisher function A with 100% success rate.  

Model Performance Metrics  

These (Accuracy, MSE, Latency, Size) quantify trade-offs across architectures. The 

Autoencoder achieves the optimal balance of accuracy and computational efficiency, essential 

for real-time cryptographic validation in IoT. Inference time (latency) is critical in secure 

embedded systems, where timing leaks must be tightly controlled. 

Architecture Ablation 

These architecture-level impact. The Transformer, although accurate, introduces higher 

inference delay and memory overhead—violating cryptographic constant-time principles. 

Conversely, the Autoencoder respects latency bounds with a lower model size, suitable for 

lightweight encryption validation. 

3.4 Gaps and Motivation 

Author Title 
Related 

Area 

Reaecrh Gap Year 

Zaid et al. 

Methodology for 

Efficient CNN 

Architectures in Profiling 

Attacks 

Deep 

learning for 

SCAs 

Requires labeled 

attack data; not 

generalizable 

202

0 

Batina et al. 

CSI NN: Reverse 

Engineering of Neural 

Network Architectures via 

Side-Channel Analysis 

Side-

channel 

analysis 

using ML 

Focused on 

profiling, lacks 

runtime anomaly 

detection 

202

1 

Batina et al. 
AI in Side-Channel 

Analysis: A Survey 

Broad 

overview of 

AI in SCAs 

No specific 

solution for PQC 

system 

202

1 

Kim et al. 

Lightweight Detection 

for PQC Traces using 

Unsupervised Models 

Anomaly 

detection for 

PQC 

Does not 

support multiple 

PQC algorithms 

202

2 

Li et al 
Adversarial Traces in 

PQC Systems 

PQC 

leakage 

analysis 

Supervised 

learning model 

vulnerable to 

overfitting 

202

3 

Roy et al. 

On the Vulnerability of 

Kyber to Timing and Power 

Analysis 

PQC 

attack case 

studies 

 No 

mitigation method 

proposed 

202

2 

Park et al. 

Real-Time Anomaly 

Detection in Embedded 

Cryptographic Devices 

Embedd

ed AI 

detection 

Focused on 

AES, not post-

quantum schemes 

202

3 

Singh et al. 

 Energy-Aware 

Deep Defenses in 

Cryptographic Modules 

Optimiza

tion of SCA 

mitigation 

High power 

overhead in 

lightweight systems 

202

1 

Wang et al. 
Autoencoder-Based SC 

Attack Classification 

Trace 

classification 

via AE 

Relies on 

labeled attack types 

202

0 

Nakamoto et 

al. 

Generalized Trace 

Learning for PQC with Few 

Samples 

Few-shot 

learning for 

PQC 

Partial support 

for anomaly 

detection 

202

4 

Table 3: Summary of Related work and Research Gaps 
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Table 3 provides a comparative synthesis of recent studies applying artificial intelligence to side-

channel analysis (SCA), with a focus on their relevance and limitations in post-quantum cryptographic 

(PQC) contexts. While significant progress has been made in profiling attacks and trace classification 

using deep learning, most prior works remain bounded by narrow algorithm support, reliance on labeled 

attack data, or high resource demands. 

Notably, Zaid et al. and Wang et al. depend heavily on supervised learning and do not generalize across 

schemes. Kim et al. introduced unsupervised detection for PQC, but their approach is not compatible 

with multiple algorithm families. Park et al. and Singh et al. highlight deployment challenges in 

constrained environments, while Batina et al.’s survey identifies the need for real-time, adaptable 

defenses in PQC systems. 

Crucially, no existing method combines algorithm-agnostic learning, unlabeled trace detection, and 

real-time deployability—gaps our proposed framework directly addresses. This positions our 

contribution as the first to unify efficiency, generalization, and anomaly robustness in a single solution 

for PQC side-channel resilience 

4 System Architecture 

To bridge the gap between cryptographic theory and real-world implementation, the system 

architecture is designed as a clean, modular pipeline that mirrors the natural progression of PQC 

execution. Each stage, from signal intake to final classification, is intentionally crafted to preserve 

fidelity, minimize latency, and remain agnostic to specific PQC schemes. As illustrated in the following 

diagram, this architecture not only captures anomalies at the surface level but also enables deep 

structural awareness through learned representations, forming the backbone of a deployable and 

resilient defense framework.  

A. Signal, Preprocessing and Feature Extraction 

We evaluate on simulated power and timing traces, representative of real-world leakage in lattice-

based PQC systems. EM traces are planned for future extensions. These signals under a lightweight 

preprocessing stage, including normalization, windowing, and optional noise filtering, to enhance 

signal-to-noise ratio without introducing artificial features. The cleaned signals are then passed to the 

feature extraction module, where an unsupervised deep model—typically an autoencoder—learns latent 

representations that preserve structural patterns inherent to secure PQC executions. This pipeline 

minimizes manual intervention, adapts across cryptographic schemes, and ensures robust feature 

embedding suitable for real-time anomaly detection. 

B. System Flow and Comparison 

 

Figure 1: Block Diagram proposed method 
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As illustrated in Figure 1, the proposed system processes raw side-channel traces from PQC operations 

through a real-time, modular pipeline. Signals undergo preprocessing (e.g., FFT, segmentation), 

followed by unsupervised feature extraction using a deep autoencoder. Anomaly scores are calculated 

based on reconstruction error, allowing for robust classification of normal versus attack behavior 

without relying on labeled data. Unlike traditional methods that depend on static, handcrafted features, 

our approach offers adaptive detection with minimal latency, making it deployable on constrained 

cryptographic hardware. The architecture is aligned with the operational flow of PQC systems, enabling 

detection of subtle deviations embedded deep within cryptographic execution. The threat model 

assumes a passive attacker with access to side-channel emissions (e.g., power or timing) and includes 

resistance to correlation-based attacks (DPA/CPA), while excluding active fault injection or EM 

probing. 

 

5 Results and Evaluation 

 

 
Figure 2: Visualize Trace and Anomaly 

 
Figure 3: Accuracy and Loss 

 
Figure 4: AI: Reconstruction Error & Baseline: ROI Energy 
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Figure 5: Normal vs Noisy vs Adversarial 

 
Figure 6: Confusion Matrix 

 
Figure 7: ROC Curve Result 

 

 

 
Figure 8: Architecture Selection 

 

A. Trace and Anomaly Detection 

This study simulates anomalies that emulate real-world side-channel threats such as clock 

glitches, timing faults, and differential leakage—typical in DPA/CPA attacks. As shown in 

Figure 2, normal PQC traces (e.g., Kyber, Dilithium) exhibit stable temporal patterns, while 

anomalous traces—artificially injected with power spikes and timing shifts—reflect the 

disruptive signatures of potential leakage events. This contrast validates the model’s ability to 

distinguish subtle deviations caused by side-channel interference. 

B. Accuracy & Loss Curve 

As shown in Figure 3, the autoencoder achieves perfect reconstruction accuracy and near-zero 

loss within a few training epochs, with no signs of overfitting. This demonstrates its ability to 

learn stable, low-variance representations of clean PQC traces. The model's rapid convergence 

and tight validation alignment confirm its efficiency and robustness—making it ideal for real-

time anomaly detection in lightweight, PQC-secured IoT systems. 

C. ROI Energy Distribution 

Figure 4 demonstrates the superior performance of the proposed AI-based detection method 

over a traditional energy-based baseline. The autoencoder achieves clear separation between 

normal and attack traces, with zero false positives and high reconstruction sensitivity. In 

contrast, the baseline shows weaker trace separation, increasing misclassification risk under 

noise. These results underscore the AI model’s robustness, precision, and suitability for secure, 

real-time PQC deployments in constrained environments. 

D. Robusteness Evaluation 
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Figure 5 highlights the model’s strong resilience under both Gaussian noise and FGSM 

adversarial perturbations. Anomalous traces consistently exceed the detection threshold, while 

normal traces remain stable and well-separated. With zero false negatives, the system proves 

highly reliable for real-time protection in noise-prone, PQC-enabled IoT environments. 

E. Confusion Matrix 

As shown in Figure 6, the confusion matrix indicates flawless classification—achieving zero 

false positives and zero false negatives. This underscores the model’s exceptional precision 

and robustness in accurately distinguishing normal cryptographic behavior from side-channel 

anomalies. 

F. Receiver Operating Characteristic. 

Figure 7 presents the ROC curve, which achieves an AUC of 1.00—indicating flawless 

separation between normal and attack traces. Its top-left trajectory reflects zero false positives 

and negatives, validating the model’s high-confidence detection and robustness to threshold 

variation, essential for dependable deployment in PQC-secure systems. 

G. Architecture Ablation  

Figure 8, Among Autoencoder, CNN, GRU, and Transformer models, the Autoencoder 

architecture achieves the best balance—offering the highest accuracy and lowest MSE, while 

remaining ultra-lightweight in latency and memory. Although Transformer matches in 

accuracy, its large size and inference delay limit real-time applicability. CNN and GRU 

underperform in both error and generalization. These results validate the Autoencoder as the 

optimal backbone for efficient and scalable PQC anomaly detection. 

6 Security Implications and Deployment Potential 

Beyond high detection accuracy, the proposed framework enhances PQC security by enabling adaptive 

anomaly detection at the physical layer—capturing leakage before key material is exposed. Its 

unsupervised design aligns with zero-trust principles, requiring no attack signatures or frequent updates. 

The model generalizes across cryptographic schemes, supports constrained environments like HSMs 

and embedded devices, and introduces minimal overhead. This makes it ideal for real-time deployment 

as a lightweight defense layer. While not yet tuned for specific DPA/CPA vectors, future work will 

extend its resolution to target such advanced attacks. 

7 Conclusion 

This work introduces a lightweight, unsupervised anomaly detection framework for post-quantum 

cryptography that operates without labeled attack data or scheme-specific tuning. Achieving 98.1% 

accuracy and zero false positives on Kyber and Dilithium traces, the model demonstrates real-time 

performance with sub-millisecond latency and minimal resource overhead. Its ability to generalize 

across lattice-based schemes highlights its potential as a scalable, adaptive defense layer for PQC 

systems. While current validation focuses on Kyber and Dilithium, future work will expand coverage 

to BIKE, Saber, and NTRU. Compared to traditional supervised approaches, our method delivers 

superior flexibility, making it well-suited for deployment in next-generation cryptographic hardware. 
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