EPiC Series in Computing Sl
omputing

Volume 106, 2025, Pages 210-220
Proceedings of the 20th Asia Joint

Conference on Information Security E ; EE

A Lightweight and Accurate Classification Framework for
Traffic Log Analysis Based on an Effective Feature

Representation Method

Ayako Sasaki!, Takeshi Takahashi?, Keisuke Furumoto®, Chun-I Fan*, and
Tomohiro Morikawa®*

1 University of Hyogo, Japan
ad231025@guh.u-hyogo.ac. jp
2 National Institute of Information and Communications Technology, Japan
takeshi_takahashi@nict.go.jp
3 National Institute of Information and Communications Technology, Japan
k.furumoto@nict.go. jp
4 National Sun Yat-sen University, Taiwan
cifan@mail.cse.nsysu.edu.tw
5 University of Hyogo, Japan
morikawa@gsis.u-hyogo.ac.jp

Abstract

As cyberattacks become increasingly sophisticated, organizations face an urgent need
for timely and accurate incident response to reduce their impact on critical systems. Au-
tomating the analysis of network traffic logs has become essential for supporting security
analysts and specialists. Although many previous studies have applied machine learning
to address this task, they often encounter challenges such as dependence on large-scale
analytics platforms, limited exploration of machine learning algorithms, and difficulties in
deploying distributed systems due to high costs, complexity, and privacy concerns. To
tackle these limitations, we propose a lightweight and accurate machine learning-based
framework for the automatic analysis of network traffic logs. Our approach transforms log
data into feature vectors using a document-based feature representation method. Experi-
mental results on benchmark datasets demonstrate that our method enables efficient and
effective traffic log analysis suitable for practical deployment.

1 Introduction

Cyberattacks are becoming increasingly sophisticated, frequently leading to system intrusions
and a subsequent escalation of damage. As such, a prompt and accurate initial response is
indispensable for minimizing the impact of cyberattacks on critical systems and ensuring ef-
fective threat mitigation. Analyzing network traffic logs is a fundamental aspect of the initial

*Corresponding Author.

A. Yamada, H.K. Kim, Y. Wang and T.-T. Tsai (eds.), AsiaJCIS 2025 (EPiC Series in Computing, vol. 106),
pp. 210-220

A Lightweight Log Classification Framework Sasaki et al.

response to cyberattacks. Given the substantial volume of logs generated on a daily basis and
the shortage of skilled security specialists capable of conducting thorough analyses, there is an
increasing demand for automated approaches to support and streamline this process.

In response to this need, several studies [3, 10, 12, 2, 14] have investigated the application
of machine learning techniques to automate the analysis of network traffic logs. Some of these
works emphasize improving accuracy to substantially reduce the time and effort required for
manual analysis. Traditional machine learning algorithms such as Support Vector Machines
(SVM), Naive Bayes (NB), and C4.5 Decision Trees (DT) are commonly used to classify and
categorize network traffic. In contrast, other studies prioritize scalability, aiming to develop
methods capable of efficiently processing large volumes of log data. These approaches frequently
leverage the Hadoop Distributed File System (HDFS) for scalable data storage and employ
Apache Spark, built on top of HDFS, to execute machine learning tasks and support efficient,
large-scale, distributed data processing.

However, the following three issues remain unaddressed: (1) The feature representation
methods adopted in previous studies cannot deliver efficient performance without relying on
large-scale data analytics platforms. (2) Prior research has evaluated only a limited set of
machine learning algorithms, leaving others unexplored and thus limiting a comprehensive
comparison of performance. (3) Implementing distributed systems for log classification in typ-
ical corporate environments poses challenges due to the high costs and operational complexity
associated with their deployment and maintenance. Although utilizing third-party distributed
platforms could be a potential solution, many organizations may be reluctant to transmit com-
munication logs externally due to privacy and security concerns.

To address the aforementioned challenges, we propose a lightweight and accurate log
classification framework that offers comparable speed and accuracy to previous approaches
while requiring only a single workstation. This design enables practical adoption of machine
learning-based log analysis in enterprise environments. For feature representation, we employ
Doc2Vec [4], a technique that encodes each log line, treated as a separate document, into a
fixed-dimensional vector. By increasing the dimensionality of these vectors, we expand the
feature space for the machine learning algorithms, aiming to enhance evaluation metrics such
as the Fl-score. The choice of Doc2Vec in our method is motivated by its potential to improve
classification performance, especially for algorithms with relatively short training and inference
times that still exhibit room for improvement in accuracy. In addition to the classifiers used in
previous studies, we incorporate three additional algorithms: AdaBoost, Multilayer Perceptron
(MLP), and Stochastic Gradient Descent (SGD). The performance of each classifier is evaluated
in terms of accuracy, recall, F1-score, precision, training time, and testing time when classifying
a dataset composed of Zeek Conn Logs [11] generated by a network analyzer.

As a result, all algorithms except NB—mamely AdaBoost, MLP, SGD, Logistic Regression
(LR), DT, and Random Forest (RF)—achieved Fl-scores of over 99%. In particular, when
the dataset was converted into 30-dimensional vectors and classified using MLP, the highest
Fl-score of 99.89% was achieved in our experiment evaluation. Similarly, with 30-dimensional
vectors as input, SGD and LR achieved an Fl-score of 99.70%. These results are comparable
to the Fl-scores achieved by RF and DT in the prior study that used the same dataset as
ours [3]. Furthermore, MLP achieved a test time of 0.1000 seconds, which is on par with prior
research, while SGD showed shorter computation times, with a training time of 2.350 seconds
and a test time of 0.0070 seconds. Additionally, similarly, the test time for LR was also very
short, at 0.0067 seconds. The results indicate that classifiers such as SGD, LR and MLP, when
combined with Doc2Vec preprocessing, are effective for the classification of Zeek Conn Log data
on a single workstation.

211

A Lightweight Log Classification Framework Sasaki et al.

The main contributions of this paper are summarized as follows:

e We propose a log classification framework that employs a document-based feature repre-
sentation method and explores several previously untested machine learning algorithms to
achieve high performance while maintaining low environmental and computational costs.

e Our approach facilitates practical deployment in standard enterprise environments with-
out the reliance on distributed systems.

e Based on the experimental results, we demonstrate that our method achieves shorter
computation times, with a training time of 2.350 seconds and a test time of 0.0070 seconds,
without sacrificing accuracy compared to previous works.

The remainder of this paper is organized as follows: Section 2 reviews related work on
network log classification. Section 3 introduces the proposed method for classifying network
traffic logs. Section 4 evaluates the performance of the proposed method. Section 5 discusses
the limitations of this approach, and Section 6 concludes the paper.

2 Related Work

Firstly, this section introduces three related studies that classified the KDD’99 dataset [1], which
consists of TCP dump data collected during a nine-week-long attack simulation. In a 2012 study,
Swamy et al. [14] classified the KDD’99 dataset using the C4.5 DT and an improved version
of the C4.5 DT. Their method employed these two machine learning algorithms as detection
mechanisms in a Network Intrusion Detection System (NIDS) to detect attacks within the
KDD’99 dataset. The experimental results showed that while the standard C4.5 DT achieved
an accuracy of 95.7%, the improved version achieved a higher accuracy of 96.9%. Furthermore,
the test time for both DTs was kept as low as 0.09 seconds. In a 2007 study, Panda et al. [12]
classified the dataset into normal traffic and four categories of attacks using a Naive Bayes
classifier. In their 2010 study, Mulay et al. [10] proposed a method for classifying normal traffic
and the same four categories of attacks as in the 2007 study by Panda et al., by combining
Support Vector Machines (SVM) with DTs to construct a multiclass SVM.

Next, we introduce two related studies that classified datasets of Zeek connection logs la-
beled according to the MITRE ATT&CK framework [6]. In a 2022 study, Bagui et al. [2]
classified the UWF-ZeekData22 dataset [11], using several machine learning algorithms: NB,
RF, DT, SVM, Gradient-Boosting Trees (GBT), and LR. The study conducted two types of
binary classification, targeting data representing normal traffic and data labeled with a specified
tactic. The tactics selected for classification were “Reconnaissance” [8] and “Discovery” [7]. As
a result, DT, GBT, and RF each achieved high Fl-scores exceeding 98.6%, regardless of the
tactic selected. In a follow-up study in 2023, Bagui et al.[3] conducted classification experiments
using a dataset, UWF-ZeekDataFall22[11], which was generated from newly collected Zeek con-
nection logs. In the follow-up study, in addition to the previously used tactics ” Reconnaissance”
and ”Discovery,” the tactic ”Resource Development” was also included in binary classification
tasks[9]. Furthermore, multi-class classification was conducted to distinguish among these three
tactics and normal traffic. The results indicated that DT and RF exhibited high performance
in both binary and multi-class classification, achieving Fl-scores of over 99.9% even in the
multi-class classification. In particular, DT completed training in under 14 seconds.

Both studies utilized HDFS for storing logs and employed Apache Spark for performing
machine learning tasks. However, adopting such distributed systems for log classification in

212

A Lightweight Log Classification Framework Sasaki et al.

standard corporate environments is challenging due to the high costs and complexity involved
in deployment and maintenance. While the use of distributed platforms provided by third
parties is a possible alternative, some companies may be reluctant to transmit communication
logs externally due to security concerns. Therefore, we propose a log classification method
that does not rely on distributed systems and is capable of delivering practical performance in
environments that can be prepared by standard corporations.

3 Classification Framework

3.1 Overview

Communication Logs (Training Data and Data to be classified)

1. Assigning tags to each log data
Tagged Documents

Doc2Vec Model

- 2. Convert to vectors

Vectors To Be
Classified

. Train]
classifiers ~ 4- Classify data
‘ Prediction
Labels
Logistic . Random .
[Regression][Naive Bayes][Forest][Decision Tree]

. Stochastic
[AdaBoost J[Multilayer][Gradient]
Perceptron

Descent

Vectors for Training

Figure 1: Overview of the proposed log classification method

This subsection presents our proposed method for classifying communication log data by
attack type. As shown in Figure 1, our approach consists of two main stages: transformation
of data features and machine learning-based training and classification.

We adopt Doc2Vec [4] for transforming the features of the communication logs. Details
are provided in Section 3.2, but in brief, Doc2Vec enables documents to be represented as
fixed-length distributed vectors using a model trained through unsupervised learning. Before
converting the data into vectors, it is necessary to assign tags to each log entry in both the
dataset to be classified and the dataset used for training the machine learning models. This
allows Doc2Vec to recognize each line of log data as an individual document. Using these tagged
datasets, we train a Doc2Vec model and then convert both datasets into vectorized form with
the trained Doc2Vec model.

In the next stage, communication log classification, our method employs not only LR, NB,
RF, and DT, which were used in the 2023 study by Bagui et al. [3], but also AdaBoost, MLP,
and SGD. These models, after being trained on the vectorized training dataset, assign predicted
attack type labels to the target dataset.

213

A Lightweight Log Classification Framework Sasaki et al.

3.2 Feature Representation

The communication logs generally contain various types of fields, such as numeric values, strings,
and boolean values. In our study, Doc2Vec [4], a library for converting documents into vector
representations called document vectors, is employed to transform diverse types of data into
vector form. It is based on Word2Vec [5], which converts words into distributed representation
vectors, achieving vectorization at the document level.

As a preliminary step for explaining Doc2Vec, we describe the model used to obtain dis-
tributed word representations. This model predicts the central word based on a set of sur-
rounding words (context) in a sentence. To build the model, we assign an initial unique vector
wy, W1, . . ., wp to each word in the training text data and represent these vectors as columns
in a matrix W. Given a sequence of words wg, w1, ..., wr, the goal is to maximize the average
log probability defined by the following formula.

T—k

T > logp(wy | Wi, ..., W1, W1, - Wetk) (1)
t=k

The vectors are updated so as to maximize this formula. Through this process, the distributed
representation vectors are able to capture the meanings of words. The probabilities can be
computed using methods such as softmax, as shown below.

eYwe

p(wt \ Wt—ky -y Wr—1 wt+17~~~awt+k) == (2)
’ Zi eYi
y; is the score assigned to any word w; among wi_g, ..., Wik, and it is computed by the
following formula.
y:b—l—Uh(wt,k?...,wHk;W) (3)

, where b and U are parameters, and the function h is constructed by either concatenating or
averaging the input vectors.

The concept of distributed representation vectors for words is extended to document vectors,
which can be obtained by building a model that predicts the central word from contexts sampled
from a document. When converting a set of documents into document vectors, an initial vector
is assigned to each document, and these vectors are organized as columns in a matrix D. The
main difference from the word vector framework is Equation (3) is constructed from both D
and W; otherwise, the process of updating document vectors, parameters, and W follows the
same steps. After the training process, the constructed model has W and other parameters
fixed. Using this model, it is possible to infer document vectors for new documents.

4 Experiment

This section introduces our experimental procedure and the dataset used in the experiment,
and describes the result obtained. Finally, we present a comparison with related studies.

4.1 Procedures and Evaluation Metrics

First, as described in Section 4.2, we extract data from UWF-ZeekDataFall22 and use it as the
dataset for our experiment. The extracted dataset was then transformed into fixed-length vector
datasets using Doc2Vec. We used 80% of the converted data for training and evaluated the
classification performance on the remaining 20%. We prepared five variations of the transformed

214

A Lightweight Log Classification Framework Sasaki et al.

Table 1: Parameters Adopted for Each Machine Learning Algorithm

Classifier scikit-learn
ML Num. p ¢
Algo. of Attrs. arameters
187 207 25) ? 9.) 7. 0)
LR 30, 35 C’: 10, ’solver’: ’saga
18, 20, 25, , .
NB 30, 35 var_smoothing’: 1e-08
18, 20, 25, y e ,
RF 30, 35 criterion’: ’entropy
18a 207 9 SRS T) ’» ’ 53 ’
DT 30. 35 criterion’: ’entropy’, ‘'max_depth’: 15, 'min_samples_leaf’: 5
"class_weight’: "balanced’, ’criterion’: ’entropy’,
DT % ‘'max_depth’: 20
18. 20. 25 ‘estimator’: sklearn.tree.DecisionTreeClassifier(
AdaBoost AN max_depth=>5, random_state=1), 'n_estimators’: 250,
30, 35 , . 5
learning_rate’: 0.14
MLP 18 All parameters are default values.
MLP 20 ’alpha’: 1e-06, 'max_iter’: 400
MLP 25, 30, 35 ‘alpha’: 1e-05, 'max_iter’: 400
SGD 18 ‘alpha’: 1e-05, ’etaQ’: 0.001, 'penalty’: '11°, 'max_iter’: 10000
SGD 20 ‘alpha’: 1e-06, ’eta0’: 0.001, 'penalty’: 11, 'max_iter’: 10000
‘alpha’: 1e-05, ’eta0’: 0.001, 'penalty’: None,
SGD 25 ‘max_iter’: 10000
‘alpha’: 1e-06, ’eta0’: 0.001, 'loss’: ’log_loss’,
SGD 30 ‘penalty’: None, 'max_iter’: 10000
SGD 35 "alpha’: 1e-05, ’eta0’: 0.001, "loss’: 'modified_huber’,
‘penalty’: None, 'max_iter’: 10000

datasets, with vector sizes of 18, 20, 25, 30, and 35, respectively. By increasing the number of
features, we aimed to improve the classification performance of algorithms that, while having
relatively short training and testing times, still had room for accuracy improvement. In our
experiment, we evaluate 35 combinations, as there are five types of input vector sizes and seven
types of algorithms. The machine learning algorithms were implemented using the scikit-learn
library [13], and NB refers to Gaussian Naive Bayes in the experiment.

Next, grid search was performed to identify more suitable parameters for each algorithm.
The parameters adopted in our experiment are shown in Table 1. Parameters not listed in the
table were left at their default values. Except for NB, all classifiers have a parameter called
random_state’ for fixing the random seed, which was set to 1 across all classifiers.

Using the identified parameters, the classifiers were trained and tested, and accuracy, recall,
Fl-score, precision, and the false positive rate (FPR) were calculated to evaluate performance.
The metrics other than accuracy are first calculated for each class, and then a weighted average
is taken as the overall evaluation score. In addition to the five evaluation metrics, we separately
measured the time taken for training and for testing.

Also, the experiment was conducted using a single workstation equipped with an Intel(R)
Core(TM) 19-14900K processor and 188 GiB of memory.

215

A Lightweight Log Classification Framework Sasaki et al.

4.2 Dataset

We validated our proposed communication log classification framework using the UWEF-
ZeekDataFall22 dataset, which was employed in the 2023 study by Bagui et al.[3]. The dataset
consists of connection logs collected by the network analyzer Zeek during cyber attack exercises
conducted in the experimental environment of the University of West Florida. Logs represent-
ing normal communication are labeled as "none”, while logs indicating traces of attacks are
labeled with one corresponding MITRE ATT&CK tactic, resulting in a total of 13 types of
labels. Since this dataset includes tactics with a small number of samples, our experiments
used 694,121 log entries labeled with one of the following four labels: none, Resource Develop-
ment, Reconnaissance, or Discovery. These labels represent the top four tactics when ranked
in descending order of the number of samples.

Given its large size, UWF-ZeekDataFall22 is well-suited for evaluating lightweight methods
designed to classify large-scale datasets, such as our method. Another reason for selecting this
dataset is that it is already mapped to MITRE ATT&CK tactics, which makes it easy to begin
training and evaluating machine learning algorithms. The number of records for each tactic is
presented in the previous study by Bagui et al. [3].

4.3 Results

The results of all 35 experimental patterns are shown in Table 2. As shown in the table,
the Fl-scores exceeded 95% in all patterns, and the other scores also reached similarly high
levels. For all algorithms, the highest Fl-score was achieved when the number of features was
30, with the maximum being 99.89% by MLP. Additionally, this pattern was the only one in
the experiment with an FPR below 0.1%, indicating strong classification performance. MLP
consistently achieved the best Fl-score compared to the other algorithms across all feature
configurations.

In addition to MLP, LR, RF, AdaBoost, and SGD also achieved high F1-scores. Focusing
on the computation time of these classifiers, both the training and testing times of SGD and
LR were very short when the number of features was 30. In particular, the training time of
SGD was 2.350 seconds, which is less than one-fifth of LR’s training time, indicating that it is
a well-balanced classifier in terms of classification performance and computational efficiency.

On the other hand, the methods using AdaBoost and RF showed high F1-scores and good
performance in other scores as well, but their training and testing times were longer compared
to the aforementioned methods. In this experiment, there appears to be no strong reason to
adopt AdaBoost and RF in practical.

4.4 Comparison with Related Work

To ensure a fair comparative evaluation and assess the practicality of the proposed classification
method, we compare our approach with the work conducted by Bagui et al. (2023) [3] under
identical conditions.

Table 3 shows the results of SGD, LR, and MLP with 30 features from our method, as
mentioned in Section 4.3, along with the results of RF and DT, which demonstrated the best
performance in the related work, specifically the cases with the shortest training and testing
times for each. Our method did not exceed the Fl-scores reported by related studies, but
the difference was no greater than 0.26%, indicating that the performance of our method is
comparable to the results of previous research. In particular, MLP achieved a score of 99.89%,
which closely approaches that of the related study.

216

A Lightweight Log Classification Framework Sasaki et al.
Table 2: Evaluation Results for 35 Classifiers
Classifier Score (%) Time (s)
Num.
Al\l/{glcl). of Pr Re F1 Acc | FPR Tr Ts
Attrs.

LR 18 98.63 | 98.64 | 98.63 | 98.64 | 0.7907 16.639 0.0056
LR 20 99.44 | 99.44 | 99.44 | 99.44 | 0.4232 7.428 0.0058
LR 25 99.41 | 99.41 | 99.41 | 99.41 | 0.3788 6.649 0.0058
LR 30 99.70 | 99.70 | 99.70 | 99.70 | 0.2244 11.997 0.0067
LR 35 98.92 | 98.95 | 98.93 | 98.95 | 0.7154 14.822 0.0064
NB 18 96.20 | 95.42 | 95.68 | 95.42 | 1.3400 0.313 0.0251
NB 20 97.25 | 97.01 | 97.08 | 97.01 | 1.1377 0.316 0.0280
NB 25 96.98 | 96.65 | 96.76 | 96.65 | 1.1926 0.319 0.0352
NB 30 97.58 | 97.43 | 97.48 | 97.43 | 1.1912 0.324 0.0534
NB 35 97.08 | 95.73 | 96.18 | 95.73 | 0.7515 0.345 0.0657
RF 18 99.09 | 99.09 | 99.09 | 99.09 | 0.6171 | 211.618 | 0.5113
RF 20 99.59 | 99.59 | 99.59 | 99.59 | 0.3236 | 195.465 | 0.4029
RF 25 99.58 | 99.58 | 99.58 | 99.58 | 0.3396 | 225.307 | 0.3990
RF 30 99.68 | 99.68 | 99.67 | 99.68 | 0.2815 | 229.616 | 0.3957
RF 35 99.25 | 99.26 | 99.25 | 99.26 | 0.5947 | 212.979 | 0.4702
DT 18 98.35 | 98.35 | 98.35 | 98.35 | 0.8613 13.039 0.0064
DT 20 99.24 | 99.24 | 99.24 | 99.24 | 0.5031 13.810 0.0060
DT 25 99.06 | 99.06 | 99.06 | 99.06 | 0.5504 16.320 0.0063
DT 30 99.34 | 99.34 | 99.34 | 99.34 | 0.4239 19.108 0.0060
DT 35 98.64 | 98.61 | 98.63 | 98.61 | 0.7058 20.449 0.0068
AdaBoost 18 99.08 | 99.09 | 99.09 | 99.09 | 0.5479 | 1212.757 | 2.0140
AdaBoost 20 99.63 | 99.63 | 99.63 | 99.63 | 0.2830 | 1353.234 | 1.9148
AdaBoost 25 99.65 | 99.65 | 99.65 | 99.65 | 0.2408 | 1660.297 | 2.0125
AdaBoost 30 99.77 | 99.77 | 99.77 | 99.77 | 0.1864 | 1977.570 | 2.0965
AdaBoost 35 99.21 | 99.23 | 99.21 | 99.23 | 0.5636 | 2330.708 | 2.1027
MLP 18 99.52 | 99.52 | 99.52 | 99.52 | 0.3117 | 207.393 | 0.3890
MLP 20 99.80 | 99.80 | 99.80 | 99.80 | 0.1470 50.957 0.0685
MLP 25 99.80 | 99.80 | 99.80 | 99.80 | 0.1042 82.075 0.0920
MLP 30 99.89 | 99.89 | 99.89 | 99.89 | 0.0897 83.896 0.1000
MLP 35 99.72 1 99.72 | 99.72 | 99.72 | 0.1271 | 125.101 | 0.1298
SGD 18 98.50 | 98.51 | 98.50 | 98.51 | 0.9613 1.592 0.0061
SGD 20 99.33 | 99.33 | 99.33 | 99.33 | 0.5842 2.010 0.0059
SGD 25 99.37 | 99.37 | 99.37 | 99.37 | 0.4236 1.322 0.0070
SGD 30 99.70 | 99.70 | 99.70 | 99.70 | 0.2187 2.350 0.0070
SGD 35 98.78 | 98.82 | 98.79 | 98.82 | 0.7700 3.683 0.0068

Pr: Precision, Re: Recall, F1: Fl-score, Acc

: Accuracy, Tr: Training Time, Ts: Test Time

217

A Lightweight Log Classification Framework Sasaki et al.

Table 3: Comparison with Best Performance at Related Work

Research Classifier Score (%) Time (s)
ML Algo. | Num. of Attrs. | F1 | FPR Tr | Ts
Bagui et al.
(2023)[3] RF 6 99.95 | 0.0012 35.9 0.099
Bagui et al.

(2023)[3] DT 12 99.96 | 0.0737 | 12.29 0.143
Our Method SGD 30 99.70 | 0.2187 | 2.350 | 0.0070
Our Method LR 30 99.70 | 0.2244 | 11.997 | 0.0067
Our Method MLP 30 99.89 | 0.0897 | 83.896 | 0.1000

The abbreviations for the evaluation metrics are the same as those used in Table 2.

The next part compares the training and testing times of each algorithm. Firstly, the SGD
algorithm has succeeded in significantly reducing both the training and testing times compared
to the related research. Specifically, while the shortest training time in the related work was
12.29 seconds for DT, SGD managed to reduce the training time to 2.350 seconds, representing
less than one-fifth of the training time required by DT in the related work. The testing time
was also reduced to less than one-tenth of the shortest testing time in related research, which
was 0.099 seconds for RF. Therefore, the case employing SGD can be considered a lightweight
classification method with sufficient classification performance.

Next, the LR algorithm has also succeeded in reducing both the training and testing times
compared to related research. Specifically, regarding the testing time, it has been reduced
to less than one-tenth of the time for RF in related research, similar to SGD. Therefore, the
case employing LR can also be considered a lightweight classification method with sufficient
classification performance.

As for the MLP, the testing time is 0.1000 seconds, which is almost identical to the results in
related research. On the other hand, the training time shows a significant difference compared
to the DT in existing research. However, since the number of training iterations is assumed to
be small compared to testing, a processing time of just under one minute would be well within
a practical range.

In the related research, both LR and NB, regardless of the features used, did not achieve
results comparable to RF and DT. However, as shown in Table 2, the Fl-scores for all our
classifiers range from 95.68% to 99.89%, and other scores also show stable results at similar
levels.

In summary, when the input vectors contained 30 features, the MLP model achieved an
Fl-score of 99.89%, while both SGD and LR attained 99.70%. Notably, SGD exhibited ex-
ceptionally low computation times, with a training time of 2.350 seconds and a testing time
of 0.0070 seconds. SGD outperformed the results of previous work by Bagui et al. [3], which
utilized a distributed system to classify the same dataset in terms of computation time. Al-
though LR demonstrated a comparable testing time to SGD, its training time was slightly
longer at 11.997 seconds. In contrast, MLP required more time for both training and testing
than SGD and LR. Based on these findings, we conclude that SGD strikes an effective balance
between accuracy and computational efficiency, making it a practical and scalable solution for
log classification tasks on a single workstation.

218

A Lightweight Log Classification Framework Sasaki et al.

5 Discussion

This section describes the remaining challenges in our approach and potential solutions to be
considered in future research.

5.1 Consideration of Deep Learning for Classification

Our method showed slightly lower Fl-scores compared to those reported in related research.
However, deep learning algorithms, which could potentially improve F1-score, were not adopted.
This is because the primary objective of our approach is to propose a lightweight classification
method. Compared to the machine learning algorithms used in our method, methods based on
deep learning are expected to require significantly longer training and testing times. Further-
more, methods such as MLP and SGD demonstrated sufficient classification performance. For
these reasons, deep learning algorithms were not included in the evaluation of our method.

5.2 Classification of Data with Small Sample Sizes

We focus on classifying only three tactics and normal communication, but the actual UWF-
ZeekDataFall22 dataset includes nine additional tactics. Compared to the previously mentioned
four categories, these nine tactics have relatively fewer samples and were not included in the
classification. In particular, seven of the nine tactics contain fewer than 30 samples each.
However, the remaining two tactics have more than 3,000 samples. Therefore, it is considered
possible to classify these two tactics by applying oversampling techniques to increase the number
of training samples. One possible approach involves vectorizing the original data using Doc2Vec
and generating similar vectors to augment the dataset.

6 Conclusion

We proposed a lightweight method for classifying a large-scale dataset composed of communi-
cation logs by attack type. The classification employed machine learning algorithms including
LR, NB, RF, DT, AdaBoost, MLP, and SGD, with feature vectors generated using Doc2Vec to
numerically represent the data. In the experiment, for the purpose of evaluating the proposed
method, data labeled with four types of MITRE ATT&CK tactics were extracted and classi-
fied from the UWF-ZeekDataFall22 dataset, which consists of Zeek connection logs linked to
MITRE ATT&CK tactics. As a result of the experiment, MLP, SGD, and LR demonstrated
sufficient classification performance and completed both training and testing at practical speeds.
In particular, SGD required only 2.350 seconds for training and 0.0070 seconds for testing, both
of which were exceptionally short. Based on these findings, we propose SGD as a lightweight
and accurate log classification method.

References

[1] KDD Cup 1999 Data. Available online at https://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html, 1999. Accessed: 2025-07-07.

[2] Sikha Bagui, Dustin Mink, Subhash Bagui, Tirthankar Ghosh, Tom McElroy, Esteban Paredes,
Nithisha Khasnavis, and Russell Plenkers. Detecting Reconnaissance and Discovery Tactics from
the MITRE ATT&CK Framework in Zeek Conn Logs Using Spark’s Machine Learning in the Big
Data Framework. Sensors, 22(20), 2022.

219

https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

A Lightweight Log Classification Framework Sasaki et al.

3]

[10]
(11]
[12]

[13]

[14]

220

Sikha S. Bagui, Dustin Mink, Subhash C. Bagui, Pooja Madhyala, Neha Uppal, Tom McElroy,
Russell Plenkers, Marshall Elam, and Swathi Prayaga. Introducing the UWF-ZeekDataFall22
Dataset to Classify Attack Tactics from Zeek Conn Logs Using Spark’s Machine Learning in a Big
Data Framework. Electronics, 12(24), 2023.

Quoc V. Le and Tomas Mikolov. Distributed Representations of Sentences and Documents. CoRR,
abs/1405.4053, 2014.

Tomaés Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Repre-
sentations of Words and Phrases and their Compositionality. CoRR, abs/1310.4546, 2013.

MITRE. MITRE ATT&CK. Available at https://attack.mitre.org/, 2015. Accessed: 2025-
07-07.

MITRE. MITRE ATT&CK ”Discovery”. Available at https://attack.mitre.org/tactics/
TA0007/, 2018. Accessed: 2025-07-07.

MITRE. MITRE ATT&CK ”Reconnaissance”. Available at https://attack.mitre.org/
tactics/TA0043/, 2020. Accessed: 2025-07-07.

MITRE. MITRE ATT&CK ”Resource Development”. Available at https://attack.mitre.org/
tactics/TA0042/, 2020. Accessed: 2025-07-07.

Snehal A Mulay, PR Devale, and Goraksh V Garje. Intrusion detection system using support vector
machine and decision tree. International journal of computer applications, 3(3):40-43, 2010.

University of West Florida. UWF-ZeekData22 Dataset. Available at https://datasets.uwf.edu/,
2022. Accessed: 2025-07-07.

Mrutyunjaya Panda and Manas Ranjan Patra. Network intrusion detection using naive bayes.
International journal of computer science and network security, 7(12):258-263, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Re-
search, 12:2825-2830, 2011.

KVR Swamy and KV Lakshmi. Network intrusion detection using improved decision tree algo-
rithm. International Journal of Computer Science and Information Security, 10(8), 2012.

https://attack.mitre.org/
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/tactics/TA0043/
https://attack.mitre.org/tactics/TA0043/
https://attack.mitre.org/tactics/TA0042/
https://attack.mitre.org/tactics/TA0042/
https://datasets.uwf.edu/

	1 Introduction
	2 Related Work
	3 Classification Framework
	3.1 Overview
	3.2 Feature Representation

	4 Experiment
	4.1 Procedures and Evaluation Metrics
	4.2 Dataset
	4.3 Results
	4.4 Comparison with Related Work

	5 Discussion
	5.1 Consideration of Deep Learning for Classification
	5.2 Classification of Data with Small Sample Sizes

	6 Conclusion
	References

