
EasyChair Preprint
№ 15566

SolarWinds Compromise Malware Analysis

Syed Ahmad Maaz, Ahmad Naveed Asif, Muhammad Zain Zia and
Muhammad Faaz Qadeer

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 13, 2024



SolarWinds Compromise Malware Analysis
1st Syed Ahmad Maaz

Department of Information Security
National University of Science and Technology

Islamabad, Pakistan
smaaz.msis24seecs@seecs.edu.pk

2nd Ahmed Naveed Asif
Department of Information Security

National University of Science and Technology
Islamabad, Pakistan

aasif.msis24seecs@seecs.edu.pk

3rd Muhammad Zain Zia
Department of Information Security

National University of Science and Technology
Islamabad, Pakistan

mzia.msis24seecs@seecs.edu.pk

4th Muhammad Faaz Qadeer
Department of Information Security

National University of Science and Technology
Islamabad, Pakistan

mqadeer.msis24seecs@seecs.edu.pk

Abstract—The SolarWinds compromise was one of the most
significant cyberattacks of the 21st century, not because it
breached a single organization, but because it triggered a
much larger supply chain incident that affected thousands of
organizations globally. Attributed to the Advanced Persistent
Threat (APT29) threat group, this attack leveraged sophis-
ticated malware tools to infiltrate high-profile entities. This
paper provides a detailed analysis of the four main malware
variants used in the attack: SIBOT, Raindrop, GoldMax, and
GoldFinder. A controlled environment was established to study
the behavior of each malware, focusing on their techniques for
achieving persistence, lateral movement, and evading detection.
The findings contribute to enhancing threat intelligence and
offer insights for improving defenses against similar attacks,
highlighting the importance of taking early steps to detect and
prevent advanced persistent threats.

I. INTRODUCTION

Solarwinds is a software company which provides man-
agement tools for network and infrastructure monitoring. It
also provides technical services to thousands of organiza-
tions around the world. Solarwinds provides network moni-
toring services like Solarwinds Network Performance Monitor
(NPM) that allow organizations to gain real-time insights
into the health, performance, and availability of their IT net-
works. By ensuring network stability and optimal performance,
SolarWinds empowers organizations to deliver uninterrupted
services to their users and customers [1].

SolarWinds offers a range of features like intrusion de-
tection, vulnerability assessment, log analysis, and security
event correlation to help organizations implement a security
infrastructure. SolarWinds helps organizations fortify their
cloud deployments, identify vulnerabilities, and safeguard their
sensitive data [2].

SolarWinds Orion is a powerful and widely used IT man-
agement and monitoring platform that helps organizations
effectively manage their network infrastructure, systems, and
applications. Designed for both small businesses and large
enterprises, Orion provides a comprehensive suite of tools that
streamline various IT tasks such as performance monitoring,

configuration management, and real-time issue detection. By
collecting and analyzing data from critical components within
an organization’s IT ecosystem, Orion enables IT administra-
tors to maintain optimal performance across servers, databases,
applications, and network devices.

Orion’s scalability is one of its key selling points, as it can
be tailored to meet the unique needs of diverse environments.
Whether it’s a small company with a few servers or a large
enterprise with complex network architecture, Orion’s archi-
tecture ensures that it can scale accordingly, providing the
same level of in-depth monitoring and control. The platform
supports a wide range of monitoring features, which include
network traffic analysis, server and application monitoring,
database monitoring, and IT asset management. These features
give IT teams the ability to track system performance, spot
potential problems before they affect operations, and improve
the overall health and efficiency of their infrastructure.

A distinguishing factor of SolarWinds Orion is its user-
friendly interface and customizable dashboards, which allow
IT staff to quickly visualize performance metrics and key data
across the entire network. The platform also includes robust
reporting capabilities, providing detailed insights into system
health, usage trends, and potential security vulnerabilities.
These reporting tools make it easier for organizations to make
informed decisions, implement performance improvements,
and troubleshoot issues effectively.

Another feature of Orion is its integration capabilities,
enabling it to unify monitoring tools from various vendors
into a single interface. This centralized view allows IT teams
to manage all aspects of their infrastructure from one place,
reducing the complexity of managing multiple, disparate tools.
Orion can integrate with other SolarWinds products and third-
party applications, streamlining workflows and ensuring a
cohesive approach to network and system management. This
integration fosters a proactive approach, allowing IT teams to
stay ahead of potential disruptions or performance issues [3].

Given its critical role in an organization’s IT ecosystem,
SolarWinds Orion is often deeply integrated into the infras-



tructure of many large organizations, including both public and
private sectors. This extensive integration makes it an attrac-
tive target for cyberattacks, as compromising Orion provides
attackers with access to the networks and systems of numerous
high-profile organizations.

II. RELATED WORKS

Nair et al. [4] provide a detailed guide on static malware
analysis. This paper outlines the steps used for statically
dissecting a malware. The research paper emphasizes the use
of static analysis tools like PEStudio, PEview, strings, UPX
(Ultimate Packer for Executables) for static malware analysis
and for unpacking the packed malwares.

Guven et al. [5] established a dynamic malware analysis
environment and prepared a dataset containing malicious and
benign network traffic. They extracted 39 features from the
traffic data and used Random Forest and deep learning algo-
rithms to classify the traffic as either malicious or safe. Their
comparison of the algorithms determined which approach
achieved higher accuracy in identifying malware under such
conditions.

Mahmoud et al. [6] proposed a dynamic malware analysis
framework that integrates Sysmon and the Elastic Stack to
create a custom sandbox environment. Using a sample of
2,800 malware instances from VXUnderground, the research
demonstrated the effectiveness of Sysmon and ELK integration
for analyzing malware behavior.

Malik et al. [7] introduced a framework for malware anal-
ysis using a Modern Honey Network (MHN) deployed on
a cloud machine. The environment employs a honeypot and
malware sensor to detect Portable Executable (PE) binaries,
extract their MD5 hashes, and utilize the VirusTotal API for
further malware analysis.

Dutta et al. [8] presented a survey on malware detection
methods, emphasizing the advantages and disadvantages of
machine learning techniques. The paper transitions from tra-
ditional signature-based and behavior-based detection meth-
ods to heuristic-based detection, which incorporates machine
learning, highlighting its efficacy and limitations in addressing
evolving malware threats.

Hammi et al. [9] explored malware detection by analyzing
Windows system calls. The study utilized algorithms such as
ensemble learning, k-Nearest Neighbors (k-NN), Naı̈ve Bayes,
Random Forest, and Decision Tree, training them on malware
samples using custom Python scripts. Comparative analysis
identified the most effective algorithm for detecting malware
based on performance metrics.

Srinivas et al. [10] introduced a methodology for malware
detection using YARA rules. It focused on creating signature-
based rules for identifying and classifying malware families.
By applying these rules to datasets, the study demonstrated
improvements in detection accuracy and the ability to address
variations in malware characteristics.

Yousuf et al. [11] proposed a static analysis-based approach
for detecting malware by extracting multiple features from PE
binaries, such as the DOS header and Windows APIs. The

study concluded that feature extraction from PE binaries alone
is insufficient for reliable malware detection.

III. ENVIRONMENT SETUP

The reverse engineering of the malware used in the So-
larWinds compromise is completed in a controlled environ-
ment which was created using two virtual machines (VMs)
configured in an isolated host-only adapter network to ensure
security and prevent unintended external communication.

A. Ubuntu VM (Sniffer and Gateway)

The Ubuntu VM was configured to act as a gateway for
the Windows VM, ensuring that all network traffic originating
from the Windows VM passed through it. The configuration
allowed for comprehensive monitoring and analysis of the mal-
ware’s network activity. Key tools and configurations included:

• INetSim: Simulated internet services to observe the mal-
ware’s network activity in a controlled environment. It
provided essential responses to network requests, such
as DNS queries, HTTP requests, and other protocols,
enabling detailed analysis of the malware’s behavior.

• Wireshark: A network protocol analyzer used to capture
and analyze the traffic generated by the malware. This
tool allowed for in-depth inspection of communication
patterns and potential indicators of compromise.

B. Windows VM (Malware Analysis)

The Windows VM served as the primary environment for
conducting malware analysis. The environment was equipped
with specialized tools tailored for static and dynamic analysis,
including:

• FLARE VM: A specialized malware analysis toolkit
developed by FireEye. It includes a comprehensive suite
of tools for malware analysis, such as debuggers, decom-
pilers, and disassemblers, making it suitable for analyzing
complex malware behaviors.

C. Network Configuration

The network configurations used for securely analyzing the
malware within a controlled environment are as follows:

• Isolated Network: Ensured that malware activity was
contained within the analysis environment, preventing
accidental spread of the malware or its payloads to other
systems.

• Gateway Configuration: The Ubuntu VM served as the
gateway for the Windows VM, allowing it to monitor
and control all traffic originating from the Windows VM.
This setup was essential for capturing and analyzing the
malware’s network interactions.

The environment ensured the safe and effective analysis of
malware samples such as SIBOT, Raindrop, GoldMax, and
GoldFinder. Figure 1 shows the Environment setup of the
malware analysis lab.



Fig. 1. Malware Analysis Lab Setup.

IV. SOLARWINDS COMPROMISE OVERVIEW

The SolarWinds compromise was disclosed in December
2020. It is one of the most significant cyberattacks in re-
cent history. It targeted SolarWinds’ Orion platform which is
widely used in IT management and monitoring solution de-
ployed across public and private sectors globally. The attackers
exploited the trusted software update mechanism of the Orion
platform to distribute malicious updates containing backdoors,
thereby infiltrating numerous organizations [12].

A. Attack Overview

The compromise is attributed to the Advanced Persistent
Threat (APT) group APT29, also known as Cozy Bear, which
is linked to the Russian Foreign Intelligence Service (SVR
RF). The attackers gained access to thousands of organizations
by compromising the orion software update mechanism. This
access enabled the execution of highly sophisticated post-
exploitation activities, including data exfiltration, lateral move-
ment, and installation of additional malware [4].

The attack unfolded as follows:
• Supply Chain Compromise: The attackers injected

malicious code into Orion updates, which SolarWinds
distributed to customers through legitimate channels.

• Post-Compromise Operations: The attackers used addi-
tional malware to ensure persistence, evade detection, and
achieve their operational goals in targeted environments.

B. Malware Families Analyzed

This research focuses on the analysis of four key malware
families deployed during the SolarWinds compromise:

• SIBOT: A VBScript-based malware designed to establish
persistence and download additional payloads.

• Raindrop: A malware backdoor loader used to deploy
Cobalt Strike beacons for post-exploitation activities.

• GoldMax: A stealthy backdoor used for covert commu-
nication with command-and-control (C2) servers.

• GoldFinder: A reconnaissance tool designed to trace
network routes to the C2 infrastructure.

Each of these malware families played a critical role in
the attack, showcasing advanced techniques for persistence,
evasion, and lateral movement.

C. Impact

The SolarWinds compromise affected over 18,000 orga-
nizations globally. High-profile victims included government
agencies, critical infrastructure entities, and leading private-
sector firms. The attackers only pursued specific high-value
targets out of the affected organizations [13].

The paper provides a detailed analysis of the SIBOT,
Raindrop, GoldMax, and GoldFinder malware families. The
focus will be on their behavior, persistence mechanisms,
and techniques for evading detection. The findings highlight
critical vulnerabilities in supply chain security and emphasize
the need for robust defenses against such advanced threats.

V. SIBOT MALWARE

The section provides a comprehensive analysis of the SI-
BOT malware, its functionality, and its role in the SolarWinds
compromise. We examine its methods of achieving persis-
tence, downloading additional payloads, and evading detec-
tion, highlighting its impact on the broader attack strategy.

A. Introduction

SIBOT is a VBScript-based malware deployed during the
SolarWinds compromise. Its primary role was to establish
persistence on compromised systems and serve as a down-
loader for additional payloads. The simplicity and modularity
of SIBOT underscore its design for stealth and efficiency in
carrying out its tasks.

SIBOT relied on lightweight scripts, making it easier to
evade detection mechanisms. By embedding itself into the
Windows Task Scheduler, it ensured that its operations could
continue across system reboots, allowing the attackers to main-
tain a foothold in compromised environments over extended
periods.

SIBOT’s functionality was often tailored to the target en-
vironment. It leveraged encrypted communications and proxy
configurations to securely download and execute additional
malware payloads.

The analysis explores SIBOT’s techniques for persistence,
payload retrieval, and detection evasion, shedding light on its
pivotal role in the broader SolarWinds compromise.

B. Static Analysis

The static analysis of the SIBOT malware began with the
identification of the programming language used to write the
script. Initial inspection showed that the malware was written
in VBScript, a scripting language commonly used for au-
tomation tasks within Windows environments. The script was
heavily obfuscated, a technique often employed by malware
authors to evade detection. The process of static analysis is
stated:

• Script Examination: The script was opened in Sublime
Text, which provided an easy-to-read interface to examine
the code. The first step in the process was to identify the
most frequently invoked function within the script. Once
the key function was identified, the next step was to deob-
fuscate the code by replacing the obfuscated function and



variable names with meaningful, descriptive identifiers.
This process allowed for a clearer understanding of the
script’s logic and purpose. Then deobfuscated function
was responsible for decoding the strings in the script.

• Decoding Obfuscated Strings: The analyst was able to
reverse the obfuscation and decode several key strings
used within the malware. The function was responsible
for decoding various obfuscated strings, including URLs,
command parameters, and other critical components. The
analyst was able to reveal the original unencrypted values
hidden within the script. The decoding process signifi-
cantly improved the legibility of the malware code and
provided a more comprehensive view of its actions.

• Information Gathering: The next step was to examine
the behavior of the script. The analysis revealed that
the malware’s first task was to gather information about
the compromised system. It begins by attempting to
retrieve the Globally Unique Identifier (GUID) of the
system’s LAN connection. If the system does not have a
GUID assigned, the script takes the initiative to generate
and assign a new GUID to the system. This action is
crucial as it allows the malware to uniquely identify the
infected machine, which could be leveraged later in its
communication with command-and-control (C2) servers
or for tracking purposes.

• Network Configuration: The malware checks the sys-
tem’s network configuration by querying the Windows
registry for proxy settings. The script looks for registry
entries that indicate whether the machine is configured
to use a proxy server for network traffic. If the system
is not using a proxy server, the script terminates its
execution, effectively preventing further actions. This
behavior suggests that the malware is designed to operate
in environments where network traffic can be filtered
through a proxy, which may provide enhanced security or
concealment for the attacker. If a proxy server is present,
the malware continues its execution to carry out further
actions.

• GET Request Construction: The script constructs a
GET request to a remote URL. The GET request is routed
through the proxy server, so that all traffic between the
infected machine and the remote server is encrypted and
difficult to detect. The use of encryption for communi-
cation between the malware and its C2 server is likely
to avoid detection by network monitoring systems and
security solutions such as firewalls and intrusion detection
systems (IDS). The malware uses this secure connection
to download its payload from the remote server.

• Payload Decryption: The malware continues to decrypt
the downloaded payload. The payload is encrypted, and
the script contains a function that is specifically designed
to decrypt the payload. The script writes the payload
to the directory of the Windows operating system. The
payload is saved as a .sys file.

• Payload Execution: The malware executes the payload
using rundll32.exe. The malware configures the payload

to run as a scheduled task. This ensures that the malicious
code is executed automatically whenever the system is
restarted, allowing the attackers to maintain foothold on
the compromised machine even after a reboot.

• Self Deletion: The script deletes itself from the system
after maintaining persistence. The step is designed to
cover the tracks of the malware. By deleting itself, the
script makes it more difficult for incident responders or
analysts to trace the attack back to its source.

The static analysis of the SIBOT malware revealed the
structure of the script designed for stealth and persistence.
The script utilized multiple techniques to evade detection,
such as obfuscation, encrypted communications, and the use
of legitimate Windows utilities to execute the payload. The
malware covered its track by establishing persistence through
the creation of scheduled tasks and its use of proxy servers
for encrypted communication.

C. Dynamic Analysis

The dynamic analysis of the SIBOT malware confirmed
the findings of the static analysis. The findings of dynamic
analysis are:

• CONNECT Request: It was observed that the script
initiates a CONNECT request to a specified URL. This
behavior is consistent with the malware’s use of proxies
to facilitate encrypted communication for payload re-
trieval. The CONNECT request is a feature of HTTP/1.1
used to establish a tunnel to a server, often for secure
HTTPS communication through a proxy.

• Execution in Simulated Environment: The analysis was
performed in a controlled environment using INetSim,
the simulated internet service provided by INetSim re-
sponded with a static reply to the CONNECT request.
The static reply did not fulfill the malware’s require-
ments for downloading the intended payload. The script
terminated its execution because the payload could not
be retrieved, effectively halting further actions.

The malware would likely have connected to a command-
and-control (C2) server through the proxy to download and
execute its payload in a real world scenerio. The controlled
environment successfully prevented the download of payload
and prevented the risk of getting compromised.

D. Evasion Techniques

SIBOT malware exhibits a range of sophisticated evasion
techniques that are critical to its success in maintaining stealth
and avoiding detection in compromised systems. These tech-
niques are evident from both the static and dynamic analyses
conducted on the malware.

• Obfuscation: SIBOT’s VBScript is heavily obfuscated,
making it difficult to analyze and understand its func-
tionality. The malware achieves this by using nonsensical
function and variable names and employing functions
to encode or obscure key strings and instructions. This
obfuscation serves multiple purposes:



– It hinders the efforts of security researchers during
static analysis. It complicates the process of extract-
ing meaningful insights without extensive deobfus-
cation.

– The script relies on encoded strings for crucial op-
erations, and only during runtime are these strings
decoded using specific functions within the malware.

• Encrypted Communication: SIBOT leverages proxies
to send a CONNECT request to a remote URL, enabling
it to establish an encrypted tunnel for payload delivery.
By relying on encrypted communication:

– It avoids detection by traditional network monitoring
tools that might flag unencrypted data streams.

– It prevents researchers or monitoring systems from
easily capturing and analyzing the payload during
transit.

• Task Scheduling: SIBOT establishes persistence by cre-
ating a scheduled task that executes the downloaded
payload using rundll32.exe. This technique ensures the
malware can survive system reboots and remain active
for extended periods.

• Self Deletion: After completing its tasks—such as decod-
ing the payload and establishing persistence, the malware
deletes its own script. This self-deletion removes traces
of its presence.

E. Indicators of Compromise

Indicators of Compromise (IoCs) play a critical role in
detecting and responding to malware infections. The Indicator
of Compromise of SIBOT malware are listed.

• URL: The malware establishes a connection to the fol-
lowing URL: sense4baby.com

• IP Address: SIBOT communicates with the following IP
address: 185.185.117.15

VI. RAINDROP MALWARE

This section provides a comprehensive analysis of the
Raindrop malware, its functionality, and its role in the So-
larWinds compromise. We examine its methods of achieving
persistence, downloading additional payloads, and evading de-
tection, highlighting its impact on the broader attack strategy.

A. Introduction

Raindrop is a backdoor loader that employs advanced tech-
niques to evade detection and execute a Cobalt Strike beacon
payload as shell-code. In most of the variants it masquerades
as some legitimate application using their recompiled source
code [14].

To achieve its objective of executing shell-code for post
exploitation activities, the malware employs several evasion
techniques to remain undetected until its payload is fully
executed. These methods include:

• Packing: The payload is packed used a custom packer.
• Encrypted and Compressed Payload: The payload is

encrypted and compressed to obfuscate its contents and
evade static analysis [6].

• Payload Segmentation: The payload is divided into
smaller chunks and loaded into fixed memory locations,
complicating detection and analysis.

• Runtime Decryption and Decompression: The payload
is decrypted and decompressed dynamically at runtime,
ensuring that its malicious content is only revealed during
execution.

Variant is similar to its older variant Teardrop which was
delivered in first stage of attack by SunBurst backdoor. From
research, an overall picture of Raindrop captures the essence
of aid in post exploitation activities, including establishing
command-and-control (C2) channels and aiding lateral move-
ment with a network.

B. Static Analysis

This section delves deep into the static analyses of the
Raindrop malware. Inspection of code disassembly, imports,
exports, metadata, and embedded resources. Most important
findings include some from strings, and code disassembly
which confirms its malicious nature as listed below:

• To develop an understanding of the nature of executable,
analyst used PEStudio tool, to gather information about it.
It yields that malware is a TK GUI based PE64 Dynamic
Link Library (DLL) with custom packing detected. Here
GUI is a way to masquerade behind a legitimate process.
Some conclusions from this are:

– Packer involved might alter the malware during each
packing operation producing unique binaries that can
bypass detection.

– Address Space Layout Randomization (ASLR) and
Data Execution Prevention (DEP) is often enabled
to mimic legitimate software, complicating attempts
by analysts to inject shellcode or payloads during
debugging. This demonstrates the malware’s sophis-
tication and its intent to resist analysis.

• Metadata suggests it has high entropy (7.4). This can
mean file might be encrypted using AES since its ran-
domness it very high or it might even be compressed.
Any or both can be true.

• Version section masquerades fields from legitimate 7-
Zip manifest. This can indicate it might be a recompiled
source code from 7-Zip with added methodologies to
conceal its shell-code. Same manifest string was also
found in floss results.

• Exports section, another key finding we came across is,
despite it being a DLL, there are no DLLMain function
exports. Here there are two main observations:

– While some legitimate DLLs may omit DLLMain,
it’s absence is more common in malware, particularly
if the DLL is intended to hook into existing pro-
cesses, run in an unconventional way, or to conceal
its entry-points to malicious code.

– Malware leverages on its deceptive 7-zip
TK MainLoop process as a Main DLL export
to conceal it’s other DLLMain entry-point.



• Strings analysed from floss results were significant and
can give clues towards its malicious nature:

– Strings and Exports found were beginning with Tk
which might indicate TK/Tcl are used for its GUI
guise to lay low under the radar. Malware often uses
legitimate-looking functions or libraries (like Tk in
this case) to blend in or masquerade as something
benign.

– Presence of IsDebuggerPresent might indicate that
malware is trying to evade debuggers to make it more
difficult to be analysed.

– ADVAPI32.dll import indicate, it might be manipu-
lating registry.

– GetTickCount and QueryPerformanceCounter string
are very significant indicators of sources of entropy
for a file. They might even be used as a seed/key
for encryption algorithms as well as srand random
number generators.

– CreateThread, CreateProcessW, TerminateProcess,
GetCurrentProcessId, GetCurrentThreadId, Sleep
win32 API’s string found are indicators that our
malware is involved in significant thread and process
manipulations.

– Registry entry strings 23170F69-40C1-278A-1000-
000100020000 confirms out suspicion of it mas-
querading a 7-Zip program.

• For further analyses IDA Pro and Cutter were utilized to
get into the flow and working of the file and eventually
confirm if it’s malicious or not. Some of the observations
from disassembled code are as follows:

– UI Event Loop Sleep: At the start, the
TK MainLoop malware initiates a recursive sleep
cycle lasting 60 seconds This is a major Indicator
to evade detection by automated sandboxes and
debuggers. This behavior is employed to keep the
headless GUI process running and server as a facade
for the 7-Zip program.

Fig. 2. TK Infinite Sleep Event Loop

– Polymorphic Behavior: Following thread trail, ”call
cs:qword 180056E90”, is highly suspicious. This is
an indirect call to the address stored in memory at the
location 0x180056E90. Address 0x180056E90 is part
of the .data section and is defined as a pointer to a
function. The dynamically resolved function pointer
could be pointing to malicious code or routines that
are injected or altered during execution. Malware is
using this technique to avoid signature-based detec-
tion or to make analysis more difficult..

– Decryption: Thread does extensive xor (A funda-
mental operation in many cryptographic algorithms,
used for bitwise mixing of plaintext), bit shifts (Often
used in cryptographic routines to extract or isolate
specific bits in a word.) in each iteration. This might
suggest possible chaining decryption methodology.
Block-Like Memory Usage (e.g. rsp+0F8h+Block)
seems to hold a processed block of data, which is
likely reused across iterations. This is also consis-
tent with cryptographic algorithms, where temporary
buffers are often used for intermediate results.

– Decompression: The combination of VirtualAlloc,
data manipulation (memset, sub * calls), and Virtu-
alFree. Sub functions inside the parent are also in-
volved in heavy memory manipulation, bit shifts, xor,
movzx, mul instructions which strongly indicates
decompresses of data into a new memory location.

– DLL Injection Thread: When DLLMain is loaded
as a fallback, it creates a new thread, often indicating
potential DLL side-loading. The thread performs
health checks on fixed memory addresses, gathers
data chunks, and executes decryption and decom-
pression routines, including XOR-based decryption
with a single-byte key. Byte key is hard-coded (in
our case 0x82).

Fig. 3. Side-loading a Thread Routine as part of entry Fallback



– Possible Payload Execution: At the end after pos-
sible decryption and decompression payload, it is
xor with a bye key. Again VirtualProtect is used to
get readwrite access to mem location and call the
shellcode which has been loaded in rbx after possible
decryption and decompression. After shellcode has
been executed, it add sleep and eventually exits.

– Long Sleeps: In decryption loops after each iteration,
thread sleeps. This could be used to prevent rapid
execution and evade memory protection controls.

Dynamic Analysis of Raindrop yield major conclusions that
displays its malicious behavior. Some of the observations are:

C. Dynamic Analysis

• Absence of Conventional Entry Point: It is a PE64
DLL. Although despite it being a DLL, it cannot be run
directly using rundll32. This is because DLL executable
did not expose DLLMain or any other function that
might be closely related to suspicious thread routine. On
running rundll32 malicious dll.exe,DllMain, it gives error
”Missing Entrypoint”. This tactic may evade automated
detection that rely on identifying traditional entry points
for malicious DLLs.

• Recursive Sleep Functionality: Static analysis revealed
the malware exports a Tk MainLoop function, induc-
ing infinite loops with long sleeps. When executed via
regsvr32, the process shows no significant changes in the
registry, file system, or network, serving as a decoy to
mislead analysis tools and obscure its true objectives.

• Custom DLL Wrapper for Analysis Executing a mal-
ware DLL requires a victim-like environment. To address
this, a custom DLL wrapper was developed to load the
malware and invoke a function at a specific offset from
the base address. This method bypasses the malware’s
obfuscation strategies, enabling direct analysis of its
malicious functionality.

Fig. 4. Wrapper script to call offset DLLMain

Running it with wrapper, reveals the following observa-
tions from PROCMON:

– It validates existence of various registry keys for
checking if it is a virtual or sandbox environ-
ment. EnablePerProcessSystemDPI, MachineLan-
guageConfiguration, PreferredUILanguage, Display
keys can be undefined in a Virtual environment. This
can change malware behavior and act benign where
these environments are detected.

– Software Restriction Policy (SRP) is read, specifi-
cally CodeIdentifiers registry for DLL execution. It is
suspicious if DLLs are checking this key since SRP
is an administrative tool used to define policies for
controlling the execution of applications (including
DLLs) based on their path, hash, or publisher. Typ-
ically, it’s the responsibility of system administra-
tors or security management software (like endpoint
protection solutions) to configure and manage SRP
settings, not individual applications or DLLs.

– It creates file (CreateFile) for CRYPTBASE.dll. It can
for one of the two reasons. Firstly, it has advapi32.dll
import as seen from static analyses. advapi32.dll
contains cryptographic APIs. When they are called,
Windows internally loads CRYPTBASE.dll as part
of the underlying cryptographic infrastructure. Sec-
ondly it can be due to GetProcAddress from imports
is also a string indicator that malware is dynamically
resolving API functions during execution.

– If these registry keys are not found, malware process
exits instantly after running its health checks. This is
quite clear that it is checking for virtual environment
from this. On the contrary, if we add these variables
into the registry manually, process executes success-
fully until the payload is executed and process exits
gracefully.

• Regshot helped us see that on successful
execution it is saving the wrapper state in
HKLM\System\CurrentControlSet\Services\bam
\State\UserSettings\S-1-5-
21\Device\HarddiskVolume1\Users\malware-
victim\Desktop\wrapper dll.exe. This might be used on
next execution to check for malware state.

• Process hacker, it was observed that the DLL was loaded
into wrapper’s memory as as 7-Zip extension. This is
intended to bypass antivirus engines.

• C2 Connection Attempt: After the loader has success-
fully run and run its payload and exited, it constantly
tries to connect to domain https://www.bigtopweb.com.
At the time of writing this analyses, the domain WHOIS
point to machines in autonomous systems Amazon Inc. It
might have been different at the time of attack and can be
suspected as a C2 server communication to perform its
post exploitation activities since virus total and Kaspersky
have flagged this domain as malicious.

Raindrop is a very sophisticated malware when it comes to



defense evasion. It has static evasion as well as dynamic
evasion techniques that were able to bypass Windows defender
as well as many major vendors. It employs a combination of
static as well as dynamic techniques to fly under the radar
until it drops its shellcode.

D. Evasion Techniques

This section covers its evasion techniques in detail.
• Process Masquerading: The malware exhibits process

masquerading by embedding a significant amount of
recompiled source code from the legitimate 7-Zip ap-
plication. This includes references to the XML manifest
associated with 7-Zip, as observed in the binary analysis.

• Debugger Detection and Evasion: The malware actively
checks for the presence of a debugger during its execu-
tion. If a debugger is detected, the malware terminates
itself, effectively avoiding further analysis.

• Architecture and GUI Framework Analysis: Analysis
of the decompiled modules reveals that the malware is a
compiled DLL designed to mimic 7-Zip, leveraging the
cross-platform GUI support of the TK library. This is de-
duced from the presence of the TK MainLoop function,
the main event loop in TK-based applications, as well as
the usage of ”Tk” in exported symbols. The presence of
DllMain confirms that the sample is a compiled DLL.

• Event Loop Sleep for Evasion: During initialization in
the TK MainLoop, the malware incorporates a recursive
60-second sleep, likely to evade detection by automated
sandboxes and debuggers. This behavior is consistent
with its use of the TK library to mimic 7-Zip’s user
interface.

• Thread Creation at DLL Load: Upon receiving the
DLL PROCESS ATTACH event during DLL loading,
the malware immediately spawns a new thread. While
the behavior is not definitively malicious at this stage,
it raises suspicion and warrants further investigation into
DLL sideloading.

• Polymorphic Behavior:
– Dynamic Function Resolution: The malware em-

ploys polymorphic techniques by invoking function
pointers stored in memory. These pointers are popu-
lated at runtime within a potentially malicious thread
routine, complicating static analysis.

– Randomized Obfuscation: The malware initializes
a random seed using the GetTickCount function,
which retrieves system uptime. The rand function is
subsequently used, possibly to decrypt blocks of pay-
load dynamically. This mechanism not only supports
obfuscation but also introduces polymorphic traits,
making the malware’s behavior less predictable.

• Sleep Behavior in Cryptographic Routines: During
payload decryption, the malware introduces delays by
sleeping between operations. This tactic likely serves to
slow down execution in debugging environments, pre-
venting rapid analysis of cryptographic routines.

• Anti-Sandbox Techniques and Static Analysis Eva-
sion: Malware employs techniques to detect the presence
of a sandbox environment by querying specific registry
keys or system attributes. The execution of its malicious
routines is contingent upon the absence of these keys,
allowing it to evade detection in controlled analysis
settings.

E. Indicator of Compromise

Major IOCs identified from static and dynamic analyses for
Raindrop malware from file system and network are:

• SHA256: be9dbbec6937dfe0a652c0603d4972ba354e83c06b
8397d6555fd1847da36725

• MD5: 0d7a178a0c0a7d2f2cc63e16dad95b45
• C2 Domain: https://bigtopweb.com (TCP)
• Dll extension: 7z.dll
• Dll extension: 7z.dll.2.Manifest
• Reg Key Access: HKLM\System\CurrentControlSet\

Control\Srp\GP\DLL
• Reg Key Access: HKLM\Software\Policies\Microsoft\

Windows\Safer\CodeIdentifiers

VII. GOLDMAX MALWARE

This section provides a comprehensive analysis of the
GoldMax malware, focusing on its functionality, techniques
for achieving persistence, and methods for evading detection.

A. Introduction

GoldMax is a backdoor malware written in the Go pro-
gramming language and deployed during the SolarWinds
compromise. It is associated with SUNSHUTTLE malware due
to similarities in behavior and functionality but the two are
distinct tools used in related contexts. GoldMax is designed to
enable long-term persistence, communication with command-
and-control (C2) servers, and flexible operational capabilities
for attackers.

GoldMax employs techniques such as encrypted communi-
cation, time-based execution delays, and traffic mimicking to
blend into legitimate network activity. These features make
it highly effective at evading detection and analysis. The
malware provides attackers with remote access, enabling com-
mand execution, file transfer, and the deployment of additional
payloads.

This section examines the technical aspects of GoldMax,
including its functionality, persistence mechanisms, evasion
strategies, and its impact on targeted environments during the
SolarWinds supply chain attack. Understanding its capabilities
sheds light on the tactics employed by threat actors in this
operation.

B. Static Analysis

Static analysis of the GoldMax malware revealed several
insights into its design, functionality, and potential objectives.
The analysis began with the identification of various strings
embedded within the binary. Key findings included strings for
an HTTP GET request and an RSA public key, suggesting the



use of encryption, potentially for securing network commu-
nications or payload delivery. Several cryptographic functions
were also identified. The findings are stated:

• Malware Unpacked State: Analyzing the strings high-
lighted that the malware was written in GO programming
language. Examination of the binary’s virtual size and raw
data size revealed no evidence of packing, indicating the
malware was not packing using traditional packers. This
finding indicated that the malware is ready to analyze
and there is no need for packing. Analyzing the imports
table revealed that many functions such as WriteFile,
VirtualAlloc, VirtualQuery, and VirtualFree are being
used. Which could point to the malware’s capability to
manipulate memory and files.

• Advanced Threading Library: Application Pro-
gramming Interfaces (APIs) like CreateThread, Sus-
pendThread, and ResumeThread suggested the use of
advanced threading techniques to manage its operations.
Dynamic library loading like LoadLibraryA, LoadLi-
braryW, and GetProcAddress were used to load and re-
solve functions dynamically, which complicates detection
in static analysis. Functions such as AddVectoredEx-
ceptionHandler, SetUnhandledExceptionFilter, and Set-
WaitableTimer were identified as potentially suspicious,
as they are often associated with evading debugging,
achieving persistence, and manipulating system behavior.

• Environment Fingerprinting: Code analysis revealed
that the malware was using HardwareAddr.String which
suggested that the malware was reading the MAC address
of the host system. This behavior is commonly associated
with attempts to fingerprint the environment, such as
detecting virtualized environments in which the malware
is being executed. The malware’s retrieval of the MAC
address likely serves to identify analysis environments,
such as sandboxes or virtual machines, and terminate its
operations if such environments are detected.

• Session key Request: The malware requested a session
key which could be related to securing communication
channels with its command-and-control (C2) server or
managing encryption for subsequent payloads. Two code
blocks were identified as mechanisms for placing the
malware in a hibernation state for randomized periods.
This mechanism is used to evade detection and analysis,
as the delays make its behavior less consistent and more
challenging to monitor.

• Cryptographic Use with RSA: The presence of cryp-
tographic functions and the RSA key indicates the use
of encryption for data protection. The encryption likely
secures C2 communications, ensuring confidentiality and
integrity, while also preventing interception by defend-
ers. GoldMax ensures secure and private communication
between the compromised host and its C2 server by
leveraging RSA keys and cryptographic functions. This
not only protects sensitive data from interception but
also conceals the nature of the malware’s activities from

network defenders.
• Beaconing for Persistent C2 Communication: Gold-

Max exhibited a beaconing mechanism, repeatedly trying
to contact its C2 server. This behavior is typical for
establishing persistent communication channels, allowing
attackers to issue commands, exfiltrate data, or deploy
additional payloads. Repetition of C2 communication
attempts ensures that malware can reliably reconnect with
its operators, even in the face of network disruptions or
environment changes. This mechanism also allows attack-
ers to maintain control over the compromised system for
extended periods.

The static analysis findings are verified by doing dynamic
analysis of the GoldMax malware.

C. Dynamic Analysis

The dynamic analysis of the GoldMax malware provided
significant information on its runtime behavior, network activ-
ity, file manipulation, and registry modifications. The observa-
tions highlight the sophistication of the malware in maintain-
ing persistence, evading detection, and communicating with
its command-and-control (C2) infrastructure. The techniques
used by GoldMax malware to evade detection are as follows:

• Communications with Command-and-Control Server:
The malware initiated DNS requests to megatoolkit.com,
which is likely the C2 server used for communication
and control. GoldMax engaged in repeated TCP com-
munication over ports 443 and 80, indicating the use of
HTTPS and HTTP protocols. These connections involved
full TLS handshakes followed by periodic data exchanges
every 8-10 seconds, likely serving as a beaconing mech-
anism or a means of sending system status information
to the C2 server.

• Encrypted Communications via TLS: The TLS hand-
shakes and subsequent application data transmission in-
dicate that the malware uses encryption to protect its
network communications, ensuring confidentiality and
integrity against interception.

• Creation of Encrypted Configuration File: GoldMax
created a new file named runlog.dat.tmp in the same
directory as its executable right after the execution of
the malware. The file contained a single line of encrypted
data, possibly used to store configuration details, a system
fingerprint, or a one-time initialization value.

• Registry Key Deletion: The deletion of the multiple
registry keys indicates an attempt to disable legitimate
system policies, potentially to prevent system harden-
ing measures, alter authentication rate limits, potentially
bypass login restrictions or brute-force protections, to
gather intelligence about user interactions or frequently
accessed files. Removal of entries related to OneDrive
and BITS, along with modifications to Windows Update
configurations, suggests an effort to disrupt legitimate
update mechanisms. This could prevent system patches
from being applied or allow the malware to replace
updates with malicious payloads.



• Registry Manipulation for Persistence: The interaction
with the advapi32.dll library indicates registry manipula-
tion, which is likely to disable security policies or alter
configurations to maintain persistence.

• Payload Encryption: The use of cryptographic functions
points to encrypted C2 communications or data storage,
ensuring that communications remain confidential. These
functions may be used to encrypt payloads or credentials
locally.

• Network Communication Through DNS: The use
of dnsapi.dll and wsock32.dll libraries allows network
communications, confirming the malware’s reliance on
DNS and socket-based interactions for contacting the C2
infrastructure.

• Persistence: Interaction with sysmain.sdb database sug-
gest the use of Windows Application Compatibility fea-
tures to establish persistence. Manipulation of sdb ex-
tension files is a known tactic for bypassing standard
execution restrictions or injecting malicious behaviors
into legitimate processes.

• Hibernation Mechanisms for Evasion: The malware
likely incorporates hibernation mechanisms, delaying ex-
ecution or communication for random intervals. This
behavior reduces the likelihood of detection by automated
systems, which often rely on consistent patterns.

• Registry Manipulations for Credential Theft: The use
of registry manipulations and cryptographic libraries in-
dicates attempts at credential theft or privilege escalation,
enabling malware to access restricted areas of the system.

• Heartbeat Communication: The periodic communica-
tion with the C2 server serves as a heartbeat, signaling the
malware’s continued presence and operational status. This
enables attackers to issue commands, deploy additional
payloads, or exfiltrate data.

D. Evasion Techniques

GoldMax malware exhibits a range of sophisticated evasion
techniques that are critical to its success in maintaining stealth
and avoiding detection in compromised systems.

• Beaconing Mechanism with Unpredictable Intervals:
GoldMax communicates with its C2 server by performing
periodic TLS handshakes and sending data at intervals
of 8-10 seconds. The beaconing mechanism is unpre-
dictable, making it harder for automated tools to detect
the regular patterns often associated with malicious ac-
tivity.

• Hibernation to Evade Detection: The malware includes
functionality to enter a hibernation state, where it pauses
its execution for random periods of time. This technique
reduces the likelihood of detection by automated sandbox
environments that monitor malware behavior for only a
limited duration.

• MAC Address Retrieval: The use of functions like
HardwareAddr.String to retrieve the system’s MAC ad-
dress could indicate checks for virtualized or sandboxed
environments.

• Encrypted C2 Communications with TLS: All com-
munications with the C2 server are encrypted using
TLS. This encryption ensures that network monitoring
tools cannot decipher the content of the communication,
obscuring any commands or data being exfiltrated.

E. Indicator of Compromise

The indicator of compromise identifed during the analysis
of GoldMax malware are:

• Cryptographic Libraries: crypto/aes, crypto/rc4, and
crypto/tls.

• Key strings: runlog.dat, HardwareAddr.String.
• API calls: VirtualAlloc and LoadLibraryA.
• C2 Communication: megatoolkit.com.

VIII. GOLDFINDER MALWARE

This section provides a detailed analysis of the GoldFinder
malware. This section focuses on the structure, functionality
and the evasion techniques used by the malware.

A. Introduction

GoldFinder is a reconnaissance malware linked to the
SolarWinds Compromise. It is deployed to test the network
environment of targeted machines. It is designed to evaluate
network connectivity and routing, enabling attackers to under-
stand the machine’s network setup and the presence of proxies,
firewalls, or other intermediaries.

B. Static Analysis

Static analysis of the GoldFinder malware revealed that it is
packed. It indicates that the malware has obfuscated its internal
structure and functionality. When a malware is packed the true
code is hidden until the malware is unpacked at runtime. This
is a common evasion technique used by malware to delay
detection and analysis by security tools.

In the code review it was observed that the malware is
configured to make HTTPS requests to google.com. This
action indicates that the malware is testing network con-
nectivity for testing purposes. The malware verifies network
connectivity and determines the presence or configuration of
security mechanisms like proxies or firewalls.The malware can
infer the following by analyzing responses of requests:

• Proxy Interception: If a proxy intercepts the request,
additional headers like Via or X-Forwarded-For may be
added, which the malware can analyze.

• Defense Mechanism: The malware can deduce the pres-
ence of network-level filtering or blocking mechanisms
if network packets are modified or filtered.

Detecting traffic with a firewall is challenging because the
malware generates innocent-looking traffic.



C. Dynamic Analysis

The findings of the GoldFinder malware are as follows:
• File Creation: The malware creates a file named

loglog.txt in the same directory where the malware is
executed. The malware initiates an HTTPS request to
google.com. The malware generates legitimate traffic to
avoid suspicion and bypass network defenses such as
firewalls and intrusion detection systems (IDS).

• Logging: The response of the generated traffic is written
into the loglog.txt file including status code and other
metadata. This behavior indicates that the malware is
performing reconnaissance to assess the network envi-
ronment. By analyzing the logged response, the malware
can deduce whether the machine has an active internet
connection or not.

D. Evasion Techniques

The following evasion techniques were noticed during the
analysis phase:

• Packed Malware: The malware is initially packed. It
means that the inner functionality is obfuscated and true
code is hidden until the malware is unpacked at runtime.

• Legitimate Traffic: Malware generates legitimate traffic
bypassing security controls.

E. Indicator of Compromise

Indicators of Compromise are used to identify the malware
and make rules to filter it. Following indicators of compromise
were identified in GoldFinder malware:

• Executable Packer: Ultimate Packer for Executables
(UPX).

• File Creation: loglog.txt.

IX. CONCLUSION

The activities of GoldFinder, GoldMax, Raindrop, and Sibot
represent a coordinated cyber operation that demonstrates the
strategies used in advanced persistent threat campaigns. Each
malware had a distinct role in achieving the goals of the
SolarWinds supply chain compromise. GoldFinder focused on
reconnaissance to test network defenses and identify security
mechanisms. GoldMax operated as a command-and-control
backdoor that maintained long-term access to compromised
systems. Raindrop acted as a loader to facilitate lateral move-
ment and deploy additional payloads. Sibot served as a down-
loader to establish persistence and execute further malicious
components.

GoldFinder was a reconnaissance tool designed to evalu-
ate network configurations, identify the presence of security
mechanisms, and identify the presence of internet connection.
It assessed defenses such as firewalls and proxies by generating
traffic that appeared harmless and directing it to legitimate sites
like Google.com. The tool logged the responses of the requests
and provided critical insights into the network environment.
The reconnaissance activity was a necessary step in facilitating
the deployment of more malware programs of the operation.

GoldMax was a command-and-control backdoor. It secured
communications through encryption to prevent detection dur-
ing data transmission. The backdoor used beaconing to provide
updates on system status and ensured its presence through
persistence mechanisms that allowed it to remain operational
on compromised systems. The modular structure of GoldMax
enabled the attackers to deploy commands dynamically and
exfiltrate data as required. The functionality highlighted the
use of sophisticated backdoor techniques to coordinate and
carry out malicious actions across a wide array of victims.

Raindrop operated as a loader and facilitated lateral move-
ment for delivering additional payloads. It allowed the attack-
ers to expand their reach by targeting more systems within the
compromised network. The functionality allowed the attackers
to strengthen foothold and exploit the inter-connectivity of the
organization. Due to the facilitation of lateral movement of
malicious code, Raindrop highlighted the cascading effects of
the campaign, where the compromise of one system could lead
to widespread disruptions across the entire network.

Sibot is a script-based downloader. It utilized Windows
Script Host to execute its payloads so that its activities remain
less suspicious and less likely to trigger security defenses.
Sibot was responsible in retrieving and executing additional
malware components within the compromised environment.

The malware components represent a carefully planned and
executed campaign that targeted government agencies and
critical infrastructure entities along with private-sector organi-
zations on a global scale. The SolarWinds compromise enabled
by the collection of malware tools demonstrates the potential
for supply chain attacks to bypass traditional security measures
and infiltrate highly secure environments. The attackers use of
legitimate traffic patterns and encryption techniques ensured
the success of the operations while making detection and
remediation efforts more difficult.

The campaign serve as a stark reminder of the vulnerabil-
ities present in modern supply chains and the critical need
for advanced security measures. Organizations must prioritize
the implementation of comprehensive monitoring solutions,
incident response strategies, and regular assessment of risks
to mitigate the threats posed by such advanced campaigns.
The SolarWinds incident shows how important it is for orga-
nizations to work together to improve cybersecurity. Sharing
information and building strong defenses as a group can help
tackle the growing challenges in today’s complicated digital
world.

REFERENCES

[1] SolarWinds, SolarWinds Network Performance Mon-
itor Datasheet, Jul. 2023. [Online]. Available:
https://assets.contentstack.io/v3/assets/blt28ff6c4a2cf43126/blt20c57c13
3b05b0ac/64aeea0df122ca81b2e6bf8a/npm-datasheet.pdf. [Accessed:
Nov. 15, 2024].

[2] SolarWinds, SolarWinds Security Event Man-
ager Datasheet, July 2023. [Online]. Available:
https://assets.contentstack.io/v3/assets/blt28ff6c4a2cf43126/blt019b28b4
910e4f75/64b0522c9fa423dbf59f5c79/sem-datasheet.pdf. [Accessed:
Nov. 15, 2024].



[3] SolarWinds, Orion Platform Datasheet, 2024. [Online]. Available:
https://www.solarwinds.com/assets/solarwinds/swdcv2/licensed-
products/orion/resources/datasheets/orion-platform-datasheet.pdf.
[Accessed: Nov. 15, 2024].

[4] R. Nair, K. Dodiya, P. Lakhalani, and K. Dodiya, “A Static Approach
for Malware Analysis: A Guide to Analysis Tools and Techniques,”
International Journal for Research in Applied Science and Engineer-
ing Technology, vol. 11, no. 12, pp. 1451–1474, Dec. 2023. DOI:
10.22214/ijraset.2023.57649.

[5] M. Guven, “Dynamic Malware Analysis Using a Sandbox Environment,
Network Traffic Logs, and Artificial Intelligence,” International Journal
of Computational and Experimental Science and Engineering, vol. 10,
no. 3, Sept. 2024. DOI: 10.22399/ijcesen.460.

[6] R. V. Mahmoud, M. Anagnostopoulos, S. Pastrana, and J. M. Pedersen,
”Redefining Malware Sandboxing: Enhancing Analysis Through Sys-
mon and ELK Integration,” IEEE Access, vol. PP, no. 99, pp. 1–1, Jan.
2024, doi: 10.1109/ACCESS.2024.3400167.

[7] I. M. Malik and M. B. Rahardjo, ”A Framework for Collecting and
Analysis PE Malware Using Modern Honey Network (MHN),” in Proc.
8th Int. Conf. Cyber and IT Service Management (CITSM), Pangkal
Pinang, Dec. 2020, pp. 1–5, doi: 10.1109/CITSM50537.2020.9268810.

[8] V. Dutta, M. Raghavendra, and R. Ramesh, ”Machine Learning in
Malware Detection: A Survey of Analysis Techniques,” Int. J. Adv. Res.
Comput. Commun. Eng., vol. 12, no. 4, pp. 204–208, Apr. 2023, doi:
10.17148/IJARCCE.2023.12435.

[9] B. Hammi, J. Hachem, A. Rachini, and R. Khatoun, ”Malware Detection
Through Windows System Call Analysis,” in Proc. 9th Int. Conf. Mobile
Secure Services (MOBISECSERV), Miami, USA, Nov. 2024, pp. 1–7,
doi: 10.1109/MobiSecServ63327.2024.10759991.

[10] N. Srinivas, ”Detection of Malware by Using YARA Rules,” in Pro-
ceedings of the 9th IEEE International Conference on Cybersecu-
rity and Malware Analysis (CYBERMA), 2024, DOI: 10.1109/CY-
BERMA.2024.10549308.

[11] M. I. Yousuf, I. Anwer, A. Riasat, and S. Kim, ”Windows malware de-
tection based on static analysis with multiple features,” PeerJ Computer
Science, vol. 9, no. 1, p. e1319, Apr. 2023. DOI: 10.7717/peerj-cs.1319.

[12] SolarWinds Compromise, Campaign C0024 — MITRE ATT&CK®,
attack.mitre.org. https://attack.mitre.org/campaigns/C0024/

[13] Newsweek, ”SolarWinds Orion Software Cyberattack: Hack
Victims, Targets List,” Dec. 22, 2020. [Online]. Available:
https://www.newsweek.com/solarwinds-orion-software-cyberattack-
hack-victims-targets-list-1555840. [Accessed: Nov. 15, 2024].

[14] Security.com, SolarWinds Raindrop Malware: Understanding
the Threat, [Online]. Available: https://www.security.com/threat-
intelligence/solarwinds-raindrop-malware. [Accessed: Nov. 20, 2024].


