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ABSTRACT
Video temporal localization aims to locate a period that seman-
tically matches a natural language query in a given untrimmed
video. We empirically observe that although existing approaches
gain steady progress on sentence localization, the performance of
phrase localization is far from satisfactory. In principle, the phrase
should be easier to localize as fewer combinations of visual con-
cepts need to be considered; such incapability indicates that the
existing models only capture the sentence annotation bias in the
benchmark but lack sufficient understanding of the intrinsic rela-
tionship between simple visual and language concepts, thus the
model generalization and interpretability is questioned. This paper
proposes a unified framework that can deal with both sentence
and phrase-level localization, namely Phrase Level Prediction Net
(PLPNet). Specifically, based on the hypothesis that similar phrases
tend to focus on similar video cues, while dissimilar ones should
not, we build a contrastive mechanism to restrain phrase-level local-
ization without fine-grained phrase boundary annotation required
in training. Moreover, considering the sentence’s flexibility and
wide discrepancy among phrases, we propose a clustering-based
batch sampler to ensure that contrastive learning can be conducted
efficiently. Extensive experiments demonstrate that our method
surpasses state-of-the-art methods of phrase-level temporal localiza-
tion while maintaining high performance in sentence localization
and boosting the model’s interpretability and generalization capa-
bility. Our code is available at https://github.com/sizhelee/PLPNet.
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• Computing methodologies→ Visual content-based index-
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Query: person puts clothes in the washer 

Phrase 1: person

Phrase 2: puts clothes 

Phrase 3: the washer
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Figure 1: An illustrative example in Charades-STA dataset on
video temporal localization task, where the gray and green
blocks represent the ground truth and model prediction. Al-
though existing approaches gain a reasonable performance
on sentence localization, the performance of phrase localisa-
tion is far from satisfactory.

1 INTRODUCTION
As humanity continues to produce videos at an ever-increasing
scale, understanding the contents of the videos has drawn growing
research interests. The goal of temporal localization is to locate tem-
porally video moments-of-interest (segment) of a specific activity
described by a natural language query in an untrimmed long video.
Automatic temporal grounding enables us to find the moment of
interest from the whole video effectively and efficiently, which has
broad application potential in video surveillance [3, 4, 21], visual
question answering [1, 2, 22], etc.

In recent decades, fully supervised methods [5, 8, 17, 18, 20,
23, 24, 28, 31–33, 35, 37] have achieved remarkable prediction ac-
curacy in sentence-level prediction settings. However, we notice
that these models, trained with sentence-level annotation, have
unsatisfying performance in phrase-level prediction settings. As
illustrated in fig. 1, the overall sentence-level prediction is satis-
fying while phrase-level predictions of, for example, ’person’ and
’washer’ (shown in grey blocks) are far from accurate. We empiri-
cally observe that in the Charades-STA[8] dataset, when we replace
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the original sentence-level query with the verb-object phrase-level
queries (e.g. open door), the IoU@0.5 score of [17] is dropped from
59.17% to 32.08% (as shown in Tab.1).

The phrase in our work is defined as one or several consecutive
words in the original sentence query and is a more fundamental
component in a semantic context than the whole sentence. In princi-
ple, phrase-level queries are easier to deal with than sentence-level
queries since less semantic information and fewer concepts combi-
nation scenarios need to be considered. The inability to perform
phrase-level prediction tasks indicates that (1)Although existing
temporal localization models achieve decent results, they may not
grasp the intrinsic relationship between visual and semantic infor-
mation, but overfit the dataset annotation biases instead. (2) The
generalization ability of existing models is questionable, as with-
out explicit understanding of more straightforward phrase-level
concepts, localizing their combinations is not trivial. Empirically,
when testing on a new test split of Charades-STA with a different
combination of known phrases, IoU=0.5 accuracy score drops from
59.17% to 56.07% as shown in Tab. 3). The understanding and revela-
tion of the cross-modal correlation of a single simple concept is the
essence of solving the challenging cross-modal matching problem
due to the corresponding relationship between various visual enti-
ties and textual words. (3) Existing models lack interpretability and
reliability, raising practical problems when applied in real-world
scenarios that are far more complicated than ideal dataset settings.

Motivated by the above observation, we make the first attempt
to take phrase localization into account. Note that the simplest so-
lution is to collect temporal boundaries for all phrases and retrain
the model, but it needs laborious manual annotation, thus limiting
scalability and practicability in real-world scenarios. In this pa-
per, we propose a method considering phrase localization without
temporal annotation required, namely Phrase-level Prediction Net
(PLPNet). Specifically, we hypothesize that similar phrases tend to
focus on similar video cues, while dissimilar ones not. Instead of di-
rectly regressing phrase predictions’ boundary timestamps, we rely
on this hypothesis and build a contrastive mechanism to restrain
phrase localization. Moreover, considering the flexibility of the sen-
tence and wide discrepancy among phrases, sampling randomly
when forming batches may lead to missing similar phrases and not
provide enough supervision signal. We propose a batch sampling
mechanism using sentence clustering to ensure contrastive learning
to be conducted efficiently in a batch-wise manner.

Our main contributions are in three folds:
1. We are the first to study the phrase-level localization problem

and propose the Phrase-Level Prediction Network, which can be
trained end-to-end without phrase-level temporal annotation.

2. By taking advantage of the inherent sentence relationships (via
clustering), we propose a new sampling mechanism for benefiting
contrastive learning, which assumes similar phrases tend to focus
on similar video cues, while the dissimilar ones should not.

3.We perform experiments on twowidely used datasets Charades-
STA [8] and ActivityNet Captions [13]. Our experiments prove that
our method improves the model’s phrase localization accuracy and
generalization capability.

2 RELATEDWORK
The task, temporal localization, proposed by TALL[8], has drawn
interest of various researchers. There are now two different tracks
for this task, fully-supervised and weakly-supervised. In fully-
supervised scenario, model can obtain the accurate timestamps
for sentence, while in weakly-supervised scenario, only the video
and corresponding sentence are available.

2.1 Fully-supervised Temporal Localization
Recently, fully-supervised works tend to consider fine-grained in-
formation. Some methods focus on video details, like Dori [20]
and HTVG [5], which consider the features of objects in the video
to improve the model’s performance. MSA[32] produces stage-
aggregated features for prediction, to identify different stages of
the required time section. It makes an unprecedented move when
training the model to identify different stages of the wanted period.
2D-TAN[33] considers frames’ relation with each other with an
adjacent temporal network to obtain better segment visual features.
Following it, models like DPIN[23] and SMIN[24] dive into explor-
ing generating both frame and segment features for interaction and
attention, considering both local and global video features.

Other works notice the effect of sentence. DeNet[37] uses Gauss-
ian distribution to deal with the uncertainty of part of the query
sentence, built on the hypothesis that verbs and nouns are relatively
specific and others may have variances. It proposes a solution to
a hardly-noticed but crucial problem in the temporal localization
field: annotation bias. In LGI[17], the features of subqueries gen-
erated via attention pooling are fused with video features. It is a
novel designation for LGI to interact subquery feature with video
feature to generate fused feature for prediction. However, the guid-
ance of the generation of subquery-level information is not fully
guaranteed. MMN [26] trains the model to distinguish matched
and unmatched video-sentence pairs collected from intra-video and
inter-video in order to find the relationship between positive and
negative sentences. It also ignores the relationship between phrases
and video.

Although supervised models perform well in this task, experi-
ment results show that their performances in phrase-level predic-
tions are unsatisfying. Different from single words that can apply
to various scenarios, yet different from a whole sentence’s compe-
tency, phrases are components that have meanings individually, pre-
senting linguistic logic. As a result, the unsatisfying performances
indicate that these models may not truly capture the correlation
between the visual and textual information of a simple concept,
limiting their generalization performance and interpretability. To
solve the above problems, our PLPNet generate phrases from sen-
tence and use the temporal and semantic relationship between the
video and text to gain fine-tuned fused features.

2.2 Weakly Supervised Temporal Localization
ForWeakly-Supervised Video Localization [7, 25], due to the lack of
accurate timestamp annotations, researchers try to promote models
in learning the cross-modal correlation without the supervision of
time stamps. To overcome this difficulty, many weakly supervised
models use contrastive learning to use the similarity information
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between sentences and make full use of the combination infor-
mation between video and text. For example, TGA [16] train the
model to distinguish matched video-query pairs and unmatched
ones collected from other training samples; CPL [36] utilize Gauss-
ian distribution to generate positive and negative video proposals
for contrastive learning. Under these circumstances, the model does
not have access to accurate timestamps, but only takes the whole
video as positive sample. They still consider the sentence query as
a fundamental semantic element without exploiting phrases that
represent information in a more fine-grained level. Inspired by the
ideas used in weakly supervised scenario, we also use contrastive
learning in our method. What’s more, we compare of similarity
between phrases and corresponding video clips and understand
the sentence in phrase-level, to improve the interpretability of our
mudel.

3 METHOD
3.1 Overview
Given an untrimmed video 𝑣 = {𝑣1, 𝑣2, ..., 𝑣𝑇 } composed of𝑇 frames
and natural language query 𝑄 = {𝑤1,𝑤2, ...,𝑤𝑚} of𝑚 words, the
objective of temporal localization is to identify the temporal bound-
ary of a target moment (𝑡𝑠 , 𝑡𝑒 ) in 𝑣 , so that the video segments
{𝑣𝑡 }𝑡=𝑡𝑒

𝑡=𝑡𝑠
matches the query.

Figure 2 illustrates the architecture of our PLPNet model. Given
a video and sentence query, the video encoder extracts position-
aware video featureVwhile the text encoder extracts word features
and uses a bi-directional LSTM to generate sentence feature 𝑞. Then
the phrase generation part parses the sentence into phrases and
provides phrase features q̃. In the interaction module, video feature
meets each phrase to get fused features and global fused feature
, which are then used to gain frame attention weight. Finally in
prediction module, boundaries for both sentence and phrases are
generated. Moreover, based on the hypothesize that similar phrases
tend to focus on similar video cues, while the dissimilar ones should
not, we propose feature loss L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 to boost the phrase-level
performance without phrase annotation. More details about the
model are shown in section 3.2. To make it more efficient and
reliable, we propose a new sampling method to form batches and
ensure that each batch contains both similar and dissimilar phrases,
as shown in section 3.3. The overall training and inference paradigm
is discussed in section 3.4.

3.2 Model Architecture
3.2.1 Video Encoder: We first extract the high-quality visual fea-
tures V from an untrimmed video 𝑣 . The video 𝑣 is divided into
several segments with a fixed length (𝑒.𝑔., 16 frames), and the seg-
ment features f = [𝑓1, 𝑓2, ..., 𝑓𝐿] ∈ R𝐿×𝑑𝑣 are extracted with a 3D
CNN model, where 𝐿 is the number of video segments and 𝑑𝑣 is the
feature dimension. Since the temporal localization regression is re-
lated to the position inside a video, we aggregate f with a learnable
positional encoding to get the final visual features V ∈ R𝐿×𝑑 :

V = ReLU(W𝑠𝑒𝑔 · f) + f𝑝𝑜𝑠 , (1)

whereW𝑠𝑒𝑔 ∈ R𝑑×𝑑𝑣 is a learnable matrix for segment features and
f𝑝𝑜𝑠 is learnable positional encoding obtained by a lookup table [6].

3.2.2 Text Encoder: We then extract both word features w and
sentence feature 𝑞 using Bi-LSTM, and send them into a phrase
generation module to generate phrases and extract fine-grained
phrase features. Specifically, given a sentence query𝑄 containing𝑚
words, we first extract the word featuresw = [𝑤1, ...,𝑤𝑚] ∈ R𝑚×𝑑0
with pretrained word2vec model. Then we use a two-layer Bi-LSTM
to obtain context-awared word and sentence features. The 𝑖-th word
feature is described as 𝑤𝑖 = [−→𝑤𝑖 ;←−𝑤𝑖 ] ∈ R𝑑 , where −→𝑤𝑖 and←−𝑤𝑖 are
the hidden states in the forward and backward LSTMs, and [·; ·]
represents concatenation operation. Similarly, the sentence features
are obtained by the concatenation of the last hidden states of the
Bi-LSTM: 𝑞 = [−−→𝑤𝑚 ;←−𝑤1] ∈ R𝑑 .

To automatically determine the meaningful phrases in the sen-
tence, we use a phrase generation module to identifies different
phrases via attention mechanism, and generates phrase-level fea-
tures following [10, 29]. Following [17], we extract the phrases
iteratively. To obtain the 𝑛-th phrase feature 𝑞 (𝑛) ∈ R𝑑 , we feed
the sentence-level feature 𝑞 and the (𝑛 − 1)-th phrase feature
𝑞 (𝑛−1) ∈ R𝑑 into embedding to get the guiding vector 𝑔 (𝑛) ∈ R𝑑 :

𝑔 (𝑛) = ReLU(W𝑔 [W(𝑛)𝑞 𝑞;𝑞 (𝑛−1) ]) (2)

where 𝑁 is a hyper-parameter representing the quantity of phrases
in a query, W𝑔 ∈ R𝑑×2𝑑 , W(𝑛)𝑞 ∈ R𝑑×𝑑 , are learnable embedding
matrices. Then we gain the word attention weights 𝛼 (𝑛) ∈ R𝑚 of
the 𝑛-th phrase through attention mechanism:

𝛼
(𝑛)
𝑘

= W𝑞𝑎𝑡𝑡 (tanh(W𝑔𝛼𝑔
(𝑛) +Ww𝛼𝑤𝑘 ))

𝑘 = 1, 2, ...,𝑚

𝛼 (𝑛) = softmax( [𝛼 (𝑛)1 , ..., 𝛼
(𝑛)
𝑚 ]),

(3)

where 𝑁 is a hyper-parameter representing the quantity of phrases
in a query, W𝑞𝑎𝑡𝑡 ∈ R1×

𝑑
2 , W𝑔𝛼 ∈ R

𝑑
2 ×𝑑 , and W𝑤𝛼 ∈ R

𝑑
2 ×𝑑 are

learnable embedding matrices. Then we compute a weighted sum
of �̃� to obtain phrase features 𝑞 (𝑛) as follows:

𝑞 (𝑛) =
𝑚∑︁
𝑘=1

𝛼
(𝑛)
𝑘
·𝑤𝑘 , 𝑛 = 1, 2, ..., 𝑁 (4)

To encourage the phrase attentions corresponding to different
phrases to be as distinct as possible, we apply the phrase loss
L𝑝ℎ𝑟𝑎𝑠𝑒 following [14]:

L𝑝ℎ𝑟𝑎𝑠𝑒 = | | (A𝑇A) − 𝜆I| |2𝐹 , (5)

where A = [𝛼 (1) , . . . , 𝛼 (𝑁 ) ] ∈ R𝑚×𝑁 , represents the query atten-
tion weights across 𝑁 steps, | | · | |𝐹 denotes the Frobenius matrix
norm[14], and 𝜆 is a hyperparameter in range [0, 1] wich controls
the extent of overlap between different phrases.

3.2.3 Video-Text Interaction: To highlight the video features rele-
vant to the phrases and suppress the irrelevant ones, we apply a
fusion module to generate phrase-aware visual feature F̃(𝑛) com-
bining video features V and the 𝑛-th phrase feature 𝑞 (𝑛) . Then, all
phrase-aware visual features should be aggregated cross phrases to
generate global visual features F(𝑡 ) . Finally, for each phrase-aware
visual feature F̃(𝑛) and the global visual features F(𝑡 ) , we summa-
rize the information temporally and highlight important frames to
get aggregated feature F̂(𝑛) and F̂(𝑡 ) respectively. The aggregated
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Figure 2: An overview of our proposed PLPNet method. The model contains four modules, a text encoder to extract sentence
features and generate 𝑁 phrases, a video encoder to extract visual features with position embedding, an interaction module
where both sentence and phrase features interact with video features, harvesting fused features used in prediction part, and a
prediction module to give both sentence-level and phrase-level predictions. We apply the similarity of feature loss aiming at
shorten the distance between corresponding text and visual features, the overall regression loss to supervise the prediction
timestamps, temporal attention loss to supervise the frame-level attention score, and phrase loss to generate different phrases
in training.

features can be directly used to predict the temporal boundaries of
phrases and sentence.

In detail, To highlight the video features relevant to the phrases,
we use Hadamard product [11] to fuse video features V = [𝑣1, ...𝑣𝐿]
and phrase features q̃ = [𝑞 (1) , ..., 𝑞 (𝑁 ) ]:

m̃𝑖
(𝑛) = W(𝑛)𝑚 (W

(𝑛)
𝑣 𝑣𝑖 ⊙W(𝑛)𝑞 𝑞 (𝑛) )

𝑖 = 1, 2, ..., 𝐿; 𝑛 = 1, 2, ..., 𝑁
(6)

where m̃(𝑛)
𝑖
∈ R𝑑 stands for the 𝑖-th fused feature with the 𝑛-th

phrase, W(𝑛)𝑚 ∈ R𝑑×𝑑 , W(𝑛)𝑣 ∈ R𝑑×𝑑 and W(𝑛)𝑞 ∈ R𝑑×𝑑 are learn-
able embedding matrices, and ⊙ represents the Hadamard product
operator[11]. Then, we apply a residual connection block that con-
sists of two temporal convolution layers on m̃(𝑛)

𝑖
to generate the

phrase-aware fused feature F̃(𝑛) = ResBlock( [m̃(𝑛)1 , ..., m̃(𝑛)
𝐿
]) ∈

R𝐿×𝑑 . Meanwhile, the phrase features [𝑞 (1) , ..., 𝑞 (𝑁 ) ] are sent into
another MLP layer to generate the attention weight 𝛾 ∈ R𝑁 of each
phrase:

𝛾 = softmax(MLP𝑠𝑎𝑡𝑡 ( [𝑞 (1) ...𝑞 (𝑛) ]) (7)

where MLP𝑠𝑎𝑡𝑡 is a fully connected layer. 𝛾 represents the impor-
tance of each phrase, and is used to aggregate with the phrase
features to generate the sentence-aware feature F̃(𝑡 ) ∈ R𝐿×𝑑 :

F̃(𝑡 ) =
𝑁∑︁
𝑛=1

𝛾 (𝑛) F̃(𝑛) (8)

Finally, the final global visual feature F(𝑡 ) ∈ R𝐿×𝑑 is generated
with a global context modeling process, which aims to integrate
the semantics of the context in case that some references in one
phrase are defined in other phrase:

F(𝑡 ) = F̃(𝑡 ) + (W𝑟 𝑣 F̃
(𝑡 ) )softmax(

(W𝑟𝑞 F̃
(𝑡 ) )𝑇 · (W𝑟𝑘 F̃

(𝑡 ) )
√
𝑑

)𝑇 (9)

where W𝑟 𝑣 ∈ R𝑑×𝑑 , W𝑟𝑞 ∈ R𝑑×𝑑 and W𝑟𝑘 ∈ R𝑑×𝑑 are learnable
embedding matrices.

Then we calculate the frame attention weight 𝛽 (𝑛) ∈ R𝐿 for the
𝑛-th phrase-aware visual feature and 𝛽 (𝑡 ) ∈ R𝐿 for the sentence-
aware visual feature with MLP layers:

𝛽 (𝑛) = softmax(MLP𝑓 𝑎𝑡𝑡 (F(𝑛) )), 𝑛 = 1, 2, ..., 𝑁 (10)

𝛽 (𝑡 ) = softmax(MLP𝑓 𝑎𝑡𝑡 (F(𝑡 ) )) (11)

After that we apply the frame attention weight onto visual features
to gain the final aggregated features 𝐹 as shown below:

𝐹 (𝑛) =
𝐿∑︁
𝑖=1

𝛽
(𝑛)
𝑖

F̃(𝑛)𝑖 , 𝐹 (𝑡 ) =
𝐿∑︁
𝑖=1

𝛽
(𝑡 )
𝑖

F̃(𝑡 )𝑖 (12)

3.2.4 Prediction Module: In prediction module, the model uses
fused phrase-aware features 𝐹 (1) , ..., 𝐹 (𝑁 ) and the sentence-aware
feature 𝐹 (𝑡 ) as inputs, and outputs 𝑁 + 1 pairs of prediction, in-
cluding 𝑁 phrase-level predictions [𝑡 (𝑛)𝑠 , 𝑡

(𝑛)
𝑒 ], 𝑛 ∈ [1, ..., 𝑁 ] and a
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sentence-level prediction [𝑡𝑠 , 𝑡𝑒 ]:

[𝑡𝑠 , 𝑡𝑒 ] = MLP𝑟𝑒𝑔 (𝐹 (𝑡 ) ), [𝑡 (𝑛)𝑠 , 𝑡
(𝑛)
𝑒 ] = MLP𝑟𝑒𝑔 (𝐹 (𝑛) ), (13)

where MLP𝑟𝑒𝑔 is a fully connected layer. We utilize the result of
sentence-level prediction [𝑡𝑠 , 𝑡𝑒 ] to calculates the smoothL1 dis-
tance with the ground truth [𝑡𝑠 , 𝑡𝑒 ] which serves as the regression
loss L𝑟𝑒𝑔 :

L𝑟𝑒𝑔 = smoothL1(𝑡𝑠 − 𝑡𝑠 ) + smoothL1(𝑡𝑒 − 𝑡𝑒 ), (14)

Due to the lack of ground-truth supervision for phrase-level
predictions, we design a self-supervised feature loss L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 by
hypothesizing that similar sentences and phrases naturally tend
to focus on videos with similar contents in the ideal scenario. We
first use M𝑞 to represent the similarity of any two phrases in a
batch. Specifically, we aggregate the word embeddingsW by the
𝑛-th phrase attention weights 𝑎𝑙𝑝ℎ𝑎 (𝑛) obtained by eq. (3):

𝑞 (𝑛) =
𝑚∑︁
𝑘=1

𝛼
(𝑛)
𝑘
·𝑤𝑘 (15)

Then, we collect all the phrase features in a batch and normalize
them into unit vectors, and they make up a collection of phrase fea-
tures Q ∈ R𝐵𝑁×𝑑 , where 𝐵 is the batch size. For any two phrases in
a batch, we calculate their cosine similarity and obtain the similarity
matrixM𝑞 for phrases, as shown in fig. 3:

M𝑞 = QQ𝑇 ∈ R𝐵𝑁×𝐵𝑁 (16)

We can use the similar method to obtain the matrix M𝑣 , which
represents the similarity of the visual features attended by any
two phrases. With the attention weights 𝛽 (1) , ..., 𝛽 (𝑁 ) obtained in
eq. (10), we harvest phrase and sentence attention features 𝐹 (𝑛) ∈
R𝑑 via computing the weighted sum as follows:

𝐹 (𝑛) =
𝐿∑︁
𝑖=1

𝛽
(𝑛)
𝑖

𝑓𝑖 (17)

We normalize the visual features, collect them in a batch into a
collection F, and compute the similarity matrixM𝑣 :

M𝑣 = FF
𝑇 ∈ R𝐵𝑁×𝐵𝑁 (18)

As we assume that similar sentences and phrases naturally tend
to focus on videos with similar contents in the ideal scenario, the
distance ofM𝑣 andM𝑞 should be controlled in a margin, and we
design our similarity of feature loss L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 as:

L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 =
∑︁
𝑖, 𝑗

max{0, ( |M𝑣𝑖,𝑗 −M𝑞𝑖,𝑗 | −𝑚0)} (19)

where𝑚0 is a hyperparameter denoting the margin. We expect that
M𝑣 andM𝑞 ’s distance falls within the scope of [−𝑚0,𝑚0].

To encourage the model to gain attention weight 𝛽 with higher
quality and increase the weights where the video contents match
the query, we apply the temporal attention loss as in [30].

L𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = BinaryCrossEntropy(𝛽, tag) (20)

where tag∈ R𝐿 is a vector containing only 0 and 1. If frame i locates
in the ground truth period, then tag𝑖 = 1. Otherwise, tag𝑖 = 0.

Figure 3: An illustration of the similarity matrix module.
It takes weighted features from one batch as input. After
concatenating all features in a batch, we compute the cosine
similarity between every two columns. 𝑁 , 𝐵, 𝑑 denote the
number of phrases, the batch size, and the dimension of one
phrase-level feature, respectively.

3.3 Data Sampling Method
In order to maximize the effectiveness of L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 , it is expected
that there are phrases with high similarity in a batch, also a batch
should contain some contrastive phrases. As a result, we develop
a dataset sampling method considering the likelihood of sentence
queries and the potential combination of phrases based on the
hypothesis that similar sentences are more likely to contain similar
phrases. We first cluster all sentences into several classes according
to their similarity and select sentences from different classes to
form batch.

Upon harvesting sentence features from pretrained sentence-
transformer[19], which maps sentences or paragraphs to a 768
dimensional dense vector space and can be used in many cases.
We divide sentences into different clusters using K-Means based
on their level of similarity, trying to gather sentences with high
similarity in the same cluster. We shuffle these clusters of sentences
before forming batches while the inner-category sequence remains
unchanged. This sampling method aims to provide batches that
train the model with similar phrases rather consecutively, hypothe-
sizing that similar phrases have an inclination of focusing on similar
videos, and sentences with a higher level of resemblance have a
higher possibility of containing similar phrases. To raise the effec-
tiveness of the L𝑓 𝑒𝑎𝑡𝑠 and provide randomness, we choose queries
from several batches.

3.4 Training and Inference
The total loss of our model is as follows.

L = L𝑟𝑒𝑔 + 𝜆𝑎𝑡𝑡L𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + 𝜆𝑝ℎ𝑟L𝑝ℎ𝑟𝑎𝑠𝑒 + 𝜆𝑓 𝑒𝑎𝑡𝑠L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒

where 𝜆 is for balancing the losses.
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Method feature sentence prediction phrase prediction
IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU

LGI [17]
I3D

72.18 59.17 35.32 50.93 60.62 32.08 12.44 36.71
MIGCN [34] 71.69 57.10 33.25 49.35 59.06 37.45 17.73 38.26
RaNet [9] 72.50 60.46 38.33 52.03 56.49 36.76 18.70 37.54

Ours1 VGG 57.82 41.88 20.56 39.12 46.24 22.94 7.69 28.46
Ours2 I3D 73.49 58.95 35.48 51.53 63.49 40.52 19.27 40.76

Table 1: Sentence-level and Phrase-level prediction accuracy on original test split of Charades-STA.

In inference condition, after generating the phrases, we only
apply sentence-level and phrase-level predictions to generate our
output, without going through the similarity matrix modules. In de-
tail, word attentions 𝛼 (1) , ..., 𝛼 (𝑁 ) are only used to calculate phrase
features 𝑞 (1) , ..., 𝑞 (𝑁 ) , without being sent into interaction module
and generate matrixM𝑞 . Similarity, frame attentions 𝛽 (1) , ..., 𝛽 (𝐿)
will not be sent in interaction module and generate matrixM𝑣 .

4 EXPERIMENTS
4.1 Datasets

Charades-STA. Charades-STA[8] is formed from the original
Charades dataset. It includes 9848 videos shot indoors, 12408 sen-
tence queries with annotated ground truth for training, and 3720 for
testing. Non-complex and complex sentences contain 6.3 words and
12.4 words on average, respectively. It also provides annotations
of combinations of 33 verbs and 38 objects, which can be used for
phrase-level evaluation.

ActivityNet Captions. ActivityNet Captions [13] originates from
the original ActivityNet dataset. ActivityNet Captions contains 20k
videos from YouTube and 37417, 17505, and 17031 sentence queries
with annotated ground truth for training, validation, and testing.
Descriptions of the videos in the dataset have an average length of
13.48 words. It provides 7654 annotations of verbs and objects.

4.2 Experiment Settings
Metrics. We apply R@n, IoU = m and mIoU, which calculates

the IoU between the top n retrieved video segments and the ground
truth, to measure the accuracy of both sentence-level and phrase
level prediction following [8]. We set 𝑛 to 1 and use three threshold
values,𝑚 = {0.3, 0.5, 0.7} to evaluate the performance.

Implementation Details. For video encoder, we employ I3D1 and
C3D2 networks to extract features for Charades-STA and Activi-
tyNet Captions separately and sample 𝐿 = 128 segments from each
video. For query encoder, we use pretrained word2vec model[15]
to extract word features of each sentence and unify the length of
each sentence to 𝑚 = 10 for Charades-STA and 𝑚 = 25 for Ac-
tivityNet Captions. For Charades-STA, we extract 𝑁 = 3 phrases
from each query and set the parameter 𝜆𝑝ℎ𝑟𝑎𝑠𝑒 to 0.3 in L𝑝ℎ𝑟𝑎𝑠𝑒 ,
while for Activitynet Captions, we set 𝑁 to 5 and 𝜆𝑝ℎ𝑟𝑎𝑠𝑒 to 0.2.
We use Adam optimizer[12] to learn the parameters with a batch

1https://github.com/piergiaj/pytorch-i3d
2http://activity-net.org/challenges/2016/download.html#c3d

of 100 pairs of video and query in training. For sampling, we em-
ploy K-Means to classify all queries in training set to 𝐾 = 1000
and 𝐾 = 3000 classes for Charades-STA and ActivityNet Captions
separately. The dimension 𝑑 of features is 512 and the learning rate
is 0.0004. Hyper-parameters 𝜆𝑟𝑒𝑔 , 𝜆𝑎𝑡𝑡 , 𝜆𝑝ℎ𝑟 and 𝜆𝑓 𝑒𝑎𝑡𝑠 are all set
to 1.0.

Combinational Generazation. To demonstrate that learning more
fine-grained phrase-level predictions is beneficial to improvemodel’s
generalization ability to new combinations of seen phrases (com-
binational generazation), we put forward a new dataset split on
Charades-STA. Inspired by data splitting methods proposed in some
weakly supervised settings[7, 25], we aim to test the model’s per-
formance in this scenario: the data distributions of training set
and testing set are different. We split the Charades-STA dataset as
below to maximize the variance of phrases in the training section.
In practise, we gather frequent combinations of nouns and verbs
in our new training set and the remaining sentence-video pairs
forms the new testing set. We make sure that the new training set
contains all verbs and nouns. The new split dataset contains 14059
and 2069 sentences in training and testing set separately.

Due to the lack of annotation focused on phrases, we split our
dataset based on previous annotation focusing on verbs, objects
and the combination of verbs and objects in the video. First, we
choose the most frequent combination of verb and object and add all
videos that contain this specific combination into the new training
set. Then we check the current training set and obtain a set of all
combinations of verb and object in current training set. After that
we renew the training set by adding all videos that contain the
combinations in the above set, and repeat this operation until the
number of videos in the new training set reaches the limit we have
set. The remaining videos form the new testing set. We aim to cover
all objects and verbs in training set for deriving the model’s ability
to understand and deal with unseen combinations.

The split avoids this scenario: data distribution is inappropriate
for training and testing by stop adding videos into the training set
upon reaching a manually set limit.

4.3 Performance of Prediction
We compare existing approaches[17, 31] and our model’s ability
to deal with sentence-level and phrase-level prediction. We utilize
the annotations of combinations of verb and object on Charades-
STA and annotations of verbs on ActivityNet Captions as ground
truth provided by the datesets. Since most existing models[8, 31] do
not tackle phrase-level prediction, we generate phrase-level input



Phrase-level Prediction for Video Temporal Localization Conference ICMR ’22, June 27–30, 2022, Newark, NJ

Method sentence prediction phrase prediction
IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU

2D-TAN[33] 59.45 44.51 27.38 — 51.71 42.19 32.22 —
LGI[17] 58.48 41.65 24.10 41.48 35.39 21.07 9.76 25.14
MMN[27] 65.05 48.59 29.26 — 51.91 42.27 32.88 —
RaNet[9] 60.96 45.59 28.67 44.82 47.44 37.51 27.58 38.45

MIGCN[34] 60.03 44.94 27.85 43.59 42.25 33.75 16.37 30.90

Ours 56.92 39.20 20.91 39.53 50.10 38.12 25.24 37.96
Table 2: Sentence-level and phrase-level prediction accuracy on ActivityNet Captions.

Method IoU=0.3 IoU=0.5 IoU=0.7 mIoU

VSLNet[31] 70.16 53.74 33.92 49.65
LGI[17] 69.41 56.07 31.66 48.38

Ours 70.76 57.27 34.07 49.58
Table 3: Performance when testing the combinational gener-
azation on Charades-STA

Query: person begins playing with their phone

Query: person they open the door

ground truth

ground truth

person begins playing with their phone
person begins
playing with
their phone

person they
open the

door

person they open the door

Figure 4: An illustration of our model’s performance on
Charades-STA. In both examples, our model achieve satis-
fying performance on both phrase-level and sentence-level
predictions.

and feed it directly into the whole-sentence prediction network, to
report their phrase-level prediction accuracy.

As shown in table 1, PLPNet surpasses many competing existing
methods[17, 31] on Charades-STA. It performs better than LGI[17],
which notices phrases in training. It surpasses LGI by 2.87%, 8.44%
and 6.83%, in terms of R@1 IoU={0.3,0.5,0.7} of phrases. Our model
addresses the importance of understanding simple, fine-grained
concepts, leading to a better performance than previous works in
phrase-level prediction, demonstrating our improvement in the
model’s interpretability and generalization performance. We visu-
alize two examples on Charades-STA as shown in fig. 4.

Results of experiments on ActivityNet-Captions are shown in ta-
ble 2. Although we do not achieve best performance on ActivityNet-
Captions, we still outperforms LGI (which serves as our base-
line). It surpasses LGI by 14.71%, 17.05%, and 15.48%, in terms of
IoU={0.3,0.5,0.7]} for phrase-level prediction, which demonstrates
the effectiveness of our approach. We hypothesize that the reason
why our method’s performance is less satisfying is that, proposal-
based approaches like [33] degrade less when dealing with phrases.
What’s more, LGI does not preform well when dealing with Ac-
tivityNet Captions as a baseline. For our sampling method and
similarity matrix module are dismountable, we can migrate them to
stronger baselines to gain better performance in our future work.

4.4 Combinational Generazation
We conduct a study on the combinational generazation of different
models with our dataset splitting method described in section 4.2
on Charades-STA, where novel combination of seen phrases are
tested to prove models’ combinational generazation. We trained
methods on our defined training set and used our defined testing
set to get the sentence-level prediction accuracy.

As shown in table 3, our method achieves a better prediction
accuracy than all other models[17, 31] in all metrics above. These
results demonstrate that our method is more competent in dealing
with unseen combinations of seen phrases, indicating a better gen-
eralization performance. It also proves that learning phrase-level
prediction helps to understand sentences in a fine-grained way,
rather than capturing sentence annotation bias in the dataset.

5 ABLATION STUDIES
In this section, we empirically investigate how the performance
of the proposed method is affected by different model settings
on Charades-STA dataset. We study mainly in two aspects: the
contribution of network component and the sampling mechanism.

5.1 Network Components
We conduct detailed ablation study by examining the effectiveness
of each proposed component in our model as shown in table 4.

We firstly evaluate the effect of the number of phrases 𝑁 from
a sentence. The results as shown in the first three rows in table 4
show that setting 𝑁 = 3 achieves the best sentence-level prediction
accuracy, and setting 𝑁 = 2 achieves the best phrase-level perfor-
mance. We used 𝑁 = 3 for Charades-STA dataset throughout the
paper unless otherwise specified.
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Methods Sentence prediction Phrase prediction
IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU

Number 𝑁
PLPNet(N=1) 72.90 59.46 34.33 50.85 58.25 34.01 15.63 37.15
PLPNet(N=2) 72.02 58.74 35.48 50.75 64.80 38.37 17.87 40.60
PLPNet(N=4) 70.97 59.01 34.84 50.09 60.18 34.58 15.55 37.78

Phrase generate PLPNet(average) 66.83 52.93 29.57 46.12 59.30 35.79 16.37 38.19

Loss function
PLPNet w/o L𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 60.83 47.12 24.03 41.81 49.22 23.36 7.61 30.28
PLPNet w/o L𝑝ℎ𝑟𝑎𝑠𝑒 72.12 57.82 31.83 49.72 61.06 36.79 16.61 38.85
PLPNet w/o L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 73.28 59.25 34.97 51.33 62.94 36.20 16.21 39.14

Full Model PLPNet(N=3, full) 73.49 58.95 35.48 51.53 63.49 40.52 19.27 40.76

Table 4: Ablation Study of number of phrases 𝑁 , methods to generate phrases and each component in loss function L using
I3D features on original test split of Charades-STA.

IoU=0.5 k=500 k=1000 k=2000 random

B=50 34.54 36.53 35.32 35.74
B=100 33.30 40.52 35.23 36.95
B=200 36.00 34.67 37.83 37.63

Table 5: Phrase-level performance of different parameters in
sampling method on original test split of Charades-STA.

We secondly verify the effectiveness of the proposed phrase
generation component. We report another baseline in fourth row
PLPNet(average), where the phrases are obtained by dividing the
sentence query into three parts in the pre-process step. Specifically,
in PLPNet(average), L𝑝ℎ𝑟𝑎𝑠𝑒 is removed from the loss function
when training. Our proposed approach (last row) outperforms this
baseline by a large margin, which indicates that effectiveness of
the learnable phrase generation component.

Finally, We conduct a detailed ablation study by examining the
effectiveness of each proposed loss terms in our network structure,
including L𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 , L𝑝ℎ𝑟𝑎𝑠𝑒 and L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 . We remove each of
them and compare the performance with the full model. Results
are shown in the last three rows in table 4, which imply that all
components of our loss terms contribute to the performance.

5.2 Sampling Method
We compare our sampling method using K-Means with shuffling
method while forming batches and the effect of batch size and
the number of clusters in K-means on sentence-level prediction.
𝐵, 𝐾 denote batch size of the training dataloader and the number
of clusters in K-means, respectively. The last column named ran-
dom shows the results only using random sampling, which can
be assumed that 𝐾 is taken as infinity and is a model without our
sampling method. Performance is evaluated in IoU=0.5 in table 5.

From the results we observe that when selecting proper 𝐾 , no
matter what 𝐵 is, it is effective to use our sampling method. Gen-
erally speaking, when we have larger batches, each batch tends to
contain more similar and dissimilar pairs of phrases, which benefits
the loss L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 and have better performance.

6 CONCLUSION
In this work, we address the importance of phrase-level prediction.
Increasing phrase-level prediction accuracy improves the model’s
interpretability and generalization performance. We present the
PLPNet considering the phrase-level prediction to tackle the low-
performance of phrase-level prediction. Our method integrates the
information of the predictions of phrases and the whole query
sentence, improving the model’s ability to accommodate different
application scenarios. We also define a data sampling for datasets
used, considering the potential effect of the combination of phrases.
Our experiments on Charades-STA and ActivityNet Captions show
that the model improve the performance of the baseline model
in both sentence-level and phrase-level prediction, demonstrating
the interpretability of our model. The performance comparison of
models trained using our sampling method and the original method
demonstrates that our sampling increases the model’s ability.

Limitation and Future Work: Although we have improved the
performance on phrase-level prediction, the connection of phrase
and the whole query is still complicated. We will look further at the
relationship between phrases and sentence to accurately ground
the sentences with more words or more complex structure.
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