
EasyChair Preprint
№ 15499

LSM-Tree Based Hardware System Design for
Compaction Acceleration

Sirui Peng, Lin Yang, Zhikang Ding, Xingyu Chen, Xu Kong,
Haidong Tian, Xiankui Xiong, Xiaoyong Xue and Xiaoyang Zeng

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 29, 2024

LSM-tree Based Hardware System Design for

Compaction Acceleration
Sirui Peng1, Lin Yang1, Zhikang Ding1, Xingyu Chen1, Xu Kong1, Haidong Tian2, Xiankui Xiong2, Xiaoyong Xue1*, Xiaoyang Zeng1

1School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China
2State Key Laboratory of Mobile Network and Mobile Communication Multimedia Technology, ZTE, Shenzhen, China

*Email of corresponding author: xuexiaoyong@fudan.edu.cn

Abstract—With the rapid development of technology and the

advent of the era of big data, Log-structured merge tree (LSM-

tree) based key-value storage systems are widely used in data

centers that persistently store ultra-large-scale data. This paper

proposes offloading the compaction operation to FPGA for

acceleration, which can free up CPU computational resources

and I/O bandwidth, thus improving the quality of service of the

overall system. To evaluate the acceleration performance of the

compaction module on hardware, this paper also completes the

design of the NAND Flash controller and the corresponding

storage card. The experimental results show that the

compaction module implemented in this work can achieve up to

11.07x acceleration performance compared to LevelDB.

Keywords—LSM-tree, Compaction, NAND Flash, FPGA

I. INTRODUCTION

With the rapid development of machine learning,
intelligent computing, and cloud databases, storing massive
data is becoming increasingly important[1]. Traditional
relational databases are no longer suitable for highly
concurrent and low-latency access scenarios to unstructured
data[2]. Therefore, Key Value (KV) storage systems have
emerged and become an important part of data storage
facilities for data-intensive applications due to their simplicity,
high throughput and scalability [3-5]. The LSM-tree-based
KV storage system has a very significant module, compaction,
which is designed to merge multiple sorted string tables
(SSTables). The compaction operation is a very host resource-
consuming operation [6], which reads a large number of
relevant SSTables from the SSD into the host memory first,
and writes them back to the SSD after processing. This process
takes up a large amount of CPU computational resources and
I/O bandwidth, and results in severe read/write amplification,
which leads to the user's Quality of Service (QoS) degradation.
Especially for large granularity KV data, the large amount of
data handling and processing makes this effect more severe
[7].

To reduce the consumption of host resources and I/O
bandwidth, using heterogeneous hardware acceleration is an
effective optimization method. A common practice is to use
the embedded CPU in FPGA to accelerate operations such as
compaction or indexing in LSM-tree. Sun X [8], Zhang T [9]
and Lim M [10] et al. offloaded the compaction operation in
LSM-tree to FPGA to accelerate the operation execution,
which makes the CPU free from the heavy task of compaction
calculation. In addition, the compaction operation does not
need to read the SSTable data into memory and write it back
after merging, which can greatly reduce the I/O bandwidth
consumption. In particular, separating the compaction module

from the host and designing a test platform for evaluation are
crucial points to realize and verify the acceleration
performance.

 To reduce the resource and computational burden of the
host and improve the QoS of the overall system, this paper
proposes offloading the compaction operation into the FPGA
and using hardware resources to realize it. In order to evaluate
the effectiveness of this work in the real world, we also built
a complete evaluation process to verify the performance
improvement of this design. This paper makes the following
contributions:

• The compaction acceleration module is implemented
by using hardware circuits, which reduces the
consumption of host resources and read/write
amplification.

• A NAND flash controller is implemented to interact
upper-level commands with the NAND flash chip,
which is essential for the test platform.

• A hardware and software co-processing test platform
is built for our designed structure, which verified the
superiority of the work.

The rest of the paper is organized as follows. We discuss
the hardware design of the compaction module in Section II.
In Section III, we discuss the simulation platform. Section IV
presents the results of the compaction module performance.
Finally, we conclude the paper by summarizing the key points
in Section V.

II. COMPACTION MODULE DESIGN

A. Overall Structure of Compaction

The overall structure of the compaction acceleration
module is shown in Figure 1. The compaction module is
functionally divided into three parts: the decoder module, the
comparer_merger module, and the encoder module.

Fig. 1. The overview of the compaction module.

The decoder module decodes the input data_block,
converts it into key data and address data, and stores it in the
corresponding first-input-first-output (FIFO). The comparer
_merger module takes the key data and the address data from
the FIFO, processes the format of the key data, performs a
dictionary order comparison and outputs the valid key data,

This work was supported in part by the National Key R&D Program

under Grant 2023YFB4404700, in part by the National Natural Science
Foundation of China under Grant 62274038, in part by the Science and

Technology Commission of Shanghai Municipality under Grant

21TS1401200 and Grant 22ZR1407100, and in part by State Key Laboratory
of Integrated Chips and Systems under Grant SKLICS-Z202315.

the address data corresponding to the valid key data, and the
invalid address data for garbage collection. The encoder
module encodes the valid key and address data output by the
comparer_merger module and converts them to 32-bit data,
which is finally written into the encoder_data_out_fifo
module.

B. Global Register Definitions

The compaction acceleration module contains a global
register module that is connected to the embedded CPU via
the AXI-Lite bus. There are six 32-bit registers defined in the
global register module, all of which are of read-write type. The
global registers are illustrated in the table I.

TABLE I. GLOBAL REGISTER USED IN COMPACTION MODULE

offset register description

0x0000_0000 REG_ENCODER_

DATA_OUT_CNT
Indicates the amount of

data written to the
encoder_data_out_fifo

module after encoding
0x0000_0004 REG_INVALID_A

DDR_OUT_CNT
Indicates the number of

invalid addresses output by

the comparer_merger

module.

0x0000_0008 REG_KEY0_ENT
RY_IN_CNT

Indicates the amount of
data carried from DDR4 to

key0 entry by AXI-DMA.

0x0000_000C REG_KEY1_ENT
RY_IN_CNT

Indicates the amount of
data carried from DDR4 to

key1 entry by AXI-DMA.

0x0000_0010 REG_COUNT_C

ONTROL

Controls the start and end

of the reg_throughput_
counter module

0x0000_0014 REG_THROUGH

PUT_COUNTER

Embedded software code

can perform throughput

calculations by reading

this register value.

C. Decoder module

The function of the decoder module is to decode the data
of the data_block module moved from the DDR4 by the AXI-
DMA, convert it into key data and address data, and write it to
the corresponding FIFO. This work separates the key and
value components by storing <key, address> and <address,
value> separately, where the address represents the address of
the value data. The <key, address> pairs are stored in the space
of the LSM-tree, while the <value> is written to the SSD using
append write. Therefore, we can utilize FPGA to accelerate
the compaction operation only for the separated <key,
address>. This design reduces the data volume for compaction
operations and optimizes the read/write performance of the
LSM-tree by reducing read/write amplification. The
schematic diagram of <key, value> separation is shown in
Figure 2.

Fig. 2. Schematic diagram of <key, value> separation.

We illustrate the process of decoding in Figure 3. The key
entry0 is the start point key of the group, and the shared key
length is 0, so the decoded key value is the value of the
unshared key (i.e. “hellodb”). The shared key length of key
entry1 is 5, which means it shares 5 bytes of the previous
key(i.e., “hello”), and combines it with its own unshared key,
“world”, to get the value of key1 as “helloworld”. The shared
key length of key entry2 is 8, (i.e., “hellowor”), which is
combined with the unshared key of this entry to get the value
of key2 as “helloworld0”. For a key entry with a vir_bit value
of 1, it means that the entry is not output as a real key, but only
as a shared key reference for the next key entry. Although a
key entry with a vir_bit value of 1 is virtual, it is still treated
as a complete key entry and goes through the normal decoding
process. Note that in this example, key entry2 and key entry3
have the same prefix “helloworld” with a total of 10 bytes, but
this design specifies that the maximum SHARED key length
is 8, so the portion greater than 8 can only be reflected in the
unshared key. The purpose of choosing prefix compression is
to reduce the amplification of space, and continuing to
increase the upper limit of shared key length will only increase
the number of stages of the selector circuits in the decoder and
encoder modules, which will not further optimize the space
utilization.

4'h0 4'h71'b0 hellodb

GROUP

KEY ENTRY 0

vir_bit shared key length unshared key length unshared key

4'h5 4'h51'b0 world

4'h8 4'h31'b0 ld0

 hellodb

 helloworld

 helloworld0

KEY

KEY ENTRY 1

KEY ENTRY 2

Fig. 3. The process of decoding.

D. Comparer_Merger Module

The comparer_merger module is responsible for
processing the format of the key data which is passed from the
FIFO module and performs a dictionary order comparison.
The comparer_merger module outputs the valid key data in
dictionary order from smallest to largest and outputs the
corresponding valid address. The comparer_merger module
also writes the invalid address to the invalid_addr_fifo for
later garbage collection.

We illustrate the process of comparing and merging in
Figure 4. The key0_fifo and key1_fifo store the ordered key
data and the overlapping key data in the two key_fifos are “3”,
“4”, “5”, and “6”. The addr0_fifo and addr1_fifo store the key's
corresponding address data. The comparer_merger module
merges the identical key data and arranges the non-identical
key data in the dictionary order from smallest to largest. After
processing, the comparer_merger module writes them and
their corresponding address into the valid_key_fifo and valid_
addr_fifo respectively.

6 5 4

comparer

_merger

3 2 1

8 7 6 5 4 3

1 2 3 4 5 6 7 8

KEY1 FIFO

KEY0 FIFO
VALID KEY FIFO

A6 A5 A4 A3 A2 A1

B8 B7 B6 B5 B4 B3

ADDR1 FIFO

ADDR0 FIFO

A1 A2 A3 A4 A5 A6 B7 B8

VALID ADDR FIFO

B3 B4 B5 B6

INVALID ADDR FIFO

Fig. 4. The process of comparing and merging.

E. Encoder Module

The function of the encoder module is to merge and
encode the valid key data and valid address data by prefix
compression output from the comparer_merger module and
convert it to 32-bit wide data, which is finally written to the
encoder_data_out_fifo. In order to be compatible with the
decoder module, the encoder module needs to encode the
input 133-bit wide key data into 64-bit data consisting of
address, vir_bit, shared_key_len, unshared_key_len, and
unshared_key, which will be converted into 32-bit data by
using a data bit-width converter. Based on the characteristics
of the key data to be encoded and the time sequence of the
input, this design classifies the encoding types into three types:
non-virtual key encoding; virtual key encoding; and group's
last key encoding. There are differences in data processing
between different encoding types, but the encoded 64-bit data
conforms to the format shown in Figure 5.

unshared_ key_in[63:0]phase0

63 0bit

shared_key

_len[3:0]
vir_bitaddr[31:0] 8'b0

unshared_key

_len[3:0]
15'b0phase1

ENCODER

key[132:0] addr[31:0]key_in

Fig. 5. The function of the encoder module

When the input key's unshared_key_len is less than or
equal to 8 bytes, then the prefix is encoded in non-virtual key
encoding mode. The encoding process of this mode is just the
opposite of the decoding process in Figure 3. The purpose of
the virtual key encoding mode is to solve the problem that 64-
bit data cannot fully store an unshared key when the
unshared_key_len of the key is greater than 8 bytes. A key
with a shared_key_len greater than 8 is encoded multiple
times. We treat the preceding entry as the shared portion of the
following and set the vir_bit of the preceding entry to 1, which
optimizes the speed of key queries. Note that during decoding,
if vir_bit is 1, decoder_module does not process the key entry
as a separate key entry, but rather considers it to be the prefix
of the subsequent key entry. The process of virtual key
encoding mode is shown in Figure 6. The group's last key
encoding mode is used to handle the situation when the last
key entry of a group is a virtual key entry. The encoder will
mark the last key entry of the last group as an invalid entry and
store the generated multiple key entries in the next group.

Fig. 6. The process of virtual key encoding mode

III. SIMULATION PLATFORM

A. NAND Flash Controller

In order to build a complete test platform, we must
implement the NAND flash controller module, which is
responsible for the interaction of upper-level commands with
NAND Flash chip. The structure of NAND flash controller is

shown in Figure 7. The NAND Flash interface can be divided
into three layers: command classification layer, time sequence
layer and physical interface layer. The command classification
layer splits and combines the states of the seven commands
that we have designed. The time sequence layer controls the
timing of each signal line of the flash chip according to the
timing requirements of each command. The physical interface
layer implements functions such as cross-clocking domains,
serial-to-parallel conversion, phase modulation and sampling.
The NAND flash interface is externally connected to global
registers and a DMA, which is responsible for command
interaction with the embedded CPU and transferring data from
the on-board DDR to the NAND flash respectively.

NAND

FLASH

Command Classification Layer

Time Sequence Layer

Physical Interface Layer

Global

Register

DMA

Embedded

CPU

Nand Flash Interface

AXI-Lite

AXI

Fig. 7. The structure of NAND flash controller.

B. Overall Structure of Test Platform

The test platform adopts hardware and software co-design,
which is built on a Xilinx Kintex UltraScale FPGA KCU105.
The structure of test platform is shown in Figure 8.

Compaction

MicroBlazeClk_Wiz AXI Uartlite

AXI Interconnect

DDR4

NAND Flash

Controller

AXI_DMA_1AXI_DMA_0

Fig. 8. The structure of the test platform

 This design uses the MicroBlaze softcore as the CPU of
the embedded system, which is responsible for running the
embedded software code. The flow of the main function
operation is shown in Figure 9.

Fig. 9. The flow of embedded software main function code

AXI interconnect is responsible for data transfer between
multiple IP cores. AXI_DMA is a high-performance DMA
controller provided by Xilinx that enables programmable
high-bandwidth data transfers, making data transfers between
peripherals and memory more efficient. AXI Uartlite module

4'h0 4'h81'b1 hellowor

GROUP

KEY ENTRY 0

vir_bit shared key length unshared key length unshared key

4'h8 4'h31'b0 ld0

 helloworld0

KEY

KEY ENTRY 1

is used to print relevant information in the embedded software
code for code debugging. The compaction module and NAND
flash controller module are customized IPs that we have
designed. The resource utilization of this test platform is
shown in Table II.

TABLE II. RESOURCE UTILIZATION

Resource Utilization Available Utilization %

LUT 44385 242400 18.31

FF 50980 484800 10.52

BRAM 433 600 72.17

DSP 3 1920 0.16

IO 136 520 26.15

MMCM 3 10 30

PLL 3 20 15.00

IV. EVALUATION

We tested and analyzed the compaction performance of
LevelDB [11], whose version is 1.23. The host is powered by
a 6-core Intel(R) Core(TM) i5-8500 CPU @ 3.00GHZ
processor and equipped with DDR4-2666 8GiB single-
channel memory and Samsung 860 evo 500GB SSD. We
calculate the throughput of the compaction module that we
designed by reading the value of reg_throughput_counter
through the embedded software. We tested 5 types of key
entry quantities for evaluation and the results are shown in the
table III.

TABLE III. PERFORMANCE TEST RESULTS OF COMPACTION MODULE

Key
number

Byte
number

Throughput
counter
value

Processing
efficiency

(micros/entry)

Performance
comparison

with
LevelDB [9]

512 8192 9334 0.182305 6.54×

1024 16384 14814 0.144668 8.24×

2048 32768 26248 0.128164 9.30×

4096 65536 45065 0.110022 10.84×

8192 131072 88247 0.107723 11.07×

As the number of key entries increases, the processing
efficiency of the compaction module for acceleration
increases. This is because when the number of input key
entries is small, reading and writing registers on the software
side take up most of the time due to the performance
limitations of the MicroBlaze softcore. As the number of key
entries increases, the real processing efficiency of the
compaction module that we designed by hardware is better

reflected. When the number of key entries is 8192, the
processing efficiency of the compaction module is 11.07 times
of LevelDB [11]. This fully demonstrates that utilizing
hardware resources to implement the compaction module for
acceleration has significant performance improvement.

V. CONCLUSION

This paper proposes that offloading the compaction
operation to FPGA and implementing it by using hardware
resources can release the computational resources of CPU and
I/O bandwidth, which will improve the QoS of the overall
system. In order to evaluate the acceleration effect of the
compaction module in hardware, this paper also accomplishes
a complete test platform by hardware and software co-design.
The experimental results show that the compaction module
achieve up to 11.07x acceleration performance compared to
LevelDB [11].

REFERENCES

[1] Berisha, B., Mëziu, E. & Shabani, I. Big data analytics in Cloud
computing: an overview. J Cloud Comp 11, 24 (2022). doi:
10.1186/s13677-022-00301-w.

[2] Nathan Marz and James Warren. 2015. Big Data: Principles and best
practices of scalable realtime data systems (1st. ed.). Manning
Publications Co., USA.

[3] Chen Luo and Michael J. Carey. 2019. LSM-based storage techniques:
a survey. The VLDB Journal 29, 1 (Jan 2020), pp. 393–418.

[4] Y. Qiu et al., "FULL-KV: Flexible and Ultra-Low-Latency In-Memory
Key-Value Store System Design on CPU-FPGA," in IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 8, pp.
1828-1444, 1 Aug. 2020, doi: 10.1109/TPDS.2020.2973965.

[5] T. Bisson, K. Chen, C. Choi, V. Balakrishnan and Y. -s. Kee, "Crail-
KV: A High-Performance Distributed Key-Value Store Leveraging
Native KV-SSDs over NVMe-oF," 2018 IEEE 37th International
Performance Computing and Communications Conference (IPCCC),
Orlando, FL, USA, 2018, pp. 1-8, doi: 10.1109/PCCC.2018.8710776.

[6] Hui Sun, Bendong Lou, Chao Zhao, Deyan Kong, Chaowei Zhang,
Jianzhong Huang, Yinliang Yue, and Xiao Qin. 2023. An
Asynchronous Compaction Acceleration Scheme for Near-Data
Processing-enabled LSM-Tree-based KV Stores. ACM Trans. Embed.
Comput. Syst. Just Accepted (September 2023). Doi: 10.1145/3626097.

[7] Lu L, Pillai T S, Gopalakrishnan H, et al. WiscKey: Separating Keys
from Values in SSD-Conscious Storage[J]. ACM Transactions on
Storage, 2017, 13(1):1-28. doi: 10.1145/3033273

[8] X. Sun, J. Yu, Z. Zhou and C. J. Xue, "FPGA-based Compaction
Engine for Accelerating LSM-tree Key-Value Stores," 2020 IEEE 36th
International Conference on Data Engineering (ICDE), Dallas, TX,
USA, 2020, pp. 1261-1272, doi: 10.1109/ICDE48307.2020.00113.

[9] Zhang T, Wang J, Cheng X, et al. FPGA-Accelerated Compactions for
LSM-based Key-Value Store[C]. FAST. 2020: 225-237.

[10] Lim M, Jung J, Shin D. LSM-Tree Compaction Acceleration Using In-
Storage Processing[C]. 2021 IEEE International Conference on
Consumer Electronics-Asia (ICCE-Asia). IEEE, 2021: 1-3.

[11] LevelDB [EB/OL]. https://dbdb.io/db/leveldb/

