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FedLAD: A Linear Algebra Based Data Poisoning
Defence for Federated Learning

Anonymous

Abstract. Sybil attacks pose a significant threat to federated learn-
ing, as malicious nodes can collaborate and gain a majority, thereby
overwhelming the system. Therefore, it is essential to develop coun-
termeasures that ensure the security of federated learning environ-
ments. We present a novel defence method against targeted data
poisoning, which is one of the types of Sybil attacks, called Lin-
ear Algebra-based Detection (FedLAD). Unlike existing approaches,
such as clustering and robust training, which struggle in situations
where malicious nodes dominate, FedLAD models the federated
learning aggregation process as a linear problem, transforming it
into a linear algebra optimisation challenge. This method identifies
potential attacks by extracting the independent linear combinations
from the original linear combinations, effectively filtering out re-
dundant and malicious elements. Extensive experimental evaluations
demonstrate the effectiveness of FedLAD compared to five well-
established defence methods: Sherpa, CONTRA, Median, Trimmed
Mean, and Krum. Using tasks from both image classification and
natural language processing, our experiments confirm that FedLAD
is robust and not dependent on specific application settings. The re-
sults indicate that FedLAD effectively protects federated learning
systems across a broad spectrum of malicious node ratios. Com-
pared to baseline defence methods, FedLAD maintains a low at-
tack success rate for malicious nodes when their ratio ranges from
0.2 to 0.8. Additionally, it preserves high model accuracy when the
malicious node ratio is between 0.2 and 0.5. These findings under-
score FedLAD’s potential to enhance both the reliability and per-
formance of federated learning systems in the face of data poison-
ing attacks. For further details, we have open-sourced our work at
https://gitlab.com/Anonymous.

1 Introduction

Federated learning (FL), proposed by [17], is a machine learning
(ML) network with a star topology in which computing nodes sub-
mit their locally trained ML models to a central server to obtain a
global ML model using an average merging method (referred to as
FedAVG hereinafter). The global ML model is then sent back to the
nodes to continue their ML tasks. This approach is designed to pro-
tect the data privacy of nodes since it allows ML models to be trained
without data being collected on a central server. However, this archi-
tecture is vulnerable to various attacks in which malicious nodes can
attack the global model. Especially in Sybil attacks, malicious nodes
can collude with each other and can easily occupy the majority, ren-
dering FL systems unreliable [10, 21]. In Sybil attacks, various fun-
damental attacks can be performed. According to [1], these attacks

can be classified into model poisoning attacks, such as backdoor at-
tacks [3, 4], and data poisoning attacks, such as label flipping [19].
These attacks can be further classified into targeted attacks and un-
targeted attacks [20, 18]. In untargeted attacks, malicious nodes aim
purely to lower the performance of the global ML model [20]. In tar-
geted attacks, malicious nodes have specific goals for attacking the
FL system [20]. Backdoor attacks [3, 4], which insert triggers into the
ML model [12] to improve the performance of malicious labels, are a
common example of such targeted attacks [19, 12]. As highlighted in
[19], targeted label flipping attacks are particularly effective against
FL systems and can be executed even by adversaries with limited
capabilities. Hence, our work focuses on defending against targeted
data poisoning attacks.

Existing defence methods that focus on data poisoning defence in
FL can be classified into the categories of clustering-alike defence,
such as Sherpa [18], which focuses on applying clustering techniques
such as HDBSCAN to identify malicious clusters base on their ML
models’ interpretability; and robust training-based defence, such as
the median merging method (i.e., aggregation) [24, 22], which re-
places the average merging method with an attack-aware merging
method. All the existing methods have the limitation of only tol-
erating a certain proportion of malicious nodes. For example, in
clustering-alike defence methods, the maximum tolerance of mali-
cious nodes is 50%. If the ratio of malicious nodes exceeds 50%,
the major cluster is dominated by malicious nodes, making it unre-
liable as an indicator of whether the cluster is benign or malicious.
This limitation makes federated learning vulnerable to Sybil attacks
in which malicious nodes can collude with each other and occupy
the majority [10, 21]. Robust training-based defence methods con-
sider the impact of malicious ML models during the training or ag-
gregation process. However, when the majority of ML models are
malicious, these methods can be overwhelmed.

To address these limitations of existing methods, this paper pro-
poses a Linear Algebra-based Defence (FedLAD) to defend against
data poisoning attacks in FL. FedLAD models the aggregation pro-
cess in FL as a linear combination. By finding the independent linear
combination from the original linear combination, we can filter out
redundant and malicious ML models, hence defend against malicious
attacks such as data poisoning attacks. Since the malicious ratio has
a low impact on the independent linear combination, FedLAD has
a high tolerance for malicious nodes. Furthermore, to improve com-
putational efficiency, we introduce a parallel optimisation algorithm
based on sub-matrix splitting, which allows FedLAD to leverage par-
allel computing. This represents a significant advancement over ex-
isting defence approaches, whose reliance on sequential algorithms,



such as clustering, limits their parallelizability.
The primary contributions of this paper are as follows:

• We propose a defence method against targeted data poisoning at-
tacks in Federated Learning (FL), named FedLAD, which is based
on linear algebra techniques. This method demonstrates a high tol-
erance for malicious nodes; for instance, our experiments show
that FedLAD can remain effective even when 70% of the nodes
are malicious in some datasets such as AG_NEWS.

• To the best of our knowledge, we are the first to leverage paralleli-
sation to accelerate the process of finding the independent linear
combination from its original linear combination. Moreover, we
provide a formal mathematical proof demonstrating that this linear
algebra problem can be effectively solved in a parallel computing
environment. In contrast to FedLAD, existing defence methods
are unable to exploit parallel architectures, as their underlying al-
gorithms, such as clustering, are inherently sequential and based
on linear logic.

We conducted experiments with malicious ratios ranging from 0.2
to 0.8 using three datasets: CIFAR10, CIFAR100, and AG_NEWS.
These experiments are performed with non-IID distributions. The re-
sults demonstrate that FedLAD is more robust to attacks compared to
existing methods, including Sherpa [18], CONTRA [1], Median [24],
Trimmed Mean [23], and Krum [5]. The baseline methods show a
significant drop in model accuracy when the malicious ratio exceeds
50%. In contrast, FedLAD consistently maintains high model accu-
racy when the malicious ratios surpass 50%, effectively mitigating
the impact of malicious nodes where other methods fail. We also con-
ducted experiments to compare the running times of FedLAD with
serial and parallel versions. Our findings indicate that with the paral-
lel optimisation we proposed, FedLAD runs three to four times faster
than its serial version. This demonstrates the advantages of our par-
allel optimisation approach.

The rest of the paper is organised as follows: Section 2 introduces
the background knowledge of linear algebra that is relevant to our
proposed method. Section 3 provides solution details of FedLAD.
Section 4 discusses the various experimental results. Section 5 sum-
marises some of the existing works. We conclude the paper in Sec-
tion 6.

2 Background
Our proposed defence method is based on theories from linear al-
gebra. Therefore, we list all related definitions and theories in this
section according to the book [2].

Definition 1. A linear combination is a set of vectors in a vector
space [2, p. 46]. The equation below shows an example of a linear
combination:

a1v1 + a2v2 + ...+ anvn, (1)

where ai is a coefficient, vi is a vector.

Definition 2. A span is all the linear combinations of the vectors
that form a subspace in a vector space [2, p. 47]. The equation below
shows an example of a span:

span(v1, ..., vn) = a1v1 + a2v2 + ...+ anvn, (2)

where a1v1+a2v2+ ...+anvn is the set of linear combinations that
spans the vectors v1, ..., vn.

Definition 3. A linear combination is called an independent linear
combination if the only way to make the combination equal zero is by
setting all coefficients to zero [2, p. 50]. It means that no vector in the
set can be represented by a linear combination of other vectors in the
same set. The equation below shows an example of an independent
linear combination:

a1v1+a2v2+ ...+anvn = 0 ⇐⇒ a1 = a2 = ... = an = 0, (3)

where vi is a vector from the linear combination in the equation.

Definition 4. A basis of a vector space is a set of linear independent
vectors that span that vector space [2, p. 57].

Definition 5. A rank of a matrix is the number of linearly indepen-
dent vectors in the rows or columns of that matrix [2, p. 77].

Definition 6. The vectors from an independent linear combination
are defined as independent vectors. The vectors that are represented
by the independent linear combination are defined as dependent vec-
tors.

Theorem 1. Every vector space that has a finite dimension has a
basis [2, p. 59].

Theorem 2. The number of vectors in independent linear combina-
tions of a vector space is unique (i.e., all bases in a vector space have
the same dimension) [2, p. 62]. Accordingly, the rank of a matrix is
unique since a matrix can be viewed as a list of vectors.

Theorem 3. The row rank and column rank of a matrix are the
same [2, p. 78].

3 The Proposed Method
3.1 Threat Model

Malicious nodes engage in targeted label flipping on their local
datasets, which are used to train their local machine learning models.
Because these malicious models are influenced by corrupted datasets,
we propose a method to detect the compromised ML models on the
server side as a defence against data poisoning attacks. In light of
this approach and our emphasis on mitigating targeted data poison-
ing attacks, we model the attacks from these malicious nodes with
the following equation:

arg min
wm,t

F (wm,t, xm,t, ym,t), (4)

which is to train the local ML model with polluted data xm,t and
label ym,t by optimising the loss function F . The optimised local
poisoned ML models wm,t will be merged into the global ML model
if not detected.

3.2 Problem Definition

In FL, every node trains its local ML model, and those local ML mod-
els are merged into a global model. The process can be formulated
as:

wg,t = FedAvg(St) =
1

|St|
∑
i

wi,t, (5)

where wg,t is the global ML model parameter at the round t, wi,t is
the i-th local ML model at the round t. In our case, there are mali-
cious nodes in the system. We define the set M to indicate a mali-
cious node set. We define the set B to indicate a benign node set. We



define St to indicate the whole set at the round t that contains Mt

and Bt (i.e., St = Mt∪Bt). The problem of our work is to optimise
the equation below:

wb,t − FedAvg(Bt) → 0, (6)

where wb,t is the model parameter merged by nodes classified as
benign. The above equation means that wb,t should be close to the
global ML model with malicious ML models excluded so that their
difference can approach 0. We get wb,t by the below equation:

wb,t =
1∑|St|

i fd(wi,t)

|St|∑
i

wi,t × fd(wi,t), (7)

where fd is the malicious node detection function that classifies a
node as either benign or malicious. The output is 0 if the node be-
longs to the malicious set; otherwise, the output is 1. This is repre-
sented by the following equation:

fd(wi,t) =

{
1, wi,t ∈ Bt

0, wi,t ∈ Mt

(8)

3.3 Solution Details

3.3.1 Preliminary

We model the aggregation process (i.e., merge local ML models into
a global ML model) in FL as a linear combination in which the global
ML model is represented by a linear combination of local ML mod-
els. The Global and Local ML models form a vector space. The equa-
tion below illustrates this concept:

a1w1 + a2w2 + ...+ anwn = wg s.t. {
n∑

i=1

ai = 1, ai ≥ 0}, (9)

where ai is the weight of its respective local ML model. The lo-
cal ML models may have different weights based on the aggregation
scheme, but the sum of all the weights must equal one. wi indicates
a local ML model. wg is the global ML model. From this perspec-
tive, all existing aggregation schemes such as FedAVG [17] are linear
combinations. However, they do not reduce the linear combination to
a simplified form so that the performance could be further optimised.
We propose employing linear combination techniques to optimise the
aggregation process to filter out malicious and redundant ML mod-
els.

According to Definition 4 and Theorem 1, there exists a subset
of local ML models that is a basis of the vector space of the ML
models, and they are linear independent. The linear combination of
the vectors from the basis can represent other vectors in this vector
space. In this solution, we find out independent linear combinations
of local ML models and filter out those that are not when performing
aggregation in FL. The intuition is that if we can carry out a global
ML model by combining only necessary local ML models, then there
is no need to include other local ML models that are redundant and
may be malicious.

Since the set of linear independent local ML models (i.e., vectors)
is a basis, the coefficients (i.e., aggregation weights of local ML mod-
els) are the coordinates of the dependent vectors. Figure 1 shows an
example of this idea. The three vectors with colours of red, green and
blue (i.e., Vector 1, 2, and 3) form a basis of the three-dimensional
vector space. The grey vectors (i.e., Vector 4, 5, 6 and Malicious) are
dependent vectors that can be represented by the linear combination

of the three base vectors (i.e., Vector 1, 2, and 3). The coordinates
(i.e., the coefficients of the linear combination) in the vector space
can uniquely identify a grey vector. One of the grey vectors is ma-
licious, but we only consider independent vectors, so the malicious
vector will be filtered out during the aggregation process.

Vector 1
Vector 2
Vector 3
Malicious
Vector 4
Vector 5
Vector 6

Figure 1. Vectors in a 3-Dimensional Vector Space.

If a dependent vector can be represented by a linear combination,
then it means the information of the dependent vector is contained in
the basis and coordinate system. Hence, the dependent vectors can
be regarded as redundant vectors that may contain malicious data
and should be filtered out. This idea is backed up by the row reduced
echelon form (RREF) of a matrix since a matrix can be viewed as a
set of vectors. The RREF of a matrix is a form that only keeps the
pivot rows of the matrix while other rows are zeroed out [15, p. 30].
The pivot rows contain all the necessary information in a matrix to
solve a linear algebra problem [15, p. 30].

3.3.2 Solution Overview

Based on the above foundation, in FedLAD, we organise local ML
models into a matrix and compute its RREF. The list of pivot rows
(also simplified as pivot) of the RREF is the independent linear com-
bination of the local ML models. We only select local ML models
corresponding to these pivot rows for the aggregation process in FL.
Hence, the impact of malicious ML models caused by data poisoning
attacks can be eliminated.

Figure 2 shows the overview of the process of FedLAD. There are
three nodes: A, B, and C, with node C being malicious. The circled
numbers indicate the step of the process. In the first step, the nodes
submit their local ML models to a server. In the second step, the
server flattens the ML models into vectors and lists them as a matrix.
In the third step, the server finds the independent ML model vectors
by calculating the RREF of the matrix and then selects only local ML
models from the pivot rows in the RREF. In the last step, the selected
local ML models are merged into a global ML model. The following
sections cover technical details in the process.

3.3.3 Flatten ML models

ML models may have multiple layers, and we need to flatten them to
one-dimensional (1-D) vectors. In FedLAD, we flatten ML models
into 1-D vectors based on row-major (C-style) order [14, p. 253].

3.3.4 Calculate RREF

We apply Gaussian Elimination (GE) [15, p. 30] to calculate the
RREF of a matrix. Algorithm 1 shows the detailed pseudo code
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Figure 2. The overview of FedLAD.

of calculating RREF for a given matrix. It finds possible pivots by
searching from each column and row. The “cross cancel” function
in Algorithm 2 zeros out other elements except the pivot in a row
to make sure only the pivot is non-zero based on the definition of
RREF [15, p. 30]. According to [15, p. 233], the RREF for a matrix
is unique, so there is no need to handle possible multiple forms of
independent linear combinations.

This paragraph details how RREF is calculated in Algorithm 1.
Lines 5 and 6 iterate through the columns and rows. Line 8 retrieves
the rows of the current column that are below the currently processed
row. Line 10 finds the index of the maximal number regardless of the
number sign (i.e., positive or negative) from the rows obtained from
line 8. Line 11 determines whether the index in line 10 is a possible
pivot index. The number in the index must not be zero otherwise, its
rank will be zero. Lines from 17 to 19 swap the row from the index
in line 12 with the current row. Lines from 20 to 28 zero out the
rows except the current row to ensure only the pivot row is non-zero,
which is a characteristic of RREF [15, p. 30]. The steps from 17 to 19
and from 20 to 28 are the GE steps to eliminate unnecessary rows.
In line 29, we continue to search for other possible pivots after the
current row. In line 32, if no possible pivot is found, we perform an
early stop to conserve computational resources and move on to the
next column. After finishing the iteration of columns and rows, the
found pivots are returned.

3.3.5 Global ML Model Aggregation

After the RREF of the matrix of local ML models is carried out, we
apply FedAVG on the local ML models that are the RREF pivots. It
means that the elements of the coordinate in the basis are the same
and the scale is normalised to one. The rationale is that information
from the independent vectors is considered equally important. By
doing so, we can limit the influence of malicious ML models while
ensuring that valuable information from normal ML models is not
overlooked.

3.3.6 Computation Optimisation

As the size of a matrix increases, the time required for computa-
tion also increases. Algorithm 1 addresses this issue by employing
an early stopping strategy, which allows the algorithm to break out
early if it determines that a row is certainly not a pivot. This helps
avoid unnecessary calculations. However, this algorithm serially it-
erates through the columns and rows without parallelism, resulting
in wasted idle computing resources in modern parallel computing
platforms. To improve efficiency and reduce computation time, we
propose a parallel version to perform this task.

Algorithm 1 Calculate RREF

Input: Local ML Models W = [w1, w2, ..., wn]
T

Output: RREF pivots

1: let pivot_cols = [ ]
2: let row_index = 0
3: let row_size be the number of rows of W
4: let col_size be the number of columns of W
5: for col in {0, ..., col_size} do
6: for row in {row_index, ..., row_size} do
7: // get the rows of the current column in the iteration
8: let row_col = W [row :, col]
9: // find the possible pivot index whose value must not be zero

10: let possible_pivot_index = argmax(abs(row_col))
11: if abs(row_col[possible_pivot_index]) > 0 then
12: let pivot_index = possible_pivot_index
13: // add the pivot to the list
14: add col to pivot_cols
15: // exchange the pivot row with the current row based on

GE operations
16: if pivot_index ̸= 0 then
17: let t = W [row]
18: let W [row] = W [row + pivot_index]
19: let W [row + pivot_index] = t
20: let row_above = W [: row]
21: let row_below = W [row + 1 :]
22: let current_row_col_value = W [row, col]
23: // zero out rows above the pivot
24: if the row size of row_above > 0 then
25: W [: row] = cross_cancel(current_row_col_value,

W [row], row_above, col)
26: // zero out rows below the pivot
27: if the row size of row_below > 0 then
28: W [row+1 :] = cross_cancel(current_row_col_value,

W [row], row_below, col)
29: row_index + = 1
30: else
31: // early stop if no pivot found
32: break
33: return pivot_cols



Algorithm 2 Cross Cancel
Input: Current Value v, Current Row row, Considered Rows rows,
Current Column col
Output: Cross Cancelled Rows

1: repeat rows[:, col] horizontally and turn them into a square ma-
trix and set it as a

2: repeat row horizontally and turn them into a matrix with the
column size as same as the row size of a and set it as b

3: let c = a× b
4: return v × rows − c

Algorithm 3 outlines the details of this approach. It involves split-
ting the given matrix into sub-matrices, either by columns or by rows.
The example in Algorithm 3 illustrates a column-wise split, but a
row-wise split would yield the same result [6, p. 123]. Once the ma-
trix is divided into sub-matrices, multiple computing units (CPUs)
can process different sub-matrices simultaneously. After calculating
the RREF for each sub-matrix, we combine these results into a new
matrix and repeat the process of splitting and combining until we are
left with the smallest-sized sub-matrix. The RREF from this smallest
sub-matrix is equivalent to that of the original matrix. We provide a
proof of this in the supplementary document Section 1. For Fed-
LAD, the result of the parallel RREF calculation is the same as that
of the non-parallel version since the same RREF form results in the
same pivots according to the definition of RREF [15, p. 233].

Algorithm 3 Parallel RREF Calculation

Input: Local ML Models W = [w1, w2, ..., wn]
T

Output: RREF pivots

1: let n be the number of CPUs
2: let col_size be the number of columns of W
3: let smallest_submatrix_size = col_size ÷ n
4: split W into n sub matrices based on the split size small-

est_submatrix_size and assign them to sub_matrices[ ]
5: spawn n CPU threads to call Algorithm 1 and pass on the re-

spective input of sub_matrices[i] with i ∈ n
6: combine the returned RREFs from the threads to a new matrix

Ws

7: if the size of Ws > smallest_submatrix_size then
8: call Algorithm 3 and pass on the input of Ws

9: else
10: call Algorithm 1 and pass on the input of Ws

11: return the RREF returned form calling Algorithm 1

4 Experiment Evaluation
4.1 Experiment Settings

We conduct experiments with 10 nodes, which are initialised with
an array of local ML models, datasets, and node ID, to evaluate
our proposed method FedLAD. The ratio of malicious nodes ranges
from 20% to 80% (we also use floating numbers 0.2 to 0.8 to in-
dicate the ratio), which is to verify the robustness of the proposed
defence method and baseline defence methods. The malicious attack
performs label flipping on the experimental datasets. The details of
the label flipping are introduced hereinafter. We demonstrate the im-
provements of FedLAD by comparing it with five baseline methods:

Sherpa [18], CONTRA [1], Median [24], Trimmed Mean [23], and
Krum [5]. The justification for choosing these baseline methods is
provided in the supplementary document Section 4. We conduct
the experiments five times and adopt the average of the results. We
disclose the standard deviation alongside the average of the exper-
iment results in the supplementary document Section 5. We also
disclose the running time of FedLAD and baselines in Section 4.2.3.
We run FedLAD on serial and parallel versions and list the respective
running times to demonstrate the advantage of parallel optimisation
proposed in Section 3.3.6.

4.1.1 Computational and Software Setups

The experiments are carried out on a high-performance computer
with 64GB of memory, 16 CPUs and an A40 GPU to accelerate
multiple-node federated learning with large-scale neural networks.
The implementations of FedLAD and baseline methods are based
on Pytorch 2.3.1, Numpy 1.26.3, Flower 1.15.0 (a federated learning
framework) and Python 3.10.12.

4.1.2 Implementation Details

To evaluate FedLAD in various scenarios, we use two image datasets,
CIFAR10 and CIFAR100, 1 and an NLP dataset, AG_NEWS. 2 To
enable non-IID distribution in the datasets, we apply a Dirichlet dis-
tribution [11, 7] with the heterogeneity parameter set to 0.5 to sample
different data distributions for each node. Following the work [1], we
use ResNet18 for the image recognition tasks on the CIFAR10 and
CIFAR100 datasets. For the AG_NEWS dataset, we use a three-layer
neural network, which is the optimal structure according to our ex-
periment, to perform the text classification task. The input layer of
this neural network has 95,811 units, corresponding to the number of
tokens in the AG_NEWS dataset. The hidden layer contains 64 units,
which embeds the input text into a vector space, and the output layer
has four units, corresponding to the four classes. The work [1] used
300 rounds for global communication and one round for local train-
ing. We adopt the same strategy but with some adaptations based on
our experimental observation, in which the ML model performance
is optimal. For the CIFAR10 and CIFAR100 datasets, we trained for
two rounds in the local environment and conducted 40 rounds of
global communication. For the AG_NEWS dataset, we trained for
two local rounds and conducted 20 rounds of global communication.
During the training, malicious nodes perform label-flipping attacks
on their local dataset.

4.1.3 Malicious Nodes Training

The details of how malicious nodes are generated are in the sup-
plementary document Section 2. When malicious nodes train their
local machine learning (ML) models, they perform label flipping on
the training data. Following [18], we swap two targeted labels of the
training dataset.

4.1.4 Performance Metrics

To evaluate the performance of FedLAD to defend against data poi-
soning attacks, we adopt two metrics: attack success rate (ASR) and
model accuracy (MA). The details, such as their definitions of these
metrics, are in the supplementary document Section 3.

1 https://www.cs.toronto.edu/k̃riz/cifar.html
2 http://groups.di.unipi.it/g̃ulli/AG_corpus_of_news_articles.html
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Figure 3. Malicious ratio VS Attacking Success Rate on Non-IID datasets. 3a is under CIFAR10. 3b is under CIFAR100. 3c is under AG_NEWS
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Figure 4. Malicious ratio VS Model Accuracy on Non-IID datasets. 4a is under CIFAR10. 4b is under CIFAR100. 4c is under AG_NEWS

.4.2 Experiment Results and Evaluation

4.2.1 Attacking Success Rate (ASR)

Figure 3 shows the ASR for malicious ratios ranging from 0.2 to 0.8
for the CIFAR10, CIFAR100, and AG_NEWS datasets. Compared
with baseline methods, our method, FedLAD, exhibits the highest
performance in resisting malicious nodes across various ratio set-
tings, showcasing the advantage of resisting attacks from malicious
nodes. The ASR of FedLAD increases sharply when the malicious
ratio exceeds 0.5 on CIFAR10 and AG_NEWS, 0.7 on CIFAR100,
as there are too few benign ML models to cancel out the attacking
effect of malicious ML models. The reason why FedLAD maintains
a lower ASR until the malicious ratio surpasses 0.7 is that the CI-
FAR100 dataset has 100 labels, which limits the impact of label flip-
ping attacks from malicious nodes.

All baseline methods show a high ASR when the malicious ra-
tio exceeds 0.5 (i.e., ASR increases sharply). This is because these
methods rely on the majority to be benign nodes, which fail when the
malicious ratio surpasses 0.5. Among the baseline methods, Sherpa
performs the worst probability due to that the calculation of SHAP
features is based on sampling methods, which can result in some
important features being omitted. Krum performs reasonably better
than other baseline methods probability due to the effectiveness of
excluding thirty per cent of nodes (i.e., a Byzantine tolerant setting
in Krum). However, the MA performance of Krum is poorer than
other baseline methods as we can see in Section 4.2.2.

4.2.2 Model Accuracy (MA)

Figure 4 shows the MA with malicious ratios ranging from 0.2 to 0.8
for the CIFAR10, CIFAR100, and AG_NEWS datasets. Compared
with baseline methods, FedLAD maintains the highest performance
across all malicious ratio settings, demonstrating that FedLAD can
lower the impact of malicious attacks on the MA. Performance of
FedLAD drops sharply when the malicious ratio is 0.7 and 0.8. This
is because there are not enough benign nodes to contribute to the
MA performance. Despite this, FedLAD can still maintain high per-
formance even when the ratio is as high as 0.8, as only the pivot ML

models are selected, which can exclude redundant and malicious ML
models, even at high malicious ratios.

Among the baseline models, Krum performs the worst as it main-
tains a low MA across the three datasets probably due to the thirty per
cent of nodes are excluded. Some of these excluded nodes may con-
tain the most important contribution to MA. FedLAD can avoid this
situation since the most important contributions are always included
in the RREF pivots according to the mechanism of independent lin-
ear combination in linear algebra. Sherpa slightly outperforms other
baseline methods under the AG_NEWS dataset, but with a high vari-
ance. The reason may be that the texts are encoded into vectors by
an encoder. Some important information is retained, and the noise
is ignored. Compared with the pixel features in pictures, the vector
features are more efficient as an input to produce the SHAP [13] fea-
tures.

4.2.3 Running Time of Defence Methods

Table 1 presents the running times of the defence methods on the
CIFAR10, CIFAR100, and AG_NEWS datasets. The running time is
recorded during the five runs of the experiments, and we adopt the
average value. The serial version of FedLAD has the highest running
time. However, when parallel optimisation is applied, there is a sig-
nificant reduction in running time, demonstrating the effectiveness
of this approach. Even though the running time of the parallel opti-
mised FedLAD does not surpass that of the baseline methods due to
the complexity of linear algebra operations and communication be-
tween parallel CPU threads, the overall time consumption is accept-
able considering that FedLAD offers a more robust defence against
malicious attacks in Federated Learning compared to the baseline
methods.

5 Related Works

We classify defence methods into two categories based on the un-
derlying technical approach: clustering-alike defence and robust
training-based defence.



Table 1. Running Time (Minutes) of Defence Methods on Three datasets

Method CIFAR10 CIFAR100 AG_NEWS
FedLAD Serial 245.63 281.44 127.51
FedLAD Parallel 63.43 73.88 36.7
Sherpa [18] 58.05 63.45 35.97
CONTRA [1] 49.01 67.62 25.72
Median [24] 44.14 47.57 27.48
Trimmed Mean [23] 44.34 72.05 29.43
Krum [5] 45.51 68.72 26.62

5.1 Clustering Alike Defence

This category reviews works that determine whether a node is ma-
licious based on its relevance to the majority, using techniques such
as cosine similarity and machine learning model interpretability to
defend against malicious nodes, similar to clustering. Tolpegin et
al. [20] investigate how malicious participants can compromise fed-
erated learning by introducing poisoned data. Their study focuses
on label-flipping attacks, where attackers modify class labels in their
local datasets to manipulate the global model. They propose a de-
fence mechanism using principal component analysis (PCA) to de-
tect anomalous updates from malicious participants, demonstrating
its effectiveness in isolating such participants. MOAT [16] analyses
the interpretability of machine learning models based on SHAP (i.e.,
Shapley Additive Explanations) features [13]. It posits that malicious
and benign models have different interpretabilities, as SHAP features
reveal these differences. However, MOAT relies on Z-scores and a
threshold to determine whether a model is malicious, which may not
be consistent across all datasets, as pointed out by SHERPA [18].
To address this issue, SHERPA improves MOAT by incorporating
the HDBSCAN clustering method and a scoring mechanism that is
less sensitive to the variability of different datasets. CONTRA [1]
employs a cosine-similarity-based measure to assess the credibility
of local model parameters, alongside a reputation scheme to dynam-
ically adjust the contributions of each node. This method assumes
that benign nodes will be more similar to the majority compared to
malicious nodes. Extensive experiments show that CONTRA signif-
icantly reduces the attack success rate and minimises degradation
of global model performance compared to state-of-the-art defences.
MCDFL [8], which stands for Malicious Clients Detection Feder-
ated Learning, proposes a defence mechanism against label-flipping
attacks in federated learning. By recovering a distribution over a la-
tent feature space, MCDFL can identify malicious nodes and assess
the data quality of each node. It assumes that benign nodes will
exhibit similar data quality to the majority, while malicious nodes
will not. The proposed strategy is tested on benchmark datasets such
as CIFAR10 and Fashion MNIST, using different neural network
models and attack scenarios. Results show that this solution is ro-
bust in detecting malicious nodes without incurring excessive costs.
VFedAD [9], meaning a Defence Method Based on the Information
Mechanism Behind Vertical Federated Data Poisoning Attacks, ad-
dresses the challenges posed by vertical federated data poisoning at-
tacks. It proposes an unsupervised defence method rooted in infor-
mation theory that learns semantic-rich representations of client data
to effectively detect anomalies, thereby protecting subsequent algo-
rithms from attacks. Similar to MCDFL, it assumes that benign nodes
will have data representations similar to the majority, while malicious
nodes will not. Experimental results validate VFedAD’s ability to de-
tect anomalies introduced by data poisoning attacks, demonstrating
its effectiveness as a defence mechanism. However, these methods
may struggle in scenarios with a high ratio of malicious nodes, as a
significant percentage of malicious nodes can dominate and distort

the standard used for comparison among nodes.

5.2 Robust Training Based Defence

This category focuses on studies that utilise machine learning model
aggregation strategies and noise injection techniques to mitigate the
impact of malicious nodes. Krum [5] proposed an aggregation rule
(i.e., a method for merging local machine learning models) that first
calculates the squared sum of distances between the weight vector of
the current node’s model and the weight vectors of the n−f−2 clos-
est nodes. The rule then selects the weight vector with the smallest
squared sum distance as the global model’s weight vector. The work
by Yin et al. [24] introduced a median-based merging method. This
approach uses the coordinate-wise median value to replace the av-
erage value used in [17] when merging local models into a global
model. Trimmed Mean [23] proposes a method for trimming the
model weight values based on a predefined trim parameter K, with
the condition that k < n

2
, where n is the number of nodes. The

selected model weights, determined by the trim parameter, are then
aggregated into a global model using a mean aggregation scheme.
FRIENDS [12] is a noise injection defence mechanism, short for
Friendly Noise Defence, designed to counter data poisoning attacks
in deep learning. The authors identify that poisoning attacks create
local sharp regions with high training loss, which facilitate adver-
sarial perturbations. To neutralise this, FRIENDS employs a two-
part noise strategy: (1) Friendly noise, which introduces optimised
perturbations that do not degrade model performance but disrupt at-
tack success, and (2) Random noise, which varies across training it-
erations to prevent adaptive attacks from overcoming the defence.
FRIENDS effectively defends against major poisoning attacks while
maintaining high model accuracy and minimal computational over-
head. It is also transferable across different architectures, making it
practical for real-world deep learning applications. However, the in-
troduction of noise adds additional complexities during training and
inevitably affects the model’s accuracy.

Existing methods for detecting malicious nodes have a significant
limitation: their effectiveness declines when the proportion of ma-
licious nodes exceeds a certain threshold. For instance, clustering-
alike defence methods become ineffective when more than 50% of
the group consists of malicious nodes, as these methods primarily
focus on the majority class. When the majority of nodes are mali-
cious, the algorithms struggle to accurately classify which nodes are
benign and which are malicious. Similarly, robust training methods
can be overwhelmed when the majority of nodes are malicious. Ad-
ditionally, these methods are typically based on serial processing and
do not support parallel optimisation, resulting in low computational
efficiency.

6 Conclusion

This paper described the FedLAD data poisoning defence method
for FL. FedLAD exhibits high tolerance to malicious nodes in terms
of data poisoning in an FL system, thereby providing greater robust-
ness. Comprehensive experiments demonstrated the advantages of
our method with various malicious settings. While this paper applies
FedAVG on the RREF pivots, our future work will explore other ag-
gregation schemes such as Median, Krum, etc. to study further pos-
sible improvements of the robustness of FedLAD.
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