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Abstract—The increasing sophistication and prevalence of
webshells present a significant threat to web application secu-
rity, necessitating the development of more advanced detection
methods. This study introduces an AI-powered Static Analysis
Framework (ASAF) designed to detect both known and novel
webshell variants with high accuracy and efficiency. ASAF
combines the pattern-matching capabilities of Yara rules for
identifying known webshells with the advanced detection power
of Convolutional Neural Networks (CNNs) for uncovering new
and obfuscated threats. The framework consists of five core
components: (1) Yara, which employs textual and binary pattern
matching to detect known webshells; (2) Opcode Vectorization,
which translates web source code into opcode sequences for
deeper analysis; (3) Dataset Collecting and Cleaning, which
ensures the framework is trained on high-quality data; (4)
CNN Model, designed to capture intricate patterns in opcode
sequences. Through the integration of static signature-based and
CNN-based methods, ASAF provides a comprehensive and robust
solution for webshell detection.

Index Terms—Webshell Detection, Convolutional Neural Net-
works, Static Analysis

I. INTRODUCTION

Webshells present a significant threat to web applications by
granting unauthorized access to attackers, leading to severe
security breaches [1]. Traditional detection methods, which
rely on signature-based techniques, are effective for known
threats but fail to detect new or modified webshells. These
methods also struggle with high false-positive rates, leading to
alert fatigue and decreased detection efficiency [2]. Machine
learning (ML) and deep learning (DL) methods can learn
and adapt to complex patterns in code, improving detection
of novel webshell variants [3]. Techniques such as multi-
classifier ensembles, feature vectorization, and deep learning
models have shown high accuracy in distinguishing between
benign and malicious code [4] [5]. This research introduces
a hybrid detection architecture that integrates signature-based
techniques with AI algorithms to enhance detection speed
and resource efficiency, effectively identifying both known
threats and novel webshells in PHP to bolster web application
security.

In this paper, we present an innovative AI-powered Static
Analysis Framework (ASAF) designed to enhance webshell
detection by integrating traditional static analysis with ad-
vanced machine learning techniques. Our work makes two
main contributions:

• ASAF Framework: Combines signature-based algorithms
and machine learning/deep learning (ML/DL) techniques
for detecting both known and unknown webshells, adapt-
able to multiple programming languages.

• PHP Webshell Detection Model: Converts PHP source
files into feature vectors using an algorithm, then ap-
plies an optimized ML/DL model to detect webshells
efficiently, with low computational resource usage.

The remaining parts include: Section §II describes related
works. §III describes in detail AI-powered Static Analysis
Framework for Webshell Detection method. In §IV, we de-
scribe the implementation process and results. Finally, §V
summaries and future directions.

II. RELATED WORKS

Signature-based webshell detection uses code patterns or
sequences called signatures. Yara [6], an open-source pattern
matching program is widely used to identify threats through
byte sequences, string patterns, and regular expressions, but its
main drawback is the potential to miss new webshells, leading
to false negatives.

ML is being used by more webshell detection researchers
to bypass signatures. ML models learn from data and find
new patterns to detect webshells. A proposed ML model
categorizes files as safe or risky using static and dynamic
web application source code data. Method found signature-
avoiding complex webshells. Webshell detection is possible
using a CNN-based framework [7], which analyzes web appli-
cation code commands. CNN outperforms machine learning at
finding hidden webshells. The training of DL models requires
massive datasets and processing resources, which may limit
their practical use.

Hybrid signature-ML enhances webshell detection by using
DL models to identify new or obfuscated webshells after Yara
rules filter them, while combining Yara rules with gradient
boosting machines effectively detects both known and un-
known webshells [8].

CNNs can identify unfamiliar webshells using feature ex-
traction and complex pattern learning from raw data. CNNs,
unlike SVMs or Random Forests, can automatically extract
hierarchical features from web source code, detecting subtle
patterns that may indicate malicious behavior [9] CNNs iden-
tify dangerous sequences across coding styles and obfuscations
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Fig. 1. Overall Architecture of AI-powered Static Analysis Framework

with spatial invariance and local connectedness, capturing
complex structures and providing scalable, real-time detection
for large-scale code analysis.

III. PROPOSED METHOD

A. Approach Direction

The increasing complexity and prevalence of webshells
require a unified static analysis framework that works across
multiple programming languages for quick detection with low
false positives, while accurately identifying new variants. This
study introduces the AI-powered Static Analysis Frame-
work, shortly called ASAF, which integrates Yara rules for
detecting known webshells and a CNN model for identify-
ing more sophisticated variants, combining the strengths of
signature-based and machine learning methods for a compre-
hensive detection solution.

B. ASAF Workflow

Fig. 1 presents a comprehensive webshell detection frame-
work using static analysis and machine learning. Yara scans
source files for known patterns, flagging matches as webshells,
while unmatched files are converted into opcode sequences and
analyzed by a CNN model, with detections verified by experts
to ensure robust identification of both known and unknown
webshells.

C. Yara Analysis

The Yara component in ASAF detects known webshells
using a pattern matching engine and Yara-rules database,
utilizing text and binary matching techniques, including wild-
cards and regular expressions, along with Boolean logic for
complex detections. The process is illustrated in Algorithm 1.

The Yara-Rules database, regularly updated from the IOC
database or by experts to stay current with emerging threats,
identifies known webshells by matching specific textual and
binary patterns, and in the ASAF architecture, the Yara module
scans source code files, flagging those

Algorithm 1 Pattern-Matching Algorithm
Input: S - Collection of web application source files; RS -

collection of Yara-Rules
Output: WS - list of webshells
1: WS ← ∅
2: for each f ∈ S do
3: for each r ∈ RS do
4: if PatternMatch(r, f) = true then ▷ if file f

match with rule r
5: WS.append(f) ▷ f should be appended to

WS as a webshell
6: end if
7: end for
8: end for
9: return WS

D. Opcode Vectorization

The module enhances webshell detection by converting
web source code into opcode vectors, which enables ML/DL
models to identify concealed malicious patterns and detect
advanced evasion and obfuscation techniques [10]. The mod-
ule has two main components: Opcode Generation, which
converts source code into low-level opcodes using tools like
VLD or ILDasm, and Opcode Vectorization, which transforms
these opcodes into numerical formats for machine learning
models, using methods like one-hot encoding or Word2Vec.
The Opcode Index Vectorization Algorithm (OIVA) enhances
this process by creating indexed vectors based on the order
of instructions, enabling CNN models to effectively detect
webshells by capturing essential features of the source code,
shown in Algorithm 2.

Algorithm 2 OIVA: Opcode Index Vectorization Algorithm
Input: of - Opcode file generated by VLD/ILDasm; IS -

Indexed opcodes set of a programming language
Output: OCI - vector containing the opcode indexes of of .

1: OCI ← ∅
2: for each line ∈ of do
3: for each opcode ∈ IS do
4: if opcode ∈ line then
5: OCI.append(getIndex(opcode, IS)) ▷ Add

the index of opcode in IS to vector OCI
6: end if
7: end for
8: end for
9: return OCI

E. Dataset Collecting and Cleaning

In the ASAF framework, the dataset for training and testing
the CNN model for webshell detection includes benign files
from repositories like GitHub and malicious webshells from
malware repositories, honeypots, and security forums, with
confirmed webshells added and the dataset preprocessed for
high-quality model training.



TABLE I
CLEAN BENIGN AND WEBSHELL DATASETS

Training Set Testing Set

Benign Dataset 5,820 1,455
Webshell Dataset 3,270 817

F. CNN Model Architecture

In the proposed ASAF, a CNN detects webshells by pro-
cessing vectorized opcode sequences through an Input Layer,
extracting features with Convolutional Layers, reducing com-
plexity via Global Max-Pooling, and outputting probabili-
ties through a Classification Layer with Softmax activation.
The Adam optimizer is employed to fine-tune the model
for efficient convergence, with parameters such as a 0.05
learning rate, β1 = 0.9, β2 = 0.999, and ε = 10−8 [11]
in place. This architecture is designed to effectively analyze
and classify opcode sequences, providing a reliable approach
to the detection of sophisticated webshells [12].

IV. EXPERIMENTS & EVALUATION

To demonstrate ASAF’s effectiveness, we conduct in-depth
experiments to address key research questions:

• RQ1: How is ASAF used to detect PHP webshells?
• RQ2: How does ASAF improve webshell detection per-

formance compared to other static analysis methods?
• RQ3: Does deep learning allow for improved webshell

detection performance compared to some other state of
the art (SOTA) machine learning methods?

A. Dataset Preparation

The benign dataset has been collected from the official
websites of various PHP frameworks, forums, and content
management systems. They consist of Laravel, Wordpress,
Joomla, phpMyAdmin, phpPgAdmin, and phpbb1. Thus, the
benign set comprises a total of 7,400 files after the removal
of non-PHP files. In order to construct the webshell dataset,
we gathered a diverse selection of webshells from the most
reputable and highly rated sources on Github2. Furthermore,
we implemented several webshell samples that we acquired
during our employment. Consequently, there are a total of
4,171 webshell files.

Upon Yara’s and expert input’s review of the collected
webshell dataset, we eliminated 27 false positives, resulting
in 7,275 benign files and 4,087webshell files. In order to train
and validate our PHP webshell detection method, we adhered
to industry standards by dividing the dataset into training and
testing sets at an 8:2 ratio [13]. Table I illustrates the ultimate
distribution of files between the non-duplicate training and
testing sets.

1Benign repos on Github: Laravel; WordPress; Joomla; phpmyadmin;
phppgadmin; phpbb.

2Webshell repo on Github: Tennc, PHP-backdoors, B374k, php-webshells,
xl7dev/WebShell, BlackArch/webshells, fuzzdb, webshell-collector, webshell-
sample, awsome-webshell, WebShell-Bypass-WAF, indoxploit-shell.

B. Implementation Details

We constructed and implemented our solution, ASAF, in
the Python language, based on the proposed method. The
experiments were conducted on a computer that was equipped
with 2 x Intel Xeon E5-2697 v4, 128 GB of RAM, CentOS
Linux 7-9.2009, and Python release 3.8. We employ tensorflow
v.1.14.0, scikit-learn v.0.20.4, scipy v.1.2.2, numpy v.1.16.5,
and yara-python v.3.10.0 for the deep learning platform.

The experimental phase is conducted using the test dataset
constructed in §IV-A, in conjunction with three scenarios.

• S1: Evaluate the detection efficiency of the Yara compo-
nent for PHP webshells in ASAF.

• S2: Assess the detection efficiency of the CNN model for
PHP webshells in ASAF.

• S3: Evaluate the aggregate detection efficiency of all
ASAF components for PHP webshells.

C. Results and Evaluation

1) S1: Yara-based Webshell Detection: In our work, the
Yara-Rules dataset contains699 rules collected from sources
like GitHub, GitLab, and professional contributions, en-
abling the detection of webshells in languages such as PHP,
ASP.NET,JSP, and Python. The system achieved high perfor-
mance in testing, with 94.89% accuracy, 98.88% precision,
86.76% recall, and 99.45% specificity. However, the recall rate
shows that 13.24% of webshells go undetected, highlighting
the system’s limitation in detecting new or obfuscated variants.
To improve adaptability and detection of emerging threats,
integrating machine learning techniques is recommended.

2) S2: CNN-based Webshell Detection: The dataset de-
scribed in §IV-A is also utilized to evaluate the CNN model
using the tensorflow engine, as in the previous experiment.

The most recent assessment of the CNN-based detection
system demonstrates its remarkable accuracy of 98.81% in
the identification of recognized webshell patterns. The model
achieves a high precision rate of 97.94%, effectively mini-
mizing false positives and allowing security analysts to fo-
cus on genuine threats. With a recall rate of 98.78%, the
system robustly detects nearly all actual webshells, while
its specificity of 98.83% ensures accurate identification of
benign files. The F1-score of 98.35% demonstrates a strong
balance between precision and recall, further validating the
model’s effectiveness. Furthermore, the system’s reliability
and accuracy in detecting webshells are substantiated by its
low false positive rate of 1.17% and false negative rate of
1.22%.

3) S3: ASAF-based Web Detection: From the above two
experiments, we have shown the advantages and disadvantages
of Yara and CNN techniques in detecting PHP webshells. In
this section, we will continue to experiment with the ASAF
framework on the same dataset to prove its effectiveness
over the above two techniques in detecting PHP webshell
attacks. After conducting the three methods, we obtained the
experimental results of the methods shown in the confusion
matrix in Table II and III.

https://github.com/laravel/laravel
https://github.com/WordPress/WordPress
https://github.com/joomla/joomla-cms
https://github.com/phpmyadmin/phpmyadmin
https://github.com/phppgadmin/phppgadmin
https://github.com/phpbb/
https://github.com/tennc/webshell
https://github.com/bartblaze/PHP-backdoors
https://github.com/b374k/b374k
https://github.com/JohnTroony/php-webshells
https://github.com/xl7dev/WebShell
https://github.com/BlackArch/webshells
https://github.com/fuzzdb-project/fuzzdb
https://github.com/LuciferoO/webshell-collector
https://github.com/ysrc/webshell-sample
https://github.com/ysrc/webshell-sample
https://github.com/webshellpub/awsome-webshell
https://github.com/PHP-WebShell-Bypass-WAF
https://github.com/linuxsec/indoxploit-shell


TABLE II
CONFUSION MATRIX OF PHP WEBSHELL DETECTION

Real Webshell Real Benign

S1-Yara Predicted Webshell 709 8

Predicted Benign 108 1447

S2-CNN Predicted Webshell 807 17

Predicted Benign 10 1438

S3-ASAF Predicted Webshell 809 17

Predicted Benign 8 1438

TABLE III
KEY METRICS OF PHP WEBSHELL DETECTION (%)

Measure S1-Yara(%) S2-CNN(%) S3-ASAF(%)

F1-Score 92.43 98.35 98.48
Specificity 99.45 98.83 98.83
False Positive Rate 0.55 1.17 1.17
False Negative Rate 13.24 1.22 0.98
Accuracy 94.89 98.81 98.9
Precision 98.88 97.94 97.94
Recall 86.76 98.78 99.02

ASAF effectively detects both known and unknown web-
shell patterns by integrating Yara’s pattern matching with
CNN’s deep learning, outperforming both in all metrics; for
instance, it recorded 8 false negatives (FNs) among 817 PHP
webshell files, compared to CNN’s 10, as 2 of those FNs were
correctly identified by Yara.

4) Evaluation: To justify our ASAF’s performance, we
compare our results to those of other approaches. For com-
parison, we chose two non-AI approaches [14], [15] and
two ML/DL approaches [16], [17]. Due to the limitations of
sharing source code, we have simulated the RF-GBDT and
Word2Vec+CNN model as described by the authors, which
are currently one of the best archivements for evaluation on
our dataset aforementioned in §IV-A. The actual results of the
simulated RF-GBDT and Word2Vec+CNN are not as high as
announced. The comparison results in Table IV show that the
ASAF model achieves the best results in both accuracy of
98.9% and F1-Score of 98.48% when compared with other
methods on our dataset.

V. CONCLUSIONS

This research introduces a framework for the detection
of webshells that integrates static analysis techniques with
deep learning. To provide a more detailed explanation, our
ASAF framework employs the pattern recognition capabilities
of CNNs, opcode vectorization techniques, and Yara-based
matching to precisely identify malicious scripts that are em-
bedded within web applications. Our ASAF investigations with
the PHP language have enabled us to verify that the integration
of static analysis with AI results in a rapid and efficient
solution that surpasses conventional detection methods. Future
research may investigate the application of this method for
detecting webshells in additional programming languages and
the utilization of more sophisticated deep learning models to
enhance detection rates across various web environments.

TABLE IV
COMPARISON OF DIFFERENT WEBSHELL DETECTION APPROACHES ON

OUR DATASET (%)

Method Venue Accuracy F1-Score

Simulated Word2Vec+CNN [17] ICNCC, 2017 98.42 97.80
Simulated RF-GBDT [16] DSC, 2018 98.59 98.05
GuruWS [15] TCCI, 2019 85.56 92.00
php-malware-finder [14] NBS, 2022 94.23 96.46
ASAF (our) VCRIS, 2024 98.9 98.48
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