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Abstract—With the rapid development of technology and the 

advent of the era of big data, Log-structured merge tree (LSM-

tree) based key-value storage systems are widely used in data 

centers that persistently store ultra-large-scale data. This paper 

proposes offloading the compaction operation to FPGA for 

acceleration, which can free up CPU computational resources 

and I/O bandwidth, thus improving the quality of service of the 

overall system. To evaluate the acceleration performance of the 

compaction module on hardware, this paper also completes the 

design of the NAND Flash controller and the corresponding 

storage card. The experimental results show that the 

compaction module implemented in this work can achieve up to 

11.07x acceleration performance compared to LevelDB. 
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I. INTRODUCTION  

With the rapid development of machine learning, 
intelligent computing, and cloud databases, storing massive 
data is becoming increasingly important[1]. Traditional 
relational databases are no longer suitable for highly 
concurrent and low-latency access scenarios to unstructured 
data[2]. Therefore, Key Value (KV) storage systems have 
emerged and become an important part of data storage 
facilities for data-intensive applications due to their simplicity, 
high throughput and scalability [3-5]. The LSM-tree-based 
KV storage system has a very significant  module, compaction, 
which is designed to merge multiple sorted string tables 
(SSTables). The compaction operation is a very host resource-
consuming operation [6], which reads a large number of 
relevant SSTables from the SSD into the host memory first, 
and writes them back to the SSD after processing. This process 
takes up a large amount of CPU computational resources and 
I/O bandwidth, and results in severe read/write amplification, 
which leads to the user's Quality of Service (QoS) degradation. 
Especially for large granularity KV data, the large amount of 
data handling and processing makes this effect more severe 
[7]. 

To reduce the consumption of host resources and I/O 
bandwidth, using heterogeneous hardware acceleration is an 
effective optimization method. A common practice is to use 
the embedded CPU in FPGA to accelerate operations such as 
compaction or indexing in LSM-tree. Sun X [8], Zhang T [9] 
and Lim M [10] et al. offloaded the compaction operation in 
LSM-tree to FPGA to accelerate the operation execution, 
which makes the CPU free from the heavy task of compaction 
calculation. In addition, the compaction operation does not 
need to read the SSTable data into memory and write it back 
after merging, which can greatly reduce the I/O bandwidth 
consumption. In particular, separating the compaction module 

from the host and designing a test platform for evaluation are 
crucial points to realize and verify the acceleration 
performance. 

 To reduce the resource and computational burden of the 
host and improve the QoS of the overall system, this paper 
proposes offloading the compaction operation into the FPGA 
and using hardware resources to realize it. In order to evaluate 
the effectiveness of this work in the real world, we also built 
a complete evaluation process to verify the performance 
improvement of this design. This paper makes the following 
contributions: 

• The compaction  acceleration module is implemented 
by using hardware circuits, which reduces the 
consumption of host resources and read/write 
amplification. 

• A NAND flash controller is implemented to interact 
upper-level commands with the NAND flash chip, 
which is essential for the test platform. 

• A hardware and software co-processing test platform 
is built for our designed structure, which verified the 
superiority of the work. 

The rest of the paper is organized as follows. We discuss 
the hardware design of the compaction module in Section II. 
In Section III, we discuss the simulation platform. Section IV 
presents the results of the compaction module performance. 
Finally, we conclude the paper by summarizing the key points 
in Section V. 

II. COMPACTION MODULE DESIGN 

A. Overall Structure of Compaction  

The overall structure of the compaction acceleration 
module is shown in Figure 1. The compaction module is 
functionally divided into three parts: the decoder module, the 
comparer_merger module, and the encoder module.  

 

Fig. 1. The overview of the compaction module. 

The decoder module decodes the input data_block, 
converts it into key data and address data, and stores it in the 
corresponding  first-input-first-output (FIFO). The comparer 
_merger module takes the key data and the address data from 
the FIFO, processes the format of the key data, performs a 
dictionary order comparison and outputs the valid key data, 
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the address data corresponding to the valid key data, and the 
invalid address data for garbage collection. The encoder 
module encodes the valid key and address data output by the 
comparer_merger module and converts them to 32-bit data, 
which is finally written into the encoder_data_out_fifo 
module. 

B. Global Register Definitions 

The compaction acceleration module contains a global 
register module that is connected to the embedded CPU via 
the AXI-Lite bus. There are six 32-bit registers defined in the 
global register module, all of which are of read-write type. The 
global registers are illustrated in the table I. 

TABLE I.  GLOBAL REGISTER USED IN COMPACTION MODULE 

offset register description 

0x0000_0000 REG_ENCODER_

DATA_OUT_CNT 
Indicates the amount of 

data written to the 
encoder_data_out_fifo 

module after encoding  
0x0000_0004 REG_INVALID_A

DDR_OUT_CNT 
Indicates the number of 

invalid addresses output by 

the comparer_merger 

module. 

0x0000_0008 REG_KEY0_ENT
RY_IN_CNT 

Indicates the amount of 
data carried from DDR4 to 

key0 entry by AXI-DMA. 

0x0000_000C REG_KEY1_ENT
RY_IN_CNT 

Indicates the amount of 
data carried from DDR4 to 

key1 entry by AXI-DMA. 

0x0000_0010 REG_COUNT_C

ONTROL 

Controls the start and end 

of the reg_throughput_ 
counter  module 

0x0000_0014 REG_THROUGH

PUT_COUNTER 

Embedded software code 

can perform throughput 

calculations by reading 

this register value. 

C. Decoder module 

The function of the decoder module is to decode the data 
of the data_block module moved from the DDR4 by the AXI-
DMA, convert it into key data and address data, and write it to 
the corresponding FIFO. This work separates the key and 
value components by storing <key, address> and <address, 
value> separately, where the address represents the address of 
the value data. The <key, address> pairs are stored in the space 
of the LSM-tree, while the <value> is written to the SSD using 
append write. Therefore, we can utilize FPGA to accelerate 
the compaction operation only for the separated <key, 
address>. This design reduces the data volume for compaction 
operations and optimizes the read/write performance of the 
LSM-tree by reducing read/write amplification. The 
schematic diagram of <key, value> separation is shown in 
Figure 2. 

Fig. 2. Schematic diagram of <key, value> separation. 

We illustrate the process of decoding in Figure 3. The key 
entry0 is the start point key of the group, and the shared key 
length is 0, so the decoded key value is the value of the 
unshared key (i.e. “hellodb”). The shared key length of key 
entry1 is 5, which means it shares 5 bytes of the previous 
key(i.e., “hello”), and combines it with its own unshared key, 
“world”, to get the value of key1 as “helloworld”. The shared 
key length of key entry2 is 8, (i.e., “hellowor”), which is 
combined with the unshared key of this entry to get the value 
of key2 as “helloworld0”. For a key entry with a vir_bit value 
of 1, it means that the entry is not output as a real key, but only 
as a shared key reference for the next key entry. Although a 
key entry with a vir_bit value of 1 is virtual, it is still treated 
as a complete key entry and goes through the normal decoding 
process. Note that in this example, key entry2 and key entry3 
have the same prefix “helloworld” with a total of 10 bytes, but 
this design specifies that the maximum SHARED key length 
is 8, so the portion greater than 8 can only be reflected in the 
unshared key. The purpose of choosing prefix compression is 
to reduce the amplification of space, and continuing to 
increase the upper limit of shared key length will only increase 
the number of stages of the selector circuits in the decoder and 
encoder modules, which will not further optimize the space 
utilization.  

4'h0 4'h71'b0  hellodb 

GROUP

KEY ENTRY 0

vir_bit shared key length unshared key length unshared key

4'h5 4'h51'b0  world 

4'h8 4'h31'b0  ld0 

          

 hellodb 
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KEY

KEY ENTRY 1

KEY ENTRY 2

 

Fig. 3. The process of decoding.  

D. Comparer_Merger Module 

The comparer_merger module is responsible for 
processing the format of the key data which is passed from the 
FIFO module and performs a dictionary order comparison. 
The comparer_merger module outputs the valid key data in 
dictionary order from smallest to largest and outputs the 
corresponding valid address. The comparer_merger module 
also writes the invalid address to the invalid_addr_fifo for 
later garbage collection. 

We illustrate the process of comparing and merging in 
Figure 4. The key0_fifo and key1_fifo store the ordered key 
data and the overlapping key data in the two key_fifos are “3”, 
“4”, “5”, and “6”. The addr0_fifo and addr1_fifo store the key's 
corresponding address data. The comparer_merger module 
merges the identical key data and arranges the non-identical 
key data in the dictionary order from smallest to largest. After 
processing, the comparer_merger module writes them and 
their corresponding address into the valid_key_fifo and valid_ 
addr_fifo respectively.  
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Fig. 4. The process of comparing and merging. 



 

 

E. Encoder Module 

The function of the encoder module is to merge and 
encode the valid key data and valid address data by prefix 
compression output from the comparer_merger module and 
convert it to 32-bit wide data, which is finally written to the 
encoder_data_out_fifo. In order to be compatible with the 
decoder module, the encoder module needs to encode the 
input 133-bit wide key data into 64-bit data consisting of 
address, vir_bit, shared_key_len, unshared_key_len, and 
unshared_key, which will be converted into 32-bit data by 
using a data bit-width converter. Based on the characteristics 
of the key data to be encoded and the time sequence of the 
input, this design classifies the encoding types into three types: 
non-virtual key encoding; virtual key encoding; and group's 
last key encoding. There are differences in data processing 
between different encoding types, but the encoded 64-bit data 
conforms to the format shown in Figure 5. 

unshared_ key_in[63:0]phase0 

63 0bit

shared_key 

_len[3:0]
vir_bitaddr[31:0] 8'b0

unshared_key 

_len[3:0]
15'b0phase1 

ENCODER

key[132:0] addr[31:0]key_in 

 

Fig. 5. The function of the encoder module 

When the input key's unshared_key_len is less than or 
equal to 8 bytes, then the prefix is encoded in non-virtual key 
encoding mode. The encoding process of this mode is just the 
opposite of the decoding process in Figure 3. The purpose of 
the virtual key encoding mode is to solve the problem that  64-
bit data cannot fully store an unshared key when the 
unshared_key_len of the key is greater than 8 bytes. A key 
with a shared_key_len greater than 8 is encoded multiple 
times. We treat the preceding entry as the shared portion of the 
following and set the vir_bit of the preceding entry to 1, which 
optimizes the speed of key queries. Note that during decoding, 
if vir_bit is 1, decoder_module does not process the key entry 
as a separate key entry, but rather considers it to be the prefix 
of the subsequent key entry. The process of virtual key 
encoding mode is shown in Figure 6. The group's last key 
encoding mode is used to handle the situation when the last 
key entry of a group is a virtual key entry. The encoder will 
mark the last key entry of the last group as an invalid entry and 
store the generated multiple key entries in the next group. 

Fig. 6. The process of virtual key encoding mode 

III. SIMULATION PLATFORM 

A. NAND Flash Controller 

In order to build a complete test platform, we must 
implement the NAND flash controller module, which is 
responsible for the interaction of upper-level commands with 
NAND Flash chip. The structure of NAND flash controller is 

shown in Figure 7. The NAND Flash interface can be divided 
into three layers: command classification layer, time sequence 
layer and physical interface layer. The command classification 
layer splits and combines the states of the seven commands 
that we have designed. The time sequence layer controls the 
timing of each signal line of the flash chip according to the 
timing requirements of each command. The physical interface 
layer implements functions such as cross-clocking domains, 
serial-to-parallel conversion, phase modulation and sampling. 
The NAND flash interface is externally connected to global 
registers and a DMA, which is responsible for command 
interaction with the embedded CPU and transferring data from 
the on-board DDR to the NAND flash respectively. 
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Fig. 7. The structure of NAND flash controller. 

B. Overall Structure of Test Platform 

The test platform adopts hardware and software co-design, 
which is built on a Xilinx Kintex UltraScale FPGA KCU105. 
The structure of test platform is shown in Figure 8. 
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Fig. 8. The structure of the test platform 

 This design uses the MicroBlaze softcore as the CPU of 
the embedded system, which is responsible for running the 
embedded software code. The flow of the main function 
operation is shown in Figure 9.  

Fig. 9. The flow of embedded software main function code  

AXI interconnect is responsible for data transfer between 
multiple IP cores. AXI_DMA is a high-performance DMA 
controller provided by Xilinx that enables programmable 
high-bandwidth data transfers, making data transfers between 
peripherals and memory more efficient. AXI Uartlite module 
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is used to print relevant information in the embedded software 
code for code debugging. The compaction module and NAND 
flash controller module are customized IPs that we have 
designed. The resource utilization of this test platform is 
shown in Table II.  

TABLE II.  RESOURCE UTILIZATION 

Resource Utilization Available Utilization % 

LUT 44385 242400 18.31 

FF 50980 484800 10.52 

BRAM 433 600 72.17 

DSP 3 1920 0.16 

IO 136 520 26.15 

MMCM 3 10 30 

PLL 3 20 15.00 

IV. EVALUATION 

We tested and analyzed the compaction performance of 
LevelDB [11], whose version is 1.23. The host is powered by 
a 6-core Intel(R) Core(TM) i5-8500 CPU @ 3.00GHZ 
processor and equipped with DDR4-2666 8GiB single-
channel memory and Samsung 860 evo 500GB SSD. We 
calculate the throughput of the compaction module that we 
designed by reading the value of reg_throughput_counter 
through the embedded software. We tested 5 types of key 
entry quantities for evaluation and the results are shown in the 
table III. 

TABLE III.  PERFORMANCE TEST RESULTS OF COMPACTION MODULE 

Key  
number 

Byte 
number 

Throughput 
counter 
value 

Processing 
efficiency 

(micros/entry) 

Performance 
comparison 

with 
LevelDB [9] 

512 8192 9334 0.182305 6.54× 

1024 16384 14814 0.144668 8.24× 

2048 32768 26248 0.128164 9.30× 

4096 65536 45065 0.110022 10.84× 

8192 131072 88247 0.107723 11.07× 

 

As the number of key entries increases, the processing 
efficiency of the compaction module for acceleration 
increases. This is because when the number of input key 
entries is small, reading and writing registers on the software 
side take up most of the time due to the performance 
limitations of the MicroBlaze softcore. As the number of key 
entries increases, the real processing efficiency of the 
compaction module that we designed by hardware is better 

reflected. When the number of key entries is 8192, the 
processing efficiency of the compaction module is 11.07 times 
of LevelDB [11]. This fully demonstrates that utilizing 
hardware resources to implement the compaction module for 
acceleration has significant performance improvement. 

V. CONCLUSION 

This paper proposes that offloading the compaction 
operation to FPGA and implementing it by using hardware 
resources can release the computational resources of CPU and 
I/O bandwidth, which will improve the QoS of the overall 
system. In order to evaluate the acceleration effect of the 
compaction module in hardware, this paper also accomplishes 
a complete test platform by hardware and software co-design. 
The experimental results show that the compaction module 
achieve up to 11.07x acceleration performance compared to 
LevelDB [11]. 
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