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Abstract. The conservation of bird biodiversity relies on accurately identifying 

and classifying species, which is often time-consuming and requires specialized 

knowledge. Recent advances in deep learning, particularly in convolutional neu-

ral networks (CNNs), have made it possible to detect species passively from 

acoustic signals, even in challenging environments. This paper presents a high-

performance deep convolutional neural network (CNN) model using the VGG-

16 architecture for the passive classification of bird sounds, using a remarkably 

accurate model of Short-Time Fourier Transform (STFT) that accounts for 

97.31% of the BirdCLEF 2022 data set and 98.41% for the Cornell Birdcall Iden-

tification dataset. The model discriminates between species, even in complex 

soundscapes with overlapping records. The framework also uses a tool-based 

consensus framework to enhance the focus on relevant features, improving clas-

sification accuracy for rare and endangered species. This method is highly effec-

tive in various phonological and language processing tasks and enhances the 

model's robustness, making it suitable for real-world applications. 

. 

Keywords: Bird species classification, Mel - Spectrogram, Short-time Fourier 

transform, Bird Clef 2022 dataset, VGG-16, Feature Extraction, Cornell Bird-

call Identification dataset. 
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1 Introduction 

 

Avian biodiversity is crucial for preserving ecological stability, and correct identifica-

tion and monitoring of bird species are important for information on biodiversity traits 

and implementing conservation techniques [1], as the motivation to choose this project 

relies precisely on those grounds. Bird species identification through their vocalizations 

draws crucial inferences about ecosystem health. These are cumbersome to do manu-

ally and prone to errors, especially across large datasets and varied environments; 

hence, it creates the need for automated solutions. 

Traditional methods, along with visual statements or guide evaluations, are exertion-

intensive, prone to human errors, and time-ingesting. As environmental data becomes 

more abundant and diverse, the manual process becomes less scalable, particularly for 

large datasets collected over long periods or across wide geographic areas. With many 

bird species facing threats from habitat loss, climate change, and other environmental 

factors so the global efforts to protect endangered species have intensified, there may 

be a developing call for automated systems that could efficiently classify bird vocali-

zations in various and complex soundscapes [2] with robust and scalable approach. Re-

cent advances in machine learning, mainly deep learning, have significantly improved 

the ability to automate sound classification. We select deep neural networks because 

deep neural networks, CNNs, have extraordinary capability in capturing intricate spec-

tral and temporal features in audio signals. They can handle the spectral nature of spec-

trograms and are hence best suited for that purpose. Finally, VGG-16 layers have been 

added to some extent due to their pre-training skills and feature extraction ability so as 

to do better in identifying complex patterns. Thus, with this combination, strong and 

effective bird sound classification can be achieved, outperforming traditional classifi-

ers, while at the same time minimizing the hassle of training such models. This study 

aims to develop an automated bird sound classification system that not only enhances 

classification accuracy but also leverages impact on avian biodiversity conservation by 

providing a faster and scalable monitoring solution.  

The research presents a hybrid deep mastering model that uses a Conv2D layer and 

VGG-16 architecture for automatic bird sound classification. It uses Short-Time Fou-

rier Transform (STFT) to transform audio indicators into Mel spectrograms and the 

Viridis shade map for feature extraction. The BirdCLEF 2022 and the Cornell Birdcall 

Identification dataset, comprising 15,000 and 4,733 audio samples, serve as the premise 

for training and assessment. Please refer to Fig.1 for the overall block diagram of our 

proposed deep CNN framework for solving automated bird sound classification prob-

lems using a deep transfer learning model.  

 

The highlighting features of our proposed approach are as follows:  

 

1. The research introduces a hybrid deep learning model combining Conv2D layers and 

VGG-16 architecture for automatic bird sound classification. 



 

 

2. The Short-Time Fourier Transform (STFT) converts audio signals into Mel spectro-

grams, with the Viridis color map applied for feature extraction. 

3. We have used two diverse datasets ‘BirdCLEF 2022’ and ‘Cornell Birdcall Identifi-

cation’ datasets for broadening the model's learning scope, which has 25 and 50 bird 

classes respectively. 

4. The proposed deep transfer learning model architecture performs better than other 

state-of-the-art methods. 

 

 
Fig. 1. Architectural diagram of our proposed deep CNN framework for classification 

of endangered bird’s sounds. 

 

2 Related Study 

This section discusses the advancements in automated bird species classification 

based on acoustic analysis. Noumida et al. [3] used an Attention-BiGRU version for 

actual-time bird species classification using the Xeno-canto database, achieving an F1-

score of 0.84. Hong [4] used CNNs for bird species classification using the OpenVINO 

tool, with a dataset of 119,000 audios covering 834 bird species. Yang et al. [5] devel-

oped a lightweight bird sound recognition model using MobileNetV3, a multiscale fea-

ture fusion structure, and a Pyramid Split Attention module, achieving a Top-1 accuracy 

of 95.12% and Top-5 accuracy of 100% on a dataset of 264 bird species. Sun et al. [6] 

presented a lightweight model with frequency dynamic convolution for bird species 

identification, reaching 95.21% accuracy. Huang et al. [7] employed a transfer learning 

approach with Inception-ResNet-v2 to classify bird species endemic to Taiwan, achiev-
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ing 98.39% accuracy. Lucio et al. [8] utilized texture capabilities extracted from spec-

trogram photographs, achieving 77.65% accuracy on a 46-class bird species dataset. 

Liu et al. [9] suggested a Bi-LSTM-DenseNet model for bird song categorization, out-

performing existing neural networks in detecting diverse bird species. Ragib et al. [10] 

proposed a deep learning model utilizing a pre-trained ResNet network to identify in-

dividual birds from images, enhancing image classification accuracy in complex sce-

narios. Gupta et al. [11] utilized a hybrid CNN-RNN model, achieving an average ac-

curacy of 67% across 100 species, with a peak accuracy of 90% for Red Crossbill. 

Mehyadin et al.[12]used Mel-frequency cepstral coefficients (MFCC) to analyze bird 

calls and employ machine learning techniques for species identification. Among the 

tested algorithms, J4.8 achieved the highest accuracy at 78.40%, proving the most ef-

fective for classifying bird species. Non-desirable noise is filtered using noise suppres-

sion techniques. Koh et al.[13] employed Inception and ResNet models to classify 659 

bird species from 50,000 audio recordings in the BirdCLEF 2019 competition. Despite 

challenges like signal-to-noise ratio mismatch, the Inception model achieved a classi-

fication mean average precision (c-mAP) of 0.16. Heinrich et al.[14] introduced Pro-

toPNet with a ConvNeXt backbone for bird sound classification, focussing on inter-

pretability. The model uses spectrograms to extract features and classify species by 

comparing new data with learned prototypical patterns. Achieving an AUROC of 0.82 

and cmAP of 0.37, it rivals state-of-the-art black-box models. Incze et al.[15] refined 

the pre-trained MobileNet CNN model for bird sound classification using spectrograms 

from Xeno-Canto recordings. Experiments compare various configurations, showing 

that aligning the color map with pre-trained image data enhances performance. The 

system is effective for a limited number of bird species. 

The research introduces a hybrid model that integrates Conv2D layers with the 

VGG-16 architecture for bird sound classification, aiming to deliver high accuracy 

while ensuring robustness across diverse environmental conditions and dataset sizes. 

Utilizing Short-Time Fourier Transform (STFT) to convert audio signals into mel spec-

trograms, the model processes these with the Viridis color map to ensure precise clas-

sifications. Data augmentation techniques are employed to address class imbalance, en-

suring consistent model performance throughout training. Utilizing both the 'BirdCLEF 

2022' and 'Cornell Birdcall Identification datasets offers a unique opportunity to train a 

model with diverse species and environmental conditions, fostering robustness and ac-

curacy in bird species classification across varied contexts and regions. 

The motivation for this work arises from the growing need for efficient, automated 

bird sound classification, essential for ecological monitoring and conservation. Manual 

identification of bird species through their vocalizations is time-consuming and prone 

to inaccuracies, whereas an automated system can significantly enhance the ability to 

track species populations and understand ecosystem health. This approach offers a scal-

able solution to monitor avian biodiversity more effectively. 

 



 

 

3 Datasets Used and Dataset Pre-processing 

 

Bird calls are classified in this study using the BirdCLEF 2022 data set of 15,000 

audio recordings from 25 species and the Cornell Birdcall Identification dataset of 4733 

audio recordings from 50 species. Metadata in the data set is a combination of species 

labels and recording status, which can be important for type challenges. The data set 

has been preprocessed with the aid of transforming the raw audio signals into Mel spec-

trograms using the transient Fourier transform (STFT), which preserves the temporal 

and spectral features and the subsequent Mel spectrograms, which is preferable to using 

Viridis color maps. The dataset size has been changed to 128x431 pixels with 3 chan-

nels (RGB format) to ensure compatibility with the VGG-hexadecimal size used in the 

hybrid version. The preprocessing pipeline additionally deals with class imbalances re-

lated to information enhancement techniques such as random cropping, pitch shifting, 

and time-related extensions. Fig.2. and Fig.3 show the Mel-Spectrogram images of bird 

species from the ‘Bird Clef 2022’ and ‘Cornell Birdcall Identification ’ datasets respec-

tively. 

 

 
 

Fig. 2 Sample Mel - Spectrogram images of (a) Black-Crowned Night Heron  (b) 

California Quail (c) Common Waxbill   (d) Canada Goose bird species from the ‘Bird 

Clef 2022’ dataset. 

 

 

 
Fig. 3. Sample Mel - Spectrogram images of (a) Brown Thrasher  (b) Barn Swallow 

(c) Northern Flicker (d) Loggerhead Shrike bird species from the ‘Cornell Birdcall 

Identification ’ dataset. 
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4 Proposed Deep CNN Framework 

The proposed deep CNN framework is designed to classify bird species based on 

their vocalizations using a model inspired by the VGG-16 structure. The network uses 

mel-spectrograms from bird audio recordings, which are fed into the network with a 

length of 128x431 pixels and 3 color channels. Fig. 4 illustrates that the framework 

starts with a chain of Conv2D layers, each configured to capture time-frequency func-

tions from the Mel-spectrograms. The layers gradually evolve to 64 and 128 filters, 

enhancing the community's ability to analyze complex features. The Global Average 

Pooling (GAP) layer condenses each feature map to an unmarried price, reducing the 

model's parameters and computational value. The final dense layer consists of 25 and 

50 classes, representing the 25 and 50 bird species in the dataset, with a Softmax acti-

vation characteristic that outputs the classification chances. This structure presents a 

strong and green answer for automatic bird sound classification, achieving high accu-

racy and overall performance metrices. The Table 1 outlines the structure of a Convo-

lutional Neural Network, listing each layer's type, output shape, and parameter count. 

It includes Conv2D, MaxPooling2D, BatchNormalization, Dropout, and Dense layers, 

highlighting the network's hierarchical design and parameter efficiency. 

 

Table 1. Layer, Output Shape, and Number of Parameters in the Convolutional Neu-

ral Network Architecture. 



 

 

 
 

Algorithm 1: Proposed_Deep Transfer_Learning_Model 

 

      Input: Bird sound dataset (BirdCLEF 2022, Cornell Birdcall) 

          Output: Trained hybrid model and performance metrics 

 

           # Step 1: Load and Pre-process Data 

            Procedure Preprocess_Data 

     Load bird audio files and metadata 

     For each audio file in the dataset do 

                      Apply STFT to audio signal 

                      Generate Mel-Spectrogram from STFT 

                      Normalize Mel-Spectrogram pixel values to range [0, 1] 

                

End For     

Perform         

Data Aug-

mentation: 
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               Apply random shifts to Mel-Spectrograms 

               Apply pitch changes to Mel-Spectrograms 

               Apply time stretching to Mel-Spectrograms 

            End Procedure 

          # Step 2: Design Hybrid CNN Model 

            Procedure Design_Model 

                Initialize Sequential Hybrid CNN Model with VGG-16 Layers 

                  Add Additional Convolutional 

Layers to the model       

                            Add Regularization Layers: 

                     Add BatchNormalization layer 

                     Add Dropout layer with rate = 0.5 

             End Procedure 

          # Step 3: Classification Layer 

             Procedure Add_Classification_Layer 

                  Add Dense Layer with units = 256 and activation = 'ReLU' 

                  Add Dropout layer with rate = 0.5 

                  Add Output Layer with activation = 'softmax' 

             End Procedure 

          # Step 4: Compile and Train the Model 

             Procedure 

Com-

pile_Train_Model      

                      Com-

pile Model:                     

                       Set Loss Function to Categorical Crossentropy 

                       Set Optimizer to Adam 

                       Set Metrics to Accuracy 

                       Train the Model 

             End Procedure 

          # Step 5: Evaluate Model Performance 

             Procedure Evaluate_Performance 

          Input: Trained model, test data 

          Evaluate model on the test dataset 

          Calculate accuracy 

          Calculate precision 

          Calculate recall 

          Calculate F1-score 

      Generate a confusion matrix to analyze misclassifications 

             End Procedure 

          # Step 6: Post-training Fine-tuning 

            Procedure 

Fine_Tune_Mo  

del         

                    Per-

form hyperparam-

eter tuning: 

                             Tune learning rate 

                             Tune batch size 

                             Tune dropout rate 

                    Optimize hyperparameters 

            End Procedure 



 

 

          # Execute Procedures 

           Call Prepro cess_Data 

           Call Design_Model 

           Call Add_Classification_Layer 

           Call Compile_Train_Model 

           Call Evaluate_Performance 

           Call Fine_Tune_Model 

End Algorithm 

 

 

The pseudocode (shown in Algorithm 1) demonstrates the architecture and imple-

mentation details of the proposed hybrid deep convolutional neural network model used 

for automated bird sound classification. It highlights the key layers and operations per-

formed during training and evaluation. 

 

 

 
Fig. 4. Block diagram of our proposed deep transfer learning framework which con-

sists of 2D-CNN incorporated with VGG-16 layers. 

 

 

5 Experimental Results and Analysis 

 

We evaluated the performance of our proposed deep CNN framework using well-

known classification metrics: accuracy, precision, recall, and F1 score. Accuracy as-



10 

 

sesses the version's general correctness in species classification, even as precision dis-

plays the proportion of real tremendous predictions. Recall measures the version's ef-

fectiveness in detecting rare or subtle vocalizations, and the F1 score balances precision 

and don't forget, offering a comprehensive evaluation. These metrics spotlight the mod-

el's robustness, generalization functionality, and proficiency in shooting quality-

grained acoustic capabilities crucial for species discrimination. The following section 

gives the experimental results of our custom model at the BirdCLEF 2022 dataset after 

40 epochs. Table 2 shows the overall classification accuracy of our proposed custom 

CNN model for both datasets. The model has been trained on a dataset of ‘BirdClef 

2022’ and achieved a recall of 96.47%, a precision of 98.07%, an F1 score of 97.02%, 

and an accuracy of 97.31%. The model was then tested on a separate dataset of 'The 

Cornell Birdcall Identification dataset', achieving a recall of 91.12%, a precision of 

96.30%, an F1 score of 93.52%, and an accuracy of 98.41%. Table 3 represents the 

classification accuracy under different training/testing proportions on both Bird Clef 

2022 and Cornell Birdcall Identification datasets. Table 4 and Table 5 show the classi-

fication report of our proposed hybrid deep CNN model in the ‘Bird Clef 2022’ and 

‘Cornell Birdcall Identification’ datasets respectively. 

 

Table 2. Experimental findings regarding evaluation metrics of our proposed hybrid 

deep CNN model on our used datasets. 

 

Dataset Used Accuracy (%) Precision (%) Recall(%) F1 Score(%) 

Bird Clef 2022 97.31 98.07 96.47 97.02 

Cornell Birdcall 

Identification dataset 

98.41 98.58 97.53 98.2 

 

Table 3. Experimental results of our proposed hybrid CNN model under different train-

ing/testing proportions. 

 
 

 

Dataset Used 
 

 

Classification accuracy (%) for Various Training-Testing 

Ratios 

75:25  80:20  90:10  

Bird Clef 2022 

 
95.86 97.31 98.50 

Cornell Birdcall Iden-

tification dataset 

97.23 98.41 

 

98.64 

 

Table 4. Classification report of our proposed hybrid deep CNN model of top 5 highly 

classified Bird classes in the ‘Bird Clef 2022’ dataset. 

 

Class Name Precision Recall F1 Score 

California Quail 0.78 0.66 0.72 

Green-Winged Teal 0.88 0.45 0.6 

House Finch 0.91 0.4 0.55 



 

 

Northern Cardinal 0.9 0.53 0.67 

Western Meadowlark 0.7 0.61 0.65 

 

Table 5. Classification report of our proposed hybrid deep CNN model of top 5 highly 

classified Bird classes in the ‘Cornell Birdcall Identification’ dataset. 

 

Class Name Precision Recall F1 Score 

Common Raven 0.71 0.60 0.65 

Marsh Wren 0.54 0.70 0.61 

Blackpoll Warbler 0.83 0.74 0.78 

House Wren 0.89 0.29 0.43 

Brewer’s Sparrow 0.42 0.61 0.50 

 

 

Fig.5. Learning rate curves illustrating the recognition accuracy and loss values attained 

per epoch on the ‘Bird Clef 2022’ dataset. 

 

The development of model accuracy and loss over epochs during training on the 

dataset is shown by the learning curves in Fig.5. While the right subplot displays loss 

values, which demonstrate the difference between real labels and predictions, the left 

subplot displays accuracy trends, which represent the percentage of properly catego-

rized occurrences. Here in the left subplot, we can see after running the 1st epoch ac-

curacy starts at a low value, approximately 10%, indicating the model is just beginning 

to learn, after running 10 epochs accuracy improves significantly, reaching 75%, show-

ing notable progress as the model adjusts its weights, after 20 epochs it stabilized near 

90%, after 30 epochs it gained 95% accuracy and after running 40 epochs our final 

accuracy is steady at almost 97.31%, showing the model has converged effectively. 

These curves shed light on the model's convergence, showing that overfitting occurred 

after strong initial learning, as seen by the gradual divergence of training and validation 

measures. 
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Fig.6. Confusion matrix of our proposed hybrid deep CNN framework on a test da-

taset of ‘Bird Clef 2022’ Dataset.  

 

Fig.6. illustrates the classification effectiveness of the 'BirdClef 2022' Dataset, show-

casing the classification hierarchy of the 25 classes. From this figure, we can easily 

understand the two most classified bird classes are ‘Common Myna’ and ‘Osprey’. In 

the similar way, by analyzing the diagonal values of this matrix, we can depict two 

highly misclassified bird classes are ‘Snow Goose’ and ‘Northern Cardinal’. 

 

 

 
Fig.7. Learning rate curves illustrating the recognition accuracy and loss values attained 

per epoch on the ‘Cornell Bird Identification’ dataset 

 



 

 

The learning rate curve (highlighted in Fig.7.) shows our model's training progress 

on the 'Cornell Bird Identification' dataset, highlighting the relationship between the 

learning rate of accuracy and loss values per epoch. Here the left subplot illustrates that 

after running the 1st epoch accuracy starts at 50%, indicating the model is beginning to 

learn, after running 10 epochs accuracy improves to around 70%, showing significant 

progress, then after 20 epochs the accuracy reached 83%, with steady improvement, 

after 30 epochs it approached 92%, showing continued learning., after running 40 

epochs the model stabilizes further, with accuracy nearing 96%, after 50 epochs it 

achieved 98% accuracy and after running 60 epochs our final accuracy is steady at 

almost 98.41%, indicating the model has effectively learned the patterns. 

 

 

 
Fig.8. Confusion matrix of our proposed deep CNN framework on a test dataset of 

the ‘Cornell Bird Identification’ Dataset.  

 

Fig.8. illustrates the classification effectiveness of the Cornell Bird Identification 

Dataset, showcasing the classification hierarchy of the 50 classes. From the figure, it is 

evident that the two most accurately classified bird species are 'Reevirl' and 'Herthr'. 

Similarly, analyzing the diagonal values of the matrix reveals that 'Balori' and 'Blugrbl' 

are the two most misclassified bird species. 

 

5.1 Comparison with state-of-the-art works 

 

The study evaluated the performance of a hybrid deep CNN version on the 

BirdCLEF and Cornell Bird Identification datasets. The Xception version achieved an 
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accuracy of 80.66%[2], demonstrating the effectiveness of depthwise separable convo-

lutions for characteristic extraction. However, the proposed version outperformed this 

with a 97.31% accuracy, indicating the benefits of incorporating both Conv2D and 

VGG-16 layers. The lightweight version with frequency dynamic convolution achieved 

a respectable accuracy of 95.21% [6]. In contrast, The custom CNN deep residual net-

work achieved 80% accuracy[16] but fell quickly compared to the proposed method. 

Similarly, the custom CNN model finished with 90% accuracy[17], and CNN with fu-

sion acoustic features recorded 95.25% accuracy[18]. Both models highlight the im-

portance of customized architecture and characteristic fusion. For the Cornell Bird 

Identification dataset, the hybrid CNN-RNN model reached 67% accuracy[11], and the 

faster R-CNN model varied between 75% to 92.3% accuracy[1]. Overall, our proposed 

version sets a new benchmark in automatic bird sound type, validating the effectiveness 

of the hybrid technique. The comparison of our proposed efficient deep CNN model 

with state-of-the-art models for both datasets is shown in Table 6. 

 

Table 6. State-of-art comparison of our proposed efficient deep transfer learning 

model. 

 

 

Datasets 

Used 

  

Author Name 

  

Publish-

ing Year 

  

Used Model 

  

Accu-

racy 

Accu-

racy of our 

proposed 

model 

  

  

‘Bird 

Clef’ da-

taset 

Revadekar et al. 

[2] 

2023 Xception 80.66%   

  

  

97.31% 
 Sun et al.[6] 2023 Lightweight Model with 

Frequency Dynamic Convo-

lution 

95.21% 

Madhavi et al. 

[16] 

 2018 Custom CNN deep residual 

network 

80% 

 Patil et al. [17] 2022 Custom CNN model 90% 

Xie et al.[18]           

2016 

CNN with Fusion Acoustic 

Features 

   

95.25% 

‘Cor-

nell Bird 

Identifi-

cation’ 

dataset 

Gupta et 

al.[11] 

2021 Hybrid CNN+RNN 

model 

              

67% 

  

98.41% 

Mirugwe et 

al. [1] 

2022 Faster R CNN  

92.3% 

 



 

 

6 Conclusion & Future Works 

The study presents a hybrid deep CNN framework for identifying bird species based on 

their vocalizations, using the Conv2D structure and selected layers from the VGG-16 

model. The model uses Short-Time Fourier Transform (STFT) for characteristic extrac-

tion and Mel spectrograms with a Viridis color map to capture complex spectral and 

temporal functions in chicken calls. Experiments on the BirdCLEF 2022 and Cornell 

Birdcall Identification datasets show the model's ability to achieve classification accu-

racy of 97.31% and 98.41%, surpassing modern methods. The model's design includes 

multiple Conv2D layers for extracting difficult capabilities, MaxPooling, Batch Nor-

malisation, and Global Average Pooling layers for discriminative power and generali-

zation skills. It addresses brightness imbalances through centered strategies and fine-

tuning hyperparameters, ensuring high precision, recall, and F1 scores across various 

bird species. The model’s balanced simplicity and robustness make it ideal for deploy-

ment in small-scale environments, consisting of mobile gadgets, wherein green bird 

species identity is vital. Its overall performance across various situations highlights its 

capacity for real-time tracking in ecological settings.  

While the outcomes are promising, Destiny Work could focus on similarly addressing 

elegance imbalances, improving the model’s adaptability to varying recording qualities, 

and enhancing its real-time processing abilities [19-20]. Additionally, exploring supe-

rior sign processing strategies and record augmentation techniques ought to similarly 

refine the model's accuracy. 
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