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There's a relation to this aspect of homological algebra in the bimeromorphic 

equivalent between Calabi-Yau and Fukaya Category with furthermore connectivity 

in Fujiki’s Class C Category. It is commonly known that Shift Operators play a nontrivial 

role in modelling the Abelian and the 𝐴∞ where the derived category (as there's many 

equivalence in case of the triangulated category with derived categories) where a 

specific relation to K−Polystability can be found in case of a peculiar FANO surface 

which is on one hand associated with higher order J-Holomorphic Polygons and 

there's the relation of HOMOLOGICAL MIRROR SYMMETRY (connecting the 

equivalence to Analytical with Algebro-Geometric Model). This helps in the 

development of A and B-Model and their relation in Supersymmetric string Theory. 

Any Fukaya Category for the (first Chern Class 𝑋(𝐶1) = 0 where "𝑋" is the proven 

Calabi-Yau manifold: one can say that taking the equation < 1 + 3(JX + Y) > ² with 

the minimal 1 and maximal 3 for the 3-fold of the Calabi-Yau as considered in String 

Theory: There's lies a relation to the Weil cohomology and Hodge - de Rham Spectral 

Sequence whose degeneration is crucial for the J-Holomorphic Polygons along with 

the Atiyah - Hirzebruch Spectral Sequence in 𝐸4
𝑝,𝑞

 sheets for the value of 4 where it's 

equal to Kähler manifold (the same when corresponds to Ricci flatness having the 

compact form then it's safe to say) = 𝐹𝑢𝑘𝑎𝑦𝑎 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ≡

 𝑀𝑜𝑟𝑖𝑡𝑎 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 (for this 𝑋(𝐶1)) = 0. The nontrivial aspect to mention that in 

the construction of the hypercohomology when one finally arrives the Einstein − 

Kähler metric and proved the Calabi-Yau for the first Chern Class 𝑋(𝐶1) = 0 then for 

the 𝑋 which when established as the Fukaya Category then the bimeromorphic 

relation to that (Calabi-Yau and Fukaya Category) is only true when the Kähler current 

(big and nef) is taken to prove that the Kähler is in Fujiki's Class C Manifolds. But the 

first construction must start with de Rham Complex (in Algebraic form) and then step-

by-step taking this [derived category] with the degeneration leads to the first 

equivalence between de Rham Cohomology and Hodge - de Rham Spectral Sequence. 

There, the Hodge Diamond (𝑊,𝑉) can be easily seen in the Mirror Symmetrical Way 

through Homological Mirror SYMMETRY and dHYMT (deformed Hermitian Yang-Mills 

Theory) where we can use that [derived category] for 𝑨∞ to prove the further 

correspondence between A and B Model. Detailed computations regarding this has 

been made in the paper. 
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SECTION I: CONSTRUCTING BIMEROMORPHIC EQUIVALENCE 

 

I. Fukaya Categories 

 

For a Riemannian manifold 𝑀 where in the case of the first Chern class 𝑐1 ≤ 0 

admits a K�̈�hler – Einstein metric or not was first conjectured by Calabi and later 

proved by Yau. While for the case of 𝑐1 = 0 and the vacuum EFE 𝑇𝑢𝑣𝑑𝑥
𝑢𝑑𝑥𝑣 = 0; the 

Riemannian manifold 𝑀 becomes the Calabi – Yau manifold such that 𝑀 = 𝜌. This 

suffices a strong positivity condition for the K�̈�hler potential 𝜎 such that in the K�̈�hler 

– Einstein formalism, by looking at the metric 𝜔𝑔 + 2−𝑖𝜕�̅�𝜎; the condition lies as 𝜎 =

+𝑣𝑒. Now, for the K�̈�hler manifold in real (1,1) −form, for the exact differential 𝜖1 in 

the class [𝜖1] ∈ 𝐻1,1(𝜌, ℝ) one can define the potential to be 𝜎 ∶  𝜌 ⟶ ℝ such that 

[𝜖1𝜎] = [𝜖1] admits : 𝜖1𝜎 = 𝜔𝑔 + 2−𝑖𝜕�̅�𝜎 gives the deformed Hermitian Yang – Mills 

equation (dHYM) for (𝜌, 𝜔) where the real part can be given as 𝑅𝑒(𝜔𝑔 + 2−𝑖𝜕�̅�𝜎) > 0 

with 𝐼𝑚(𝜔𝑔 + 2−𝑖𝜕�̅�𝜎) = 0 implying the positivity condition for the K�̈�hler potential 𝜎 

such that in the K�̈�hler – Einstein formalism in respect to the metric 𝜔𝑔 + 2−𝑖𝜕�̅�𝜎 

where the dHYM provides a correspondence between the A – model and B – model of 

the equations of motion of D – Branes in string theory which can be seen in Hodge 

diamond for 𝑉 in 𝐴 –  𝑚𝑜𝑑𝑒𝑙 and 𝑊 in 𝐵 –  𝑚𝑜𝑑𝑒𝑙 termed as homological mirror 

symmetry [1-3]. 

 

 For the complex manifolds having the holomorphic volume elements 

containing no such zeros; precisely the 3 −dim Calabi – Yau manifolds there exists a 

duality that in principle relates the Hodge numbers depending on the symmetry 

operations known as mirror symmetry; it has been stated that for the 𝑑𝑒𝑔𝑛 Calabi – 

Yau manifolds the correspondence is between the symplectic part (𝐴 –  𝑚𝑜𝑑𝑒𝑙) to the 

complex part (𝐵 –  𝑚𝑜𝑑𝑒𝑙) for 𝑐1 = 0. The defined Hodge structure for the K�̈�hler space 

𝜌 defined as for 𝑉 and 𝑊 the equations are defined as, 

𝐻𝑝+𝑞=𝑘(𝜌, ℤ) ⊗ ℂ ≅ ⨁ 𝐻𝑞(𝜌, Ω𝑝)

𝑝+𝑞=𝑘

 

              deg𝐻𝑝(𝑉, Ω𝑝) = deg𝐻𝑛−𝑝(𝑊,Ω𝑞) 

 Let there be a triangulated category 𝑑(𝒜) for which the 𝒜 satisfies the Abelian 

to the category of 𝐴 – modules where 𝐴 is an associative algebra; the category 𝑑(𝒜) are 

the complex of free 𝐴 – modules and the associated morphisms are in equivalence for 

the homotopy classes in differential graded morphism of 𝑑𝑒𝑔0. The derived bounded 

category �̅�(𝒜)
⊂
→ 𝑑(𝒜) consisting of 𝐴 – module complexes with nonvanishing 

cohomology groups. For the categories [4-7], 
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𝐻𝑜𝑚𝑑(𝒜)(𝑀,𝑁) ∶= 𝐻0(⨁ ∏𝐻𝑜𝑚𝒜

𝑖𝑝+𝑞=𝑘

(𝑀𝑖, 𝑁𝑖+𝑘)) 

There are associated shift factors that shifts the degree of those complexes, 

 {
𝑀 → 𝑀[𝑛],𝑀[1]𝑘+𝑛

(𝑀[𝑛])[𝑚] = 𝑀[𝑛 +𝑚],𝑀[0] = 𝑀
 

 This construction can be extended to the notions of twisted complex in the case 

of 𝐴∞ −category 𝒜 with a shift vector where for a one-sided twisted complex; there is 

a family of (𝑀(𝑖))
𝑖∈ℤ

 for objects in 𝐴∞ −category ∀𝑖 ∃𝑖 > 𝑗 there is a collection of 

morphisms 𝜏𝑑
Σ ∃Σ ∋ 𝛾𝑖𝑗 for the shift, 

𝐻𝑜𝑚𝒜(𝑋[𝑖], 𝑌(𝑗)) = 𝐻𝑜𝑚𝒜(𝑋, 𝑌)[𝑗 − 𝑖] 

                                                    ∃∀(𝑀(𝑖))
𝑖∈ℤ

 

for 𝜏𝑑
Σ|
ℤ
≅⨁𝐻𝑜𝑚𝒜

𝑘,𝑗

(𝑀(𝑗), 𝑁(𝑗+𝑘))[−𝑘] 

 

 Let 𝑆 be a closed symplectic manifold for 𝑐1 = 0. For 𝑀𝑆 the space of pairs 
(𝑦,𝑀): where 𝑦 is a point of 𝑀 and 𝑆 is a Lagrangian of subsets of 𝑇𝑦𝑆 for the space 𝑀𝑆 

fibered over 𝑆 for the fibres isomorphic to ℤ. As, 𝑀 and 𝑆 are subsets; thus, for the 

nontrivial purpose denoting with the Lagrangian operator 𝑀 as ℒ̅ and 𝑆 as ℒ with the 

notion of a Floer cochain complex 𝒜ℱ∗ module generated by intersection points ℒ̅ ∩ ℒ 

can be viewed as a set of morphisms from ℒ̅ to ℒ sufficing the equation, 

𝑆𝒜ℱ∗(ℒ̅, ℒ) 

This 𝐴∞ −category can have higher composition maps for twisted complexes of 𝒜 as, 

�̅�(𝒜) ∶= 𝐻(𝜏𝑑
Σ𝒜) 

 Returning to the equation 1 + 3〈𝑃𝑋 + 𝑌〉2 where for the almost complex 

structure 𝑃 on the symplectic manifold 𝑆 for the generators of 𝜏𝑑
Σ|
ℤ
; one can define 𝐽 −

ℎ𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 polygons for ∏𝑑−1,𝑑 ∈ 𝑆𝒜ℱ∗(ℒ̅𝑑−1, ℒ𝑑) and ∏̃0,𝑑 ∈ 𝑆𝒜ℱ∗(ℒ̅0, ℒ𝑑) forms the 

equation, 

𝜏𝑑(∏𝑑−1,𝑑, … , ∏0,1,𝑑) = ∑ 𝑛

𝑆𝒜ℱ∗(ℒ̅0,ℒ𝑑)∈ℒ̅0∩ℒ𝑑

((∏𝑑−1,𝑑, … ,∏0,1,𝑑) ∙ ∏̃0,𝑑) 

 This sequence satisfies the 𝐴∞ −categorical relations as the boundary of the 𝐽 −

ℎ𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 polygons corresponding the configuration space of degenerate polygons. 

This 𝐴∞ −category is the use of homological mirror symmetry where the mirror 

conjecture will apply for (𝑉, 𝜔) − 𝑑𝑖𝑚2𝑛 symplectic manifold for 𝑐1 = 0 and 𝑊 is its 

dual for 𝑑𝑖𝑚𝑛 complex algebraic manifold for the embedding of the Fukaya category 
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�̅�(𝐹(𝑉)) as a full triangulated category into �̅�(𝐶𝑜ℎ(𝑊)) for the isomorphism 

(𝐻𝑜𝑚(𝑀,𝑁))
∗
≃ 𝐻𝑜𝑚(𝑁,𝑀[𝑛]) which for the 𝐴∞ −category is cyclically symmetric. 

Moreover, this duality can be extended to string theory for ℒ −varaities as the local 

boundary conditions for 𝐴 – model while holomorphic vector bundles as the local 

boundary conditions for the 𝐵 – model. Whereas the 𝐽 − ℎ𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 curve and the 

almost complex structure 𝑃 in the equation 1 + 3〈𝑃𝑋 + 𝑌〉2 is a trivial formalism for 

the parameter 𝑃 and can be replaced by 1 + 3〈𝐽𝑋 + 𝑌〉2 for the almost complex 

structure parameterization 𝐽. 

 

2.   Fujiki Class 𝑪 Manifolds 

 

 Let us denote a compact K�̈�hler manifold through a parameterization (�̅�, 𝑏𝑘𝜔𝑘
𝑛) 

whose real closed forms are 𝜖1, 𝜖2 or 𝛼, 𝛽 respectively is of (1,1) −forms; where there 

exists a cohomology class that is 𝑛𝑒𝑓. Then for the class [𝜖1] or taken respectively here 

[𝛼] is 𝑏𝑖𝑔 iff 𝑉𝛼 > 0 where 𝑉  is the volume. The K�̈�hler current can be taken as 𝐽 ≥ 𝑏𝜔𝑘 

for some 𝑏 > 0. Then there for 𝑉𝛼 > 0 exists a closed positive current by definition 𝐽 in 

the class [𝛼] gives the equation for the manifold (�̅�, 𝑏𝑘𝜔𝑘
𝑛); for the K�̈�hler current 𝐽 ≥

∫ 𝐽𝑛
�̅�

≥ 𝑏𝑛 ∫ 𝜔𝑛
�̅�

> 0 is, 

∫𝐽𝑛 =
∫ 𝐽𝑛
�̅�

≥ 𝑏𝑛 ∫ 𝜔𝑛
�̅�

> 0

2
> 0

�̅�

 

For the closed positive current 𝐽𝑘 ∈ [𝛼] there are analytic singularities with 𝐽𝑘 ≥ −𝑏𝑘𝜔 

when 𝑏𝑘 = 0 and with 𝐽𝑘 ⟶ 𝐽𝑘 as 𝑘 ⟶ ∞ then we get, 

lim
𝑘→∞

inf∫(𝐽𝑘 + 𝑏𝑘𝜔)
𝑛 ≥

�̅�

𝐽𝑛 ∀𝑘 large; 

                                                                                             𝐽𝑘 ≥ −𝑏𝑘𝜔 

                                                                                                                 ∫(𝐽𝑘 + 𝑏𝑘𝜔)
𝑛 ≥

�̅�

Σ̅ > 0 

 For Σ̅ > 0; a resolution of the singularities for 𝐽𝑘 can be taken as Σ̃𝑘 ∶  �̅�𝑘 ⟶

�̅� ∃Σ̅𝑘 is a composition of blows up of smooth centers for �̅�𝑘 proved to be a Kahler given 

in terms of Σ̃𝑘𝐽𝑘 as Σ̃𝑘
∗ 𝐽𝑘 = −𝐸𝑘Σ̃𝑘

∗𝜔 + [ℰ𝑘] with Σ̅𝑘𝐽𝑘 comprises of [ℰ𝑘] as the effective 

ℝ −divisor and −𝐸𝑘Σ̃𝑘
∗𝜔 is the closed real (1,1) −form for the Bott – Chern class [𝛼] ∈

𝐻𝐵𝐶
1,1(�̅�, ℝ). Thus, we have the equation, 

∫(𝐽𝑘 + 𝑏𝐾𝜔)
𝑛 = ∫(Σ̃𝑘

∗ 𝐽𝑘 + 𝑏𝐾Σ̃𝑘
∗𝜔)

𝑛
≅ ∫(−𝐸𝑘Σ̃𝑘

∗𝜔 + Σ̃𝑘
∗𝜔)

𝑛
≥ Σ̅ > 0

�̅�𝑘�̅�𝑘�̅�

 

 Thus, the 𝑛𝑒𝑓 class (−𝐸𝑘Σ̃𝑘
∗𝜔 + Σ̃𝑘

∗𝜔)
𝑛

 on �̅�𝑘 shows 𝛽 = Σ̃𝑘
∗𝜔 for a closed positive 

curvature 𝐽𝑘
′  on �̅�𝑘 gives, 
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𝐽𝑘
′ ≥

∫ (−𝐸𝑘Σ̃𝑘
∗𝜔 − Σ̃𝑘

∗ 𝐽𝑘)
𝑛

�̅�𝑘

𝑛 ∫ (−𝐸𝑘Σ̃𝑘
∗𝜔 − Σ̃𝑘

∗ 𝐽𝑘)
𝑛

�̅�𝑘
⋀ Σ̃𝑘

∗𝜔
Σ̃𝑘
∗𝜔 

 Which is bounded and follows that there is a constant Σ̅′ > 0 ∃∀𝑘 there is 𝐽𝑘
′ ≥

Σ̅′Σ̃𝑘
∗𝜔 for the value of 𝑘 there is (Σ̃𝑘) ∗ (𝐽𝑘

′ + [ℰ𝑘]) − 𝑏𝑘𝜔 ≥ 𝜔2−Σ̅
−1
∈ [𝛼] and is a K�̈�hler 

current containing analytic singularities and any non – K�̈�hler locus ℰ𝛼 is intersection 

of all loci in [𝛼]; then ℰ𝛼
⊂
→ �̅�∀ [𝛼] ≠ 𝑏𝑖𝑔; ℰ𝛼 ≡ �̅�. Thus, for the cohomology class 𝑛𝑒𝑓 

and 𝑏𝑖𝑔 in [𝛼] for (1,1) −form real closed; one gets a union of �̅�
⊂
→ �̅� for the equation 

with the analytic singularities, 

ℰ𝛼 = ⋃ �̅�

∫ 𝛼𝑑𝑖𝑚�̅�=0�̅�

 

 Now, for the null locus of the set on the class [𝛼]; the existence of a 𝑏𝑖𝑔 class on 

�̅� ⟹ �̅� is in Fujiki’s class 𝐶 manifold 
𝑏𝑖𝑚𝑒𝑟𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐
→            compact K�̈�hler manifold [8-11]. 

 

SECTION II: CONSTRUCTING MORITA AND FUJIKI’S CLASS C MANIFOLD EQUIVALENCE 

 

I. Morita Equivalence for Hilbert 𝑪∗-Module 

 

Any map from a domain to a codomain with the mapping parameter 𝜃 :  𝜁 ⟶ 𝜁′ 

can provide a continuous set of functions when 𝜁 and 𝜁′ is endowed with a metric which 

when attempt for any representation of a Topological structure considering two sets 

{𝜁} 𝑎𝑛𝑑 {𝜁′} there norms even a bijection[1] between them 𝜁   ⟷  𝜁′ which for a defined 

function 𝑓  over a value of 𝑓(𝑥) there involves a structure of a vector space with 

concerned operations through a continuous linear transformation, that space for that 

function carries a Topology best known as Hilbert space. The specified module that 

carries the 𝑐 * −  algebra for that space is defined as 𝑐 *− Hilbert modules[3] through 

the inner product. 

For any group ^ with a subgroup ℓ  the representations Γℓ
Λ makes it easier to 

construct new representations through the subgroup or the smaller group ℓ  over 

certain parameters that when categorize through the constructive modules of Hilbert’s 

𝑐 * then this extent the 𝑐 * − module to 𝑐 * − algebras through the non−commutative 

formulations. 

Furthermore, any derived pathway to construct the noncommutative geometry 

provides a framework for the moulder category to represent an equivalence over 

(𝑙𝑒𝑓𝑡 − 𝑟𝑖𝑔ℎ𝑡) − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  rings as established afterwards with rings 𝑅  and 𝑅′; then 

for the 𝑟𝑖𝑛𝑔 − 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 , studying the category of those modules; there exists 

Morita equivalence for the isomorphic commutative form or in general norms in the 

case of 𝑛𝑜𝑛 − 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 rings. 
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For the constructions of 𝐾𝐾 − 𝑇ℎ𝑒𝑜𝑟𝑦 ; Morita equivalence is an important tool 

to 𝑐 *− algebras where for the inequality on the two modules 𝐴 𝑎𝑛𝑑 𝐵 ; for the moulder 

form 𝐸 on 𝐴 and 𝐵 for the moulder form 𝐸 on 𝐴 and 𝐸 ∙  on 𝐵 (as appeared later in the 

paper) a homotopy invariant bifunctor can make a Morita equivalence for the 𝐾𝐾 −

𝑇ℎ𝑒𝑜𝑟𝑦 through 𝐾𝐾(𝐴, 𝐵) 𝑎𝑛𝑑 𝐾𝐾(𝐵, 𝐶) for 𝐴,  𝐵,  𝐶 as 𝑐 *− algebras; there’s for the 

modular form 𝐸  having elements 𝜀, 𝜖 the inequality represents the form < 𝜀, 𝜖 ><

𝜖, 𝜀 >≤||< 𝜀, 𝜀 >  ||< 𝜖, 𝜖 >  where for the 𝐴 −𝑚𝑜𝑑𝑢𝑙𝑒 ; the above relation holds and 

taking the 𝐵 −𝑚𝑜𝑑𝑢𝑙𝑒 representing the 𝑐 *− algebraic pair 

𝐾𝐾(𝐴, 𝐵) 𝑎𝑛𝑑 𝐾𝐾(𝐵, 𝐶) where one finds the combined form over the composition 

product representing 𝐾𝐾(𝐴, 𝐶) and the Morita equivalence to be represented in a 

specific formulation as to be proved throughout the paper[12,13]. 

Over the compact Hausdorff spaces[14] and considering the Fredholm modules 

of Atiyah–Singer Index Theorem[15] for a relatable definition of 𝐴, 𝐵, 𝐶  in 𝑐 *− algebras 

the Kasparov’s product 𝐾𝐾(𝐴, 𝐶) for 𝐾𝐾(𝐴, 𝐵) 𝑎𝑛𝑑 𝐾𝐾(𝐵, 𝐶) will be established over an 

elliptic differential operator 𝜚𝑀𝑠

0 𝑜𝑟 𝜚𝑀𝑛

0  for  𝑠 − 𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑜𝑟 𝑛 − 𝑑𝑖𝑚 and through 

extensive analysis of that operator which indeed suffice the Fredholm module making 

a relatable framework for 𝐾 −  Homology and 𝐾 − 𝑇ℎ𝑒𝑜𝑟𝑦 [16,3,5,6]; The Thom 

isomorphism is established for the Chern Character 𝐶ℎ over a mapping parameter 

𝜄 through a 𝑟𝑎𝑛𝑘 − 𝑛 vector bundle 𝑣1(𝑛) with 𝑣2 having the first related to a unit sphere 

bundle. This in turn induces the categorical correspondence between a relational 

establishment over noncommutative geometry and noncommutative topology taking 

the function 𝑓 over a bounded structure through linear transformations that bounds 

the concerned subsets 𝐼 𝑎𝑛𝑑 𝐽 for a mapping parameter 𝜌𝜂 in the same Hilbert space 

𝐻.   

This will deduce for a much more concrete formalism of the 𝐾 − 𝑇ℎ𝑒𝑜𝑟𝑦 𝑡𝑜 𝐾 −   

Homology with an extension of 𝑐 *− algebras to 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑐∗ − 𝑎 lg 𝑒 𝑏𝑟𝑎𝑠 for parent 

group (^) that defined the ℓ2 norm of Hilbert space taking into consideration the 𝐾𝐾 −

𝑇ℎ𝑒𝑜𝑟𝑦 with Gromov’s 𝑎 − 𝑇 −𝑚𝑒𝑛𝑎𝑏𝑙𝑒 property for all the necessary formulations 

concerned before except Morita equivalence that when established through 5 −

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 through an assembly mapping parameter ℸ  over discrete torsions gives 

the ultimate relation of 𝐾𝐾 − 𝑇ℎ𝑒𝑜𝑟𝑦 in 𝐵𝑎𝑢𝑚 − 𝐶𝑜𝑛𝑛𝑒𝑠 𝑐𝑜𝑛𝑗𝑒𝑐𝑡𝑢𝑟𝑒 taking into 

account both the 𝑁𝑜𝑣𝑖𝑘𝑜𝑣 𝑐𝑜𝑛𝑗𝑒𝑐𝑡𝑢𝑟𝑒 and 𝐾𝑎𝑑𝑖𝑠𝑜𝑛 − 𝐾𝑎𝑝𝑙𝑎𝑛𝑠𝑘𝑦 𝑐𝑜𝑛𝑗𝑒𝑐𝑡𝑢𝑟𝑒 for 

injectivity and surjectivity respectively connecting to noncommutative topology. 

• Extensions have been made in the operator and Topological aspects in the 

cohomology class where several classifiers are shown with distinct property 

to suffice the Spc – Structure  and the Atiyah – Hirzebruch spectral sequence 

for the Type II (II-A and II-B) as concerned on the complex Topology space 

T* where the Atiyah – Singer Index Theorem taking the Fredholm modules 

as necessary for K-Theory with Bott – Periodicity is taken and a 

channelization is made to Grothendieck – Riemann – Roch; for the 

transition of KK-Theory to Strings; Hodge dual, Gauge symmetry, charge 

density for the required Lagrangian in RR-fields through D-Brane Potential, 

De Rham Cohomology,  and GSO – Projections are shown. P-form 

electrodynamics with P-Skeleton are considered for the purpose. NS 3-form 
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and its relation to RR-flux in both D-Brane charge density and supergravity 

is established. The spectral sequence of Atiyah-Hirzebruch is taken and 

operator over 𝐸𝑛
𝑝,𝑞

 for n taking the values 2,3,∞ over a consideration of 

several orders of K-Theory as such Topological, Algebraic, and Twisted. 

�́�tale cohomology and its representation is shown for Algebraic K-Theory 

and the K�̈�hler (without any specific consideration of compact and Ricci 

flatness) has been shown in general terms for K-Theory in a Twisted 

formalism in 𝐸𝑖 for 𝑖 = 4 = ∞. 

 

For a Hilbert space Η  with a c*-module Η𝑐 one can define a c*-algebra for the 

metric 𝑔  on a Riemann manifold 𝑀 (having the form 𝑀𝑔) with a vector bundle 𝑉  there 

exists a compact neighbourhood being locally variant on a small patch; over an 

isomorphism of the Hilbert space of that vector bundle 𝑉  in a continuous way for a 

commutative c*-algebra through the vanishing infinity. 

For the modular form of c*-algebra the Hilbert module for the non–

commutative form is the generalized norm taking the algebra over a topological field 

𝑇 in unital formulation for the unit parameter 𝒾  as such for every 𝜖 in the algebra there 

exists 𝜖 = 𝒾𝜖 = 𝜖𝒾.  

Representing over the induced form for any finite group ^ with ℓ ⊂ ^ for the 

vector bundle 𝒱 on the Hilbert space 𝐻, any construction can be defined over the 

𝑘 −elements of the group ^ over 𝐿 defined a parameter 𝒫 as, 

𝒫 = ∑𝐿𝑘

𝑛

𝑘=1

 

This gives for each 𝑘, the induced representation through group ^ in the same 

𝐿𝑘
+ ∈ 𝐿𝑘 for ℓ ⊂ ^ through the vector representation 𝒱 of subgroup ℓ being ℓ ⊂ ^ in 

Hilbert space 𝐻 parametrized through, 

𝒳(𝜋,𝒱) 

Thus, one gets, 

for every ⨁𝐿𝑘
+𝒱  

𝑛

𝑘=1

there is, 

∑𝐿(1,……,𝑛)𝑘𝜋(𝐿𝑘
+)ℰ𝑘

𝑛

𝑘=1

 

Representing ℰ𝑘 ∈ 𝒱, three non-trivial actions can be noted for the constructions, 

1. ℰ𝑘 ∈ 𝒱 

2. 𝐿𝑘
+ ∈ 𝐿𝑘∀ℓ ⊂ ^  

3. ℓ ⊂ ^ 
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This takes a pre-Hilbert Hausdorff space to construct c*-algebra satisfying the 

operations of an inner product through the Hilbert A–module being non–negative and 

self-adjoint. Taking the inner product of the complex manifold representing ℳ∗ 

through, 

ℳ∗ ×ℳ∗ ⟶𝐴 

Thus, for any sequence of set that is countable over the Topological space 𝑇 with 

a proper representation for the previously encountered manifolds ℳ𝑇 taking 𝑘𝑡ℎ 

countable order of infinity, 

{ℳ𝑘
𝑇}𝑘=1

∞  

When merged with the unital form taken before 𝜖 = 𝒾𝜖 = 𝜖𝒾 such that for every 

unit parameter 𝒾 there exists 𝜖 in the algebra; where for any c*-algebra there holds the 

Banach–algebra for a compact ℱ, that if provided there exists three forms taking 

𝐵0(ℱ)[3,19,20,22], 

1. 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑚 − For the complex space ℳ∗; the locally compact Hausdorff 

space for vanishing infinity norm gives 𝐵0(ℱ) for continuous functions on ℳ∗. 

2. 𝑈𝑛𝑖𝑡𝑎𝑙 − {

if is commutative
identity element of having norm 1

ℱ in 𝐵0(ℱ) is compact 
 

3. For Point [2] to have a congruent transformation, there is Banach algebra 𝐵0(ℱ)  
in A–form where the congruent transformation is unital for a closet set [𝐴]. 

For the compact Hausdorff (here parameterizing ℱ0
+) with vector bundles 𝒱 for 

the labeling of ℱ0
+ - 0 for positive to extend over Bott Periodicity with + as adjoint 

through 8–periodic homotopy groups from 𝜋0 to 𝜋7 such that[12], 

𝜋0,1,2,3,4,5,6,7 gives 3 − category tables in unitary 𝑈, orthogonal 𝒪, symplectic 𝑆𝑝, 

𝑈 𝒪 𝑆𝑝

𝜋𝑘 ⟶ 𝜋𝑘+2 𝜋𝑘+8
    =    
→   𝜋𝑘+4

𝜋𝑘+4
    =    
←   𝜋𝑘+8

  ∀𝑘 = 0,1…  

Thus, for Hausdorff ℱ; the underlying K-Theory 𝐾(ℱ) there is[12,23]; 

I. Topological K-Theory ⟹ 𝑜𝑛 ℳ𝑇 𝑓𝑜𝑟 𝐾(ℱ) 

II. Reduced K-Theory ⟹𝐾𝑟𝑒𝑑(ℱ) 𝑓𝑜𝑟 𝑆
𝑛∃𝑛 > 0 relates the Bott for 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 0 𝑓𝑜𝑟 ℱ0
+ and 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 + in Hausdorff ℱ for 𝐾𝑟𝑒𝑑(ℱ0

+) in non–

commutive form. 

Where Point [I] relates the Banach–algebras for the locally compact Hausdorff 

over a abelian module on any sequence of set countable over Topological space 𝑇  (as 

previously mentioned) on c*-algebras for bivariant forms suffice the proper 

framework for the Hilbert c*-module on rings 𝑅 and 𝑅′ for modular homeomorphisms 

on 𝑅 such that the biproduct exists in finitary over a defined functor 𝛿 preserving 

equivalence and additive properties, 
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𝛿 ∶ 𝑚𝑜𝑑 − 𝑅
                      
→        𝑚𝑜𝑑 − 𝑅′ 

𝛿′ ∶ 𝑚𝑜𝑑 − 𝑅′
                      
→        𝑚𝑜𝑑 − 𝑅 

{
 

 
𝛿 ∶ 𝑚𝑜𝑑 − 𝑅

                      
→       𝑚𝑜𝑑 − 𝑅′

𝛿′ ∶ 𝑚𝑜𝑑 − 𝑅′
                      
→       𝑚𝑜𝑑 − 𝑅

           {
𝑠𝑢𝑓𝑓𝑖𝑐𝑒 𝑀𝑜𝑟𝑖𝑡𝑎 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 (𝑠𝑡𝑟𝑜𝑛𝑔)

𝑓𝑜𝑟 ∗ −𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑐 ∗ −𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑠
|𝑅𝑀𝑜𝑟𝑖𝑡𝑎 ≈ 𝑅′𝑀𝑜𝑟𝑖𝑡𝑎 

 

For the naturally induced isomorphism for functors 𝛿 and 𝛿′ for a finite module 

ring 𝑅 for the bi–module (𝑅, 𝑅′) suffice the natural isomorphism iff for 

𝑋(𝑅,𝑅′) 𝑎𝑛𝑑 𝑌(𝑅′,𝑅) there is, 

(𝑅, 𝑅′) −  𝑏𝑖𝑚𝑜𝑑𝑢𝑙𝑒 ⟹ 𝑋(𝑅,𝑅′)⨂𝑅′𝑌(𝑅′,𝑅) ≅ 𝑅 

(𝑅′, 𝑅) −  𝑏𝑖𝑚𝑜𝑑𝑢𝑙𝑒 ⟹ 𝑌(𝑅′,𝑅)⨂𝑅𝑋(𝑅,𝑅′) ≅ 𝑅′
 

Moreover, if we consider 𝐴,  𝐵 𝑎𝑛𝑑 𝐶  as c*-algebras then if there is a Hilbert 𝐵 -

module that is fully countably generated in the form of 𝐸 , then for that c*-subalgebras 

of 𝐵  there exists a strong Morita equivalence between 𝐴  and 𝐵  provided for the 𝐵  

module there is 𝜑 (𝐸) ≅  𝐴  and for A module there is 𝜑 (𝐸 ∙  )  ≅  𝐵  where for the c*-

algebraic pair (𝐴, 𝐵), over a homotopy invariant bifunctor the constructions can be 

taken for 𝐴 , 𝐵  and 𝐶  in such a way that for the defined abelian group 𝐾𝐾(𝐴, 𝐵) and 

combining it with 𝐾𝐾(𝐵, 𝐶) a strong Morita equivalence can be established in the form, 

𝐾𝐾(𝐴, 𝐵) ≅  𝐾𝐾(𝐴, 𝐶) ∃ Combining the elements of 𝐾𝐾(𝐴, 𝐵) AND 𝐾𝐾(𝐵, 𝐶), there 

exists the product and the non-trivial assumptions that 𝐵  and 𝐶  are strongly Morita 

equivalent. 

 

 2. Type II Strings relation with Calabi-Yau through Twisted K-Theory  

 

The 𝐾 − 𝑇ℎ𝑒𝑜𝑟𝑦 for the operator and Topological aspects in the cohomology 

class; there exists distinct classifiers for the 𝐷 − 𝐵𝑟𝑎𝑛𝑒𝑠 or Dirichlet Branes in the 

Ramond–Ramond (RR)– Sector of Type II-B Strings sufficing the 3 − 𝑑𝑖𝑚 integral 

class property. There is the cohomology class for the transformation–twist giving the 

𝑚𝑜𝑑 − 2  torsion quantum corrections considering the Freed–Witten discrepancies as 

and when considered in the peculiar  𝐾 − 𝑇ℎ𝑒𝑜𝑟𝑦  in the reconciled aspects over 

Atiyah–Hirzebruch spectral sequence. 

The non–trivial aspect to discuss in high energy physics for the Topological K–

Theory taking the Type–II (II-A and II-B) superstrings is to consider the RR–fields in 

𝑃 − 𝑓𝑜𝑟𝑚  electrodynamics considering the 10 − 𝑑𝑖𝑚 𝑆𝑢𝑝𝑒𝑟𝑔𝑟𝑎𝑣𝑖𝑡𝑦  for the potential 

℧° over Ω𝑃+1  − 𝑓𝑖𝑒𝑙𝑑 defined through the Hodge duals ∗𝑑 in the form Ω9−𝑃
∗𝑑  there exists 

4 − 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠 that will ultimately result the approach of 𝐾 − 𝑇ℎ𝑒𝑜𝑟𝑦 in the complex 

Topological space 𝑇∗ on manifold 𝑀 over a representation 𝑀𝑇
∗relates not only the 

Atiyah–Singer Index Theorem (for the Fredholm  modules, Bott–Periodicity as taken 

earlier) but also gives the Grothendieck–Riemann–Roch Theorem on bounded 
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complex Λ∗  on sheaves 𝑆′′ over a relation 𝑆′′
Λ∗taking the morphism 𝜎𝑚 :  𝑋 ⟶ 𝑌 for 

𝜎𝑚 :  𝐴(𝑋) ⟶ 𝐴(𝑌) over the Tangent sheaf 𝑇Λ∗ of Λ∗ on 𝜎𝑚! to suffice 𝑐ℎ(𝜎𝑚! Λ
∗) gives, 

Λ𝜎𝑚
∗ (𝑐ℎ(𝑆′′)𝑇𝑑(𝑇𝜎𝑚)) 

All suffice through the 4 − 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠 as mentioned above[27,28], 

1. Hodge dual ∗𝑑 

2. Gauge symmetry 𝑔𝑃−𝑓𝑜𝑟𝑚
°  

3. Equations of motion 𝜕 ∗ 𝑔° =∗J for JP–vector  

4. Charge density 𝐶𝜌 through the Lagrangian for 𝜁𝐶𝜌 in 𝑅𝑅 − 𝑓𝑖𝑒𝑙𝑑𝑠 for 𝜛10−𝑃 

through the D–Brane potential (10 − 𝑃)  gives the equations of motion 𝑆× for 

(10 − 𝑃)having a replacement order of 𝑃 𝑡𝑜 (7 − 𝑃) for the previously taken 

charge density 𝐶𝜌 giving two non–trivial relations[29,30], 

 

A. 𝐷𝑒 𝑅ℎ𝑎𝑚 𝐶𝑜 hom𝑜 log 𝑦 with 𝐻 − 𝑡𝑤𝑖𝑠𝑡 for the exterior derivative 𝜕  

with charge density 𝐶𝜌 for the parameter 𝜒  gives, 

𝜕𝜒9−𝑃 + 𝐻 × Ω9−𝑃 

= 𝜕𝜒𝑃+1 

= 𝜕2𝜛7−𝑃 

= 𝐶9−𝑃 

B. The action for Type II (II–B being both T and S–dual to itself) for 

non–invariant GSO – projections in subdomains where for the 

existence of 32–supercharges in Type II–B (ℛ8,1 × 𝑆1) the action 𝑆′′ 

of P–form electrodynamics on a manifold 𝑀 through gauge 

symmetry can be represented by 𝑔𝑃−𝑓𝑜𝑟𝑚
°  gives, 

𝑆′′ =  ∫ [
1

2
𝑔°𝜒 ∗ 𝑔° + (−1)𝑃𝐵𝜒 ∗ 𝐽]

 

𝑀 

 

Which gives the nilpotent potential in manifold 𝑀 over a spacetime 

coordinates (𝜎, 𝜏) as, 

𝜕Ω𝑃+1 + 𝜒9−𝑃 +Ω   (𝜎,𝜏) 

= 𝜕Ω𝑃+1  (𝜎,𝜏)   

= 𝜕2 𝜛𝑃  (𝜎,𝜏)    

= 0  (𝜎,𝜏)  

All of these suffice for 𝑆𝑝𝑐 in the extension of Poincare duality in a generalized 

norm of orientability of homology theory taking the Thom Isomorphism in complex 

form of Topological 𝐾 − 𝑇ℎ𝑒𝑜𝑟𝑦 relating Atiyah–Singer Index Theorem and Fredholm 
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modules, Bott–Periodicity, Atiyah–Hirzebruch, Grothendieck–Riemann–Roch with 

KK–Theory[31-34].  

Additionally, to discuss furthermore about the Type II Superstrings formalism 

as associated with supergravity for a homology class there is a relation between the 

Dirac quantization conditions and RR–fields where in the Lie group structure, 

𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3) ⊆ 𝑆𝑈(5) ⊆ 𝑆𝑂(10) ⊆ 𝐸(8) 

The Photon being represented by 𝑈(1) the related methodology of the charge 

quantization and the magnetic monopoles where their independent nature relates the 

breaking of gauge group from 𝐷(1)heavy branes when the distance is infinite for a path 

𝜐  suffice the relation,  

∏ (1+ 𝑖𝑒𝐴𝑗
𝑑𝑥𝑗

𝑑(𝜐)
𝑑(𝑣))

𝑣
=  exp(𝑖𝑒 ∫𝐴

 

 

∙ 𝑑(𝜐)) 

∃ 𝑒∲ 𝐴
𝜕∩

∙ 𝑑(𝜐) =  ∫ 𝐵𝑑(𝜐)
 

 ∩

 

Considering a cycle 𝜎𝑐𝑦 in the homogeneous Lie group, the movement can 

ultimately results in lifting the Lie group that originates over identity structures 

through, 

2 − 𝑡𝑖𝑚𝑒𝑠(𝜎𝑐𝑦) 𝑎𝑛𝑑 3 − 𝑡𝑖𝑚𝑒𝑠(𝜎𝑐𝑦) 

Where the 2 − 𝑡𝑖𝑚𝑒𝑠(𝜎𝑐𝑦) where a covering parameter ℑ for 𝑆𝑂(2) can maintain the 

Type II superstring actions over the 𝑇𝑤𝑖𝑠𝑡𝑒𝑑 𝐾 − 𝑇ℎ𝑒𝑜𝑟𝑦 (𝑜𝑣𝑒𝑟 𝑇𝑜𝑝𝑜 log 𝑖 𝑐𝑎𝑙 𝑛𝑜𝑟𝑚𝑠).  

One category of Type II superstrings (Type II-B) which has been extended to 12 −

dim  where in the t’Hooft limit, for Yang–Mills 𝑁 = 4 , F-Theory being encountered 

under 𝑆𝐿(2, ℤ), the D–Brane analogy being extended where there exists some non–

trivial aspects being existent over RR–Fields and its relation to the Twisted K–Theory 

making up these points, 

1. 𝐺𝑆𝑂 −  Projections for an eliminated Tachyon and preserved Supersymmetry. 

2. Distinct classifiers for Type II into 𝐼𝐼𝐼𝐼−𝐵
𝐼𝐼−𝐴.    

3. 𝑆𝐿(2, ℤ) for a 𝐶𝐹𝑇 for a worldsheet periodicity as concerned for Fermion–

projections giving 3 sub–relations, 

a. Invariance over 𝑆𝐿(2, ℤ).  
b. Modular diffeomorphisms as expressed on Torus for Point [3] to get rid 

of gravitational anomalies. 

i. This in turn establishes the integral for 𝐾𝑎𝑙𝑏 − 𝑅𝑎𝑚𝑜𝑛𝑑 (𝐾 −
𝑅) 𝑓𝑖𝑒𝑙𝑑 with the relation to the B field for  ℷ as,  

−  ∫ ℷ𝑖
 

 𝐾𝑅
ℷ𝑗  Bij 

Thus, for the correspondence to 𝐾𝑅 𝑁𝑆 − 𝑁𝑆 𝐵 − 𝑓𝑖𝑒𝑙𝑑  ; a far more concrete 

relation can be attained for 𝐻 − 𝑓𝑙𝑢𝑥𝐷−𝐵𝑟𝑎𝑛𝑒
𝑁𝑆 where the 𝑃 − 𝑓𝑜𝑟𝑚 𝑓𝑜𝑟 𝑃 −
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𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 represents a complicated structure later but for the cohomology integral 

coefficients for a D-Brane absent RR–flux the relation can be stated over, 

𝑁𝑆 3 − 𝑓𝑜𝑟𝑚+𝑅𝑅−𝑓𝑙𝑢𝑥 ≅ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛 (sup𝑒𝑟𝑔𝑟𝑎𝑣𝑖𝑡𝑦)
⨂𝑅𝑅−𝑓𝑙𝑢𝑥 ≅ 𝑐ℎ arg 𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐷−𝐵𝑟𝑎𝑛𝑒

 

Extending Type II for Type II–B the representation when made for a manifold 

𝑀  for the group operators 𝑂𝑔 in the quotient space 𝑞 𝑤𝑖𝑡ℎ 𝑞𝜕−𝑟𝑒𝑠𝑐𝑎𝑙𝑙𝑖𝑛𝑔 Type II–B 

represents the Orientifold over the operator relation where 𝜕 𝑖𝑛 𝜕 − 𝑟𝑒𝑠𝑐𝑎𝑙𝑙𝑖𝑛𝑔 being 

taken trivially for the involution parameter, the non–empty operator represents the 

orientifold for the operator 𝑂𝑔𝑝
2 such that for the operator 𝑃~ there is Type II–B for, 

𝜕(𝑃~) 

Where through the splitting another structure represents 𝐼𝐼 − 𝐴 for the (1 − 1) −

𝑓𝑜𝑟𝑚.  

The 𝑃 − 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 as stated above in turn gives the Topological K–Theory over 

B for the fibre 𝑓∙in the cohomological space 𝑀∙ over a Serre fibration parameter 

𝑆𝑓∙:  𝑀∙ → 𝐵∙ in the (𝑝, 𝑞) − 𝑛𝑜𝑟𝑚 representing the cohomolgy pair (𝑀∙(𝑝),𝑀∙(𝑝,𝑞)) for 

𝑘𝑡ℎ − 𝑐𝑜 hom𝑜 log 𝑦  𝑔𝑟𝑜𝑢𝑝 through,   

⨂𝐻𝑘(𝑀∙(𝑝))

𝑝,𝑞

 

⨂𝐻𝑘(𝑀∙(𝑃),𝑀∙(𝑃),𝑀∙(𝑃−1))

𝑝,𝑞

 

  

For the Atiyah–Hirzebruch taking the space 𝑀∙ and the spectral sequence associated 

with it for the fibres 𝑓∙ there exists the 𝐸𝑛 − 𝑠ℎ𝑒𝑒𝑡 taking (𝑝, 𝑞) − 𝑛𝑜𝑟𝑚𝑠 for 𝐸𝑛
𝑝,𝑞

 for 

𝑛 taking the values 2,3,∞ ; the spectral sequence can be in respect of the differentials 

𝐸𝑑 where there is, 

1. Atiyah–Hirzebruch spectral sequence  

2. Twisted K–Theory 

3. Topological K–Theory 

4. Algebraic K–Theory   

5. Complex 𝛿    

6. 𝐸𝑛 for different values of 𝑛 providing; 

a. Serre spectral sequence for 𝐸1 

b. Topological K–Theory for 𝐸2
𝑝

  

c. Twisted K–Theory for 𝐸3  over the differential 𝐸3(𝑑) such that for the 𝐸𝑛
𝑝,𝑞

 

; 𝑛 takes an equality for 𝐸2 𝑎𝑛𝑑 𝐸3. 

d. For [Point b] in complex parameter 𝛿∙ = 2𝑘 + 1denoting complex 

projective ℂΡ𝛿  there exists two foundations, 

i.  Collapsing for 𝑒𝑣𝑒𝑛 2𝑘  

ii. Non collapsing for  𝑜𝑑𝑑 2𝑘 + 1  
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1. Where Topological K–Theory as associated with Atiyah–

Hirzebruch  for 2𝑘 + 1 over space 𝑀∙ ; a nice relation can 

be expressed in 𝐸2
𝑝,𝛿∙(𝑀∙).   

7. For the K�̈�hler where any compact Kahler having Ricci flatness is a Calabi–Yau 

for all the threefold being non–trivial in superstring theory, any K�̈�hler 

(without any consideration of being compact) can give the twisted formalism 

of K–Theory for 𝐸𝑖 such that 𝑖  ≡  4 = ∞.   

8. Algebraic K–Theory having a relation to the �́�tale cohomology for the scheme 

𝑀𝑇
𝑒  where 𝑀𝑇

𝑒′ is a Topological space; any representation can be done in the local 

isomorphism such that for the category taking 𝑀𝑇
𝑒  for 

𝑒𝑡𝑎𝑙𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑡(𝑀𝑇
𝑒  )suffice isomorphism for the Topological space 

𝑇(𝑜𝑟 𝑀𝑇  ) which provides the Atiyah–Hirzebruch spectral sequence for 𝐸2 in 

(𝑝, 𝑞) − 𝑛𝑜𝑟𝑚𝑠 thereby establishing the Quillen– Lichtenbaum conjecture for 

𝐸2
𝑝,𝑞

 with the �̇�tale cohomology 𝑀𝑇
𝑒  [2,3,5].  
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