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Abstract—Traditional methods for crawling and parsing web
applications predominantly rely on extracting hyperlinks from
initial pages and recursively following linked resources. This
approach constructs a graph where nodes represent unstructured
data from web pages, and edges signify transitions between them.
However, these techniques are limited in capturing the dynamic
and interactive behaviors inherent to modern web applications. In
contrast, the proposed method models each node as a structured
representation of the application’s current state, with edges
reflecting user-initiated actions or transitions. This structured
representation enables a more comprehensive and functional
understanding of web applications, offering valuable insights
for downstream tasks such as automated testing and behavior
analysis.

I. INTRODUCTION

Web applications require rich data representation for down-
stream tasks such as automation testing, user behavior analy-
sis, and functional verification. Traditional web parsers operate
through a structured yet simplistic algorithm:

1) Initialize a queue with the starting page.
2) Set a maximum depth (if applicable) and initialize the

current depth to zero.
3) While the queue is not empty and the maximum depth

is not exceeded:
a) Dequeue the next page from the queue.
b) If the page has not been visited:

i) Navigate to the page.
ii) Extract the desired data and store it as a node.

iii) Extract all hyperlinks from the page.
iv) Add all unseen and unvisited hyperlinks to the

queue.
v) Mark the current page as visited.

c) Increment the depth if moving to a new level.
4) Stop when all pages are visited or the maximum depth

is reached.
While this approach effectively scrapes static web applica-

tions, it falls short in handling dynamic applications, where
significant portions of the application are unreachable through
simple hyperlink navigation. Modern web applications often
follow structured user flows, which involve interaction beyond
hyperlinks. For instance, in an e-commerce site, reaching the
checkout page might require several actions: searching for a
product, adding it to the cart, entering a delivery location,
and only then accessing the checkout. Traditional parsers,
which rely solely on clicking hyperlinks, cannot capture such

dynamic flows and are limited in their ability to represent the
application’s state accurately.

Additionally, many web applications exhibit variability at
the same endpoint depending on the user’s context. For ex-
ample, a checkout page may display ”Ready to purchase” for
one user and ”Item cannot be delivered to your location” for
another, based on the delivery address provided.

In this work, the proposed solution overcomes these limita-
tions by representing each unique state of a web application
as a node, with edges defined by specific actions taken within
the application. This method captures the full complexity of
user flows, allowing for a more accurate and interpretable
knowledge representation of web applications.

II. BACKGROUND

Early web crawlers, such as World Wide Web Wanderer
(1993) [1], were primarily designed to map the size of the
web by collecting basic HTML from static websites [2]. As
the web expanded, tools like JumpStation emerged, becoming
the first search engine to use crawlers for indexing web content
[3]. These early systems, however, were limited to handling
static web content, as dynamic web pages driven by JavaScript
and AJAX had not yet become widespread.

The emergence of dynamic content significantly compli-
cated the process of web scraping for traditional parsers.
Frameworks such as Beautiful Soup (2004) were introduced
to facilitate the extraction of structured data from increasingly
complex web pages. Although effective for parsing static
HTML content, these tools were inherently limited in their
capacity to handle dynamic, JavaScript-driven web elements
or to interact with user-initiated events. As modern web appli-
cations began to rely heavily on dynamic content loading and
client-side interactions, more advanced methodologies became
necessary to accurately capture these behaviors. Several tools
have been developed to address these challenges. Selenium [4]
is widely used for automating browser interactions, allowing
developers to simulate user actions such as clicking, typing,
and submitting forms.

To address these limitations, visual web scraping tools like
Octoparse [5] emerged, offering user-friendly interfaces that
allowed non-programmers to automate the extraction of both
static and dynamic website data. These tools simulate user
behavior, such as clicks and form submissions, to capture data.
However, tools like Octoparse lack self-exploration capabili-
ties and are unable to reason through or autonomously navigate



complex web applications. As a result, they struggle to capture
the full range of state transitions and user interactions that are
essential for modeling modern, dynamic web applications.

More recent efforts have focused on combining dynamic
analysis with event-based crawling techniques. For instance,
jÄk [6] employs dynamic analysis to hook into JavaScript
APIs and detect network events, dynamically-generated URLs,
and user form submissions. By leveraging a navigation graph,
jÄk can explore 86% more of a web application’s surface
compared to traditional approaches. Similarly, Crawljax [7]
uses state abstraction to generate a state-flow graph for AJAX-
based applications, which can be used to automate testing of
dynamic user flows.

Knowledge graph-based systems, such as Squirrel [8], have
been proposed to crawl the semantic web and represent
data in structured formats. However, these approaches are
typically limited to RDF-based web data and do not capture
the dynamic, user-driven interactions seen in modern web
applications.

Our proposed solution builds upon these existing tools
by representing web applications as a knowledge graph. In
this approach, each node represents a unique state of the
application, while edges represent user actions leading to tran-
sitions between states. This structured representation allows
us to capture dynamic workflows and state transitions more
effectively, making the system ideal for downstream tasks
like automated testing and error handling in complex web
environments.

III. METHODOLOGY

The key components of the system are designed to capture
the dynamic behavior of web applications, including user inter-
actions and state transitions. The system consists of three main
components: the Functionality Inferring Module, the Action
Executor, and the Reward/Penalty Model. Each component
interacts with the others to build an interpretable, action-based
graph of the web application.

A. State

In this system, a state refers to the configuration of a
web application at a specific point in time, characterized by
its visual and structural properties. Each state encapsulates
the outcomes of user interactions and changes within the
web application, offering a detailed snapshot of both its user
interface and underlying functionality.

A state is defined by the following key components:

• Screenshot: A visual capture of the web application’s
interface at a particular moment, serving as a reference
for the graphical presentation as perceived by the user.

• Page Source: The HTML and Document Object Model
(DOM) structure that constitutes the web page. This
includes critical elements such as forms, buttons, and in-
teractive components that define the layout and available
functionalities.

• Metadata: Ancillary data related to the current web
session, including HTTP headers, cookies, and session-
specific variables. This metadata provides additional con-
text regarding the state of the application, reflecting
conditions like user authentication, session persistence,
or dynamic content adjustments.

State transitions occur when users interact with the ap-
plication, such as through navigation, form submission, or
button clicks. These transitions, captured as edges in the graph,
form the relationships between states and drive the knowledge
representation.

In complex web applications, multiple states may cor-
respond to a single URL, but may vary due to session-
specific factors or dynamically rendered content. For instance,
a checkout page may present distinct states depending on
whether items have been added to the cart or whether delivery
options are available for the user’s location. These variations
are captured through the combination of structural data and
metadata.

B. Action

In the context of this system, an Action refers to a user-
initiated operation or event that transitions the web application
from one state to another. Actions represent the interaction
points between the user and the web application, such as
clicking a button, submitting a form, navigating to a new page,
or triggering an AJAX request. These actions are fundamental
to the system’s ability to explore and infer functionalities
within the web application.

Actions are captured and represented as edges in the knowl-
edge graph, where each edge connects two nodes (states) and
denotes the transition caused by a specific interaction. The
goal of the system is to not only capture the actions that lead
to state transitions but also to rank and prioritize them based
on their significance to the web application’s functionality.

Key characteristics of an action include:
• Action Type: Actions can vary widely, from simple

navigation (e.g., following a hyperlink) to complex in-
teractions (e.g., filling out and submitting a form). These
actions are categorized into types based on the nature of
the interaction, such as clicks, form submissions, key-
board inputs, or dynamic event triggers (e.g., JavaScript
events).

• Action Context: Each action is tied to a specific element
in the DOM structure, such as a button, link, or form
field. The context includes metadata such as the element’s
attributes (e.g., ID, class) and its location within the page
hierarchy. This context helps the system understand how
the action relates to the structure of the web application.

• Effect on State: Actions are only significant if they
result in a state change, meaning they transition the
web application from one distinct state to another. The
Functionality Inferring Module analyzes the effect of each
action on the state, ensuring that only meaningful transi-
tions are captured. For example, submitting a form might
transition the user from a login page to a dashboard,
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Fig. 1: System Overview of the Proposed Methodology

whereas clicking a non-interactive element would not
result in a state change.

• Action Priority: Not all actions contribute equally to the
exploration of the application’s functionality. The system
prioritizes actions that lead to new or unexplored states.
Actions that produce trivial or redundant transitions (e.g.,
right-clicking or hovering over an element without caus-
ing a meaningful change) are deprioritized by the Re-
ranking Module, ensuring that the exploration process is
efficient.

C. Functionality Inferring Module

The Functionality Inferring Module is responsible for ana-
lyzing the current state of the web application and predicting
potential actions that could transition the application to new
states. This module synthesizes information from the current
observation, previously explored functionalities, and the state-
action history to identify and rank possible actions. The
primary goal is to maximize the discovery of new function-
alities and ensure that the system explores meaningful user
interactions.

The module comprises four key components:
1) Reasoning Agent: This agent processes the current ob-

servation—comprising the page source, screenshot, and meta-
data—alongside the record of previously explored function-

alities. It synthesizes multiple queries to interface with the
database, determining what functionalities have already been
explored and what actions are possible given the current state
and past interactions. The Reasoning Agent outputs a list of
possible actions that can be performed based on the current
and previous states, ensuring a thorough exploration of the
application’s functionalities.

a) Multi-modal LLM for State Understanding: The Rea-
soning Agent employs a multi-modal LLM to comprehensively
understand the current state of the web application. By ana-
lyzing various inputs—including the page source, screenshots,
and session metadata—the LLM can generate a semantic and
structural understanding of the application’s current state.

b) Database Interface for Explored Functionalities:
In addition to understanding the current state, the Reason-
ing Agent interfaces with a database of previously explored
functionalities. This ensures that the agent avoids redundant
actions and focuses on unexplored areas of the application. The
database stores all previously visited states and actions taken,
forming a history of interactions with the web application. By
querying this database, the agent can identify which actions
have already been executed and which states have already been
visited, allowing it to prioritize new interactions.

c) Generation of Possible Actions: Based on the current
state and the record of explored functionalities, the Reasoning
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Agent outputs a list of plausible actions that can be performed.
These actions may include navigation, form submissions,
button clicks, or more complex interactions involving multi-
step processes.

2) Re-ranking Module: Once the Reasoning Agent gener-
ates a list of possible actions, the Re-ranking Module evaluates
these actions and reorders them based on metrics such as
entropy and expected reward. The objective is to prioritize
actions that are most likely to uncover new functionalities
or lead to significant state transitions, while deprioritizing
trivial or redundant interactions (e.g., non-functional actions
like right-clicking on an element). This dynamic re-ranking
process ensures that the exploration of the application remains
focused on discovering meaningful user flows and interactions,
ultimately maximizing the system’s efficiency and effective-
ness in navigating complex web applications.

3) Next Actions Prediction Agent: The Next Actions Pre-
diction Agent uses a finetuned multi-modal LLM that refines
the list of actions. It selects the top-ranked actions from the
Possible Actions List and predicts the next best steps to take.
This agent combines insights from both the re-ranked list and
the system’s understanding of the web application to choose
actions that will maximize the system’s overall reward.

The Functionality Inferring Module operates through a feed-
back loop. After executing each action, the module updates its
understanding of the web application’s behavior, incorporating
newly observed states and actions. This feedback ensures that
the system continually improves its predictions and focuses on
uncovering the most important functionalities.

D. Action Executor

The Action Executor is responsible for executing actions
or sequences of actions within the web application based on
the inputs from the Re-ranking Module and Next Actions
Prediction Agent. It performs interactions such as clicks, form
submissions, and complex multi-step operations.

1) Action Execution: The Executor applies selected actions,
which may involve single interactions (e.g., clicking a button)
or multi-step sequences (e.g., form submissions). It handles
various action types, including user interface actions, naviga-
tional transitions, and event-driven triggers like JavaScript.

2) State Validation: After executing actions, the Executor
verifies whether the action resulted in a meaningful state
change by capturing the updated page source, screenshots, and
metadata. This validation is critical for updating the knowledge
graph.

3) Error Handling and Recovery: In the case of failed
actions due to issues like incorrect inputs or unhandled edge
cases, the Executor logs the error and retries or performs
recovery actions to restore the application to a stable state.

E. Reward/Penalty Model
The Reward/Penalty Model quantifies the system’s progress

in exploring meaningful functionalities within the web applica-
tion. After the Action Executor performs an action and returns
the new state, this model evaluates the outcome by assigning
a score between -1 and +1, indicating the action’s value.
Positive scores reflect significant progress, while negative
scores highlight trivial or redundant actions.

1) Rewarding Significant Progress: Actions that lead to
new state transitions or the discovery of unexplored function-
alities receive positive rewards (closer to +1). For example,
navigating from the home page to product listings or accessing
the checkout process are high-reward actions as they reveal
critical application behaviors.

2) Penalizing Redundant Actions: When actions result in
trivial transitions (e.g., reaching a leaf node where no further
meaningful actions can be taken), the model assigns penalties
(closer to -1). This prevents the system from getting stuck in
unproductive states, such as a ”Thank you” page after purchase
completion.

3) Stopping Exploration: If no actions produce a positive
reward, the system halts exploration for that path. This ensures
resources are not wasted on dead ends and exploration focuses
on uncovering valuable transitions.

4) Retrials: In cases where the action taken results in a
reward score close to the defined threshold but not sufficiently
positive, this model will initiate a retrial if the maximum
number of retries has not been exhausted.

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed approach,
we conducted experiments on a real-world e-commerce web-
site, Dentomart.com, which specializes in selling dentistry



equipment. This website includes a wide range of dynamic
and interactive components, such as product search, filtering,
cart management, and user authentication, making it an ideal
candidate for testing the limitations of traditional parsers and
the capabilities of our solution.

A. Traditional Parser Setup

For comparison purposes, we implemented a traditional
parser using the Scrapy framework, which is commonly used
for web scraping. Our Scrapy-based parser follows a basic
depth-first approach for crawling web pages, extracting hy-
perlinks, and collecting static page content. Specifically, the
parser was configured with the following parameters:

• Max crawl depth: 3 levels
• Follow redirects: Enabled
• Concurrent requests: 8
• User-agent rotation: Implemented to mimic various

browsers

B. Proposed Solution Setup

To address the limitations of traditional parsers, we build
a directed graph that models Dentomart.com. The graph was
constructed using the following hyperparameters:

• min reward: 0 — The minimum threshold for reward-
based transitions, used to eliminate low-value or redun-
dant actions.

• max leaf branches: 999 — The maximum number of
branches a leaf node can have before being pruned.

• max consecutive actions: 5 — The maximum number
of consecutive actions allowed within a single state before
forcing a transition.

• max retries: 3 — The maximum number of attempts for
each action before considering it a failed interaction.

C. Evaluation Metrics

We compared the performance of the traditional Scrapy-
based parser and our proposed solution using the following
key metrics:

1) State coverage: The number of unique states visited
by each method. For traditional parsers, a unique state is
typically identified by a unique URL within the domain.
Higher state coverage is better because it reflects a more
comprehensive exploration of the web application, including
all key functionalities and dynamic states.

2) Edge complexity: The total number of edges (interac-
tions) captured between states. Ideally, this value is close to
n − 1, where n is the total number of states. This indicates
minimal distractions between flows, with no unrelated or re-
dundant transitions, suggesting that each transition contributes
meaningfully to the functionality being explored.

3) Failure recovery: The ratio of actions that failed on the
first attempt but succeeded within the max retries allowed by
the system. A higher value indicates better robustness, as the
system is able to recover from failures and explore alternative
paths or retry actions successfully.

4) Time to completion: The total time taken by each method
to complete the crawl. In this metric, lower values are better,
as faster completion means more efficient exploration.

5) Graph density: This metric measures the ratio of actual
edges to the total possible edges in the graph. Lower density
implies that the graph is not overly crowded with meaningless
connections, which would indicate more structure and clarity
in the transitions between states.

6) Shortest path length: The average shortest path length
between any two nodes in the graph, which measures the
overall connectivity. A longer shortest path may indicate more
unique states and deeper exploration of the application. For
traditional parsers, the path length may be shorter due to fewer
unique states being captured, while in our approach, it is likely
longer because of the broader state coverage and complex
interactions.

7) Betweenness centrality: This metric measures the im-
portance of nodes in connecting different parts of the graph.
A higher value suggests that certain states (nodes) serve as
crucial junctions in the web application’s flows. This can be
useful in identifying critical pages, such as login screens or
checkout processes, that play a significant role in navigating
through the application. A higher betweenness centrality is
often desirable for identifying key interaction points in the
user journey.

V. RESULTS

We conducted experiments on the Dentomart web appli-
cation, comparing a traditional Scrapy-based parser with our
proposed solution. The traditional parser captured basic static
states and edges but struggled with dynamic content and failed
to capture user-triggered behaviors like form submissions or
AJAX-based content loading. In contrast, our proposed solu-
tion effectively modeled dynamic state transitions, capturing
significantly more states and edges, though with a longer time
to completion.

A. Key Metrics

Table I summarizes the key differences between the tradi-
tional parser and our solution.

Metric Traditional Parser Proposed Solution
State complexity (no. of states) 24 95
Edge complexity (no. of edges) 86 94
Failure recovery rate N/A 0.72
Time to completion (seconds) 300 5500
Graph density 0.72 0.15
Shortest path length 2.1 6.4
Betweenness centrality (avg) 0.59 0.02

TABLE I: Comparison of traditional parser vs. proposed
solution across key metrics.

The proposed solution achieved much better state coverage
and edge complexity, capturing a significantly higher number
of interactions. It also excelled in detecting dynamic behaviors
with robust failure recovery, which the traditional parser
missed entirely. Notably, the average betweenness centrality
in our approach is lower than in traditional parsers. This is



primarily due to the higher number of unique states our model
identifies, each representing distinct state transitions triggered
by user interactions and dynamic content. These unique states
are less likely to serve as intermediary nodes across multiple
flows, reducing their overall centrality in the graph. In contrast,
traditional parsers often rely on hyperlinks, leading to more
shared or reused states across different flows, which increases
the likelihood of those states acting as bridges. Consequently,
while traditional parsers produce more centralized graphs, our
method results in a more diverse and decentralized structure
with fewer critical intersections.

B. Procedurally Generated Test Cases by Graph Traversal
One significant downstream application of the rich graph-

based representation produced by our solution is automated
testing. Each root-to-leaf path in the graph corresponds to
a unique user flow or interaction sequence within the web
application. Since every functionality within the application
is reflected as a distinct path, we were able to procedurally
generate test cases by traversing these root-to-leaf paths.

In total, the proposed solution generated 51 unique test
cases, covering a wide range of user interactions such as
logging in, searching for products, adding items to the cart, and
completing the checkout process. By automating the traversal
of these paths, test cases can be programmatically generated,
ensuring comprehensive coverage of user interactions, includ-
ing edge cases and complex workflows that may be difficult
to test manually.

This procedural test generation ensures that the entire
functionality of the application is tested, and the dynamic
states and behaviors captured by the graph provide detailed
insight into every possible user interaction. As a result, the
system can easily identify potential bugs, usability issues,
or performance bottlenecks by systematically exploring each
unique path through the application.
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(a) A simplified and incomplete graph generated by traditional parsers, showcasing limited user interactions with only basic state transitions.
This representation is insufficient for capturing the complexity of dynamic web applications.

(b) A detailed graph generated by our proposed solution, illustrating a more comprehensive representation of user interactions with dynamic
state transitions, complex user flows, and action-based edges that offer richer insights into web application behavior.

Fig. 3: Comparison of traditional parsers (Figure 3a) vs. our proposed solution (Figure 3b) for modeling web application
behavior
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