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Abstract. In this paper, a pressure-coupled Drucker function is proposed to model the plastic 
deformation and fracture from shear to plane strain tension of AA5182 sheet. Experiments are 
conducted for AA5182 in shear, uniaxial tension and plane strain tension, and the force-stroke 
curves are measured during the tests. The plastic deformation is modeled by the Drucker function. 
The Drucker function is modified to consider the pressure effect for fracture limit stress 
prediction of the alloy. The pressure-coupled Drucker function for plasticity and fracture is 
calibrated by an inverse engineering approach. The calibrated plasticity models are then applied 
to numerical prediction of plastic deformation of the alloy under various loading conditions. It 
is observed that the pressure coupled Drucker function accurately describes the plastic 
deformation under large plastic deformation as well as the onset of ductile fracture under these 
loading conditions. 

1. Introduction 
Numerical simulation is now widely used in the design of tools and processes in sheet metal forming. 
The reliability of simulation calculations largely depends on the accuracy of material models 
implemented in simulations to describe the plastic behaviour of sheet metals. Accurate description of 
plastic yielding, strain hardening and fracture are essential to accurately model plasticity during various 
sheet metal forming processes. There are a class of yield functions which are formulated in forms of the 
stress invariants. Examples of these yield functions are referred in [1-9]. Cazacu and Barlat extended 
the Drucker function into an anisotropic form [2]. Lou and Yoon calibrated the Drucker function 
parameters for BCC and FCC metals [9]. For hardening behaviour evaluation, several hardening models 
including Swift, Voce, and Swift-Voce model have been widely used [10-12]. In addition, in the last 
decade, various fracture criteria [13-18] are also proposed for failure prediction of metals. Lou proposed 
the DF2012 ductile fracture criterion [13] and extended it in 2014 [14] and 2017 [16]. 

In this study, a yield function is proposed as an equation of the three stress invariants based on the 
Drucker function to take into account the pressure sensitivity. The pressure-coupled Drucker yield 
function is combined with the Swift-Voce hardening law to model the plasticity of AA5182 under 



 
 
 
 
 
 

various loading conditions of shear, uniaxial tension and plane strain tension. Fracture is also modelled 
by the pressure-coupled Drucker function for the alloy. The predicted force-stroke curves and the 
fracture strokes are compared with experimental results to check the accuracy of the pressure-coupled 
Drucker function for plasticity and fracture. 

2. Experiments 
Four kinds of specimens with different shapes for different stress states, including dog-bone specimens 
Ⅰ, specimens with central hole Ⅱ, notched specimens Ⅲ and in-plane shear specimens Ⅳ, are designed 
to study the plasticity and fracture properties of an aluminium alloy of AA5182 with a thickness of 1.26 
mm as illustrated in Figure 1. The designed specimens are tested on an electronic universal tensile testing 
machine of INSTRON 5182 at quasi-static condition with the testing velocities presented in [19]. Figure 
1 also shows the initial gauge lengths for stroke measuring by Digital Image Correlation (DIC) of each 
specimens. 

At least 3 experiments were conducted for dog-bone specimens along the rolling direction (RD), 
diagonal direction (DD), and transverse direction (TD), as shown in Figure 2(a) with good repeatability. 
The r-values, yield stresses and coefficients of the Swift-Voce law were measured and calibrated for 
dog-bone specimens along three directions as shown in Table 1. The r-values are calculated by Eq. (1). 
It is observed that the strength anisotropy of AA5182 in the unidirectional tensile state is not significant. 
Figure 2(b) shows that both Swift, Voce, and Swift-Voce hardening laws match with the experimental 
result very well. However, there are big differences between these hardening laws under large 
deformation after the necking strain. 
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where 𝜀௪
 and 𝜀

 is the transverse and longitudinal engineering strain of dog-bone specimen, respectively. 

 

Figure 1. Four specimens for different stress state: (Ⅰ) dog-bone specimens; (Ⅱ) specimens with centra
l hole; (Ⅲ) notched specimens; and (Ⅳ) in-plane shear specimens  

  

Figure 2. The experiment results of dog-bone specimens: (a) load-stroke curves along three direction; 
and (b) comparison of stress-strain curve with the Swift, Voce, and combined Swift-Voce laws 
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Table 1. The R-values, yield stresses and coefficients of the Swift-Voce law calibrated for dogbone 

specimens along three directions 

Loading 
direction 

r-value Yield stress at 0.2% 
Swift Voce 

K e0 n A B C 

00 0.527 (#2) 169.8 563 0.0067 0.33 363.9 123.6 9.66 

45 0.557 (#1) 166.6 561.5 0.0063 0.33 367.0 122.0 9.45 

90 0.5369 (#4) 171 554.7 0.0075 0.324 363.3 129.2 9.44 

   

Figure. 3. The load-stroke curves along three direction: (a) specimens with central hole; (b) notched s
pecimens; (c) in-plane shear specimens 

 
The load-stroke curves of specimens with central hole, notched specimens, and in-plane shear 

specimens along three directions are plotted in Figure 3 and the experimental onsets of ductile fracture 
are indicated by solid pentagrams. For specimens with a central hole, force drops very early along RD 
compared with those along TD and DD. However, fracture is not observed at load drop along RD and 
there is no obvious difference observed during the tests for the hole specimens along RD. The 
mechanism is not clear currently. For other cases, the load-stroke curves show that the anisotropy in 
strength and fracture is not apparent for this metal. Accordingly, the metal is assumed to be isotropic. 

3. Constitutive equations for plasticity and fracture 
Lou et al. [20] modified the Drucker yield function to consider the pressure effect as below: 

 𝜎ത൫𝜎൯ ൌ 𝑎൫𝑏𝐼ଵ  ሺ𝐽ଶ
ଷ െ 𝑐𝐽ଷ

ଶሻଵ ⁄ ൯ (2) 

where 𝑎 depends on experiments to compute the stress-strain curve, 𝑏 considers the effect of hydrostatic 
pressure on yield, and 𝑐 represents the dependence of yielding on the third invariant. According to Lou 
and Huh [21], three principal stresses (𝜎ଵ, 𝜎ଶ, 𝜎ଷ) are transformed by the stress triaxiality 𝜂, the Lode 
parameter 𝐿 and the von Mises equivalent stress 𝜎തெ as follows: 
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The third stress invariant of the deviatoric tensor 𝐽ଷ is derived from equation (2)-(4) as below: 

 𝐽ଷ ൌ ห𝑠ห ൌ 𝑠ଵ𝑠ଶ𝑠ଷ ൌ െ
ଶሺଽିమሻ

ଶሺమାଷሻయ/మ 𝜎തெ
ଷ (6) 



 
 
 
 
 
 

According to the von Mises yield function 𝜎തெ ൌ ඥ3𝐽ଶ  and the stress trixiality 𝜂 ൌ 𝜎 𝜎തெ⁄ ൌ
ூభ

ଷఙഥೇಾ
, the 𝐽ଶ and 𝐼ଵ can be obtained as follows: 

 𝐽ଶ ൌ
ఙഥೇಾ

మ

ଷ
 (7) 

 𝐼ଵ ൌ 3𝜂 ∙ 𝜎തெ (8) 

Derived from Eqs. (5)-(7), Eq. (1) can be formulated in terms of 𝜂, 𝐿 and 𝜎തெ in a form of 

 𝜎ത൫𝜎൯ ൌ 𝑎 ቈ3𝑏𝜂  ቀ ଵ

ଶ
െ 𝑐

ସమሺଽିమሻమ

ଶଽሺమାଷሻయቁ
ଵ ⁄

 𝜎തெ (9) 

If the true stress-true strain curve is measured from uniaxial tensile tests with 𝜂 ൌ 1/3 and 𝐿 ൌ െ1, 
the material constant 𝑎 is given by. 

 𝑎 ൌ
ଵ

ା
భ
య

ሺଶିସሻభ ల⁄  (10) 

In this study, the pressure-coupled Drucker function is used to model the yield surface and fracture 
limit, while the strain hardening is described by the Swift-Voce hardening law as below: 

 𝜎ത ൌ
ఈሺሺబାఌതሻሻାሺଵିఈሻ൫ିሺିሻ௫ሺିఌതሻ൯

ଶ
 (11) 

where the values of 𝐾, 𝑒, 𝑛, 𝐴, 𝐵 and 𝐶 are shown in the Table 1. 
The pressure-coupled Drucker function is also applied to model the fracture behaviour in this study 

in a form of as Eq. (12).  

 𝜎ത൫𝜎൯ ൌ 𝑎൫𝑏𝐼ଵ  ሺ𝐽ଶ
ଷ െ 𝑐𝐽ଷ

ଶሻଵ ⁄ ൯ (12) 

where 𝜎ത is the equivalent stress to fracture. 

4. Inverse engineering method for parameter calibration 
In order to determine the appropriate parameters in constitutive equations above under large deformation, 
an inverse engineering method is implemented to calibrate the strain hardening properties under 
different loading conditions of uniaxial tension, plane strain tension and shear refer to the specimen Ⅱ, 
Ⅲ, Ⅳ as shown in Figure 1. 

The experimental results of load-stroke curves of three specimens shown in Figure 1 (Ⅱ)-(Ⅳ) are 
compared with numerical simulations, and the error of each specimens 𝑒𝑟𝑟 is calculated by Eq. (13). 
The difference between experiments and prediction is normalized by the average force so that the error 
between difference strength tests contributes equally to the total error. The total error of three tests, 
denoted as 𝑇𝑜𝑡𝑎𝑙_𝑒𝑟𝑟𝑜𝑟 , is the sum of three specimens, which is minimized during parameter 
calibration. 
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where 𝑛  is the number of samples, 𝐹
௦  and 𝐹

௫  is the simulated and experimental values 
corresponding to the 𝑖 sample, 𝐹௩

௫ is the average of force values in the experimental load-stroke curves. 
The averaged force values 𝐹௩

௫ are taken as comparable values to evaluate the relative error between 
the simulation and experiments on each sample. 

b and c in the pressure-coupled Drucker yield function and 𝛼  value in combined Swift-Voce 
hardening model are taken as optimization parameters. The optimization goal is to minimize the 
𝑇𝑜𝑡𝑎𝑙_𝑒𝑟𝑟𝑜𝑟, and optimization algorithm utilizes the Downhill Simplex algorithm. The optimized 𝑏, 𝑐, 
and 𝛼 coefficients are shown in the Table 2, as the effect of hydrostatic pressure on yielding and plastic 



 
 
 
 
 
 

deformation of this material is extremely small, 𝑏 value is set to 0, the value of 𝑎 is obtained from 𝑏 and 
𝑐 values by Eq. (9).  

Similarly, the pressure-coupled Drucker function for the fracture prediction is also optimized by 
comparing the predicted fracture strokes with experimental results with the inverse engineering method.  
The parameters are optimized as a=0.2072, b=0.0220 and c=2.6294. The details for the pressure-coupled 
Drucker fracture function can be referred to Lou and Yoon [9]. 

5. Results 
The optimized coefficients are used in numerical simulation to obtain the load-stroke curves of three 
specimens and compared with experimental data as plotted in Figure 4. The von Mises yield function is 
also used in the numerical simulation for the comparison purpose. The comparison of the force-stroke 
curves shows that the maximum error is mostly less than 2% from the onset of yielding to the ultimate 
fracture. Therefore, the pressure-coupled Drucker yield function calibrated by inverse engineering 
approach can accurately predict the plastic behaviour up to large plastic deformation till the onset of 
ductile fracture. The predicted onset of fracture is also compared with experimental results and the 
comparison proves that the pressure-coupled Drucker function accurately models the fracture behaviour 
of the alloy at different loading condition of shear, uniaxial tension and plane strain tension. 
 

Table 2. Coefficients of the pressure-coupled Drucker function and the Swift-Voce hardening law 

Pressure-coupled Drucker function Swift-Voce hardening law 

𝑎 𝑏 𝑐 K e0 n A B C 𝛼 

1.8368 0 2.0045 563 0.0067 0.33 363.9 123.6 9.66 0.0032 

      

 

Fig. 4. Load-stroke curve comparison between experiments and prediction: (a) specimens with central 
hole; (b) notched specimens; (c) in-plane shear specimens 
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6. Conclusions 
This paper modifies the Drucker function to consider the pressure effect of yielding and fracture. The 
pressure-coupled Drucker function is calibrated using inverse engineering approach for plasticity and 
fracture of AA5182. The numerical prediction results show that the pressure-coupled Drucker function 
reasonably predicts the plasticity and fracture stroke for the alloy under various loading conditions 
including uniaxial tension, plane strain tension and shear. Therefore, the pressure-coupled Drucker 
function is suggested to plasticity and fracture modelling at different stress states for sheet metal forming 
processes. 
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