
EasyChair Preprint
№ 15277

Single Source Library for High-Level Modelling
and Hardware Synthesis

Mikhail Moiseev and Nanda Kalavai

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 21, 2024

1

Single Source library for high-level modelling and

hardware synthesis

Mikhail Moiseev, Intel, Hillsboro, USA (mikhail.moiseev@intel.com)

Nanda Kalavai, Intel, Folsom, USA (nanda.g.kumar.kalavai@intel.com)

Abstract— In this paper we present a design methodology that utilizes a single source code for high-level modelling

and hardware synthesis. The methodology is based on Single Source library developed in SystemC that contains high-

level communication channels to provide fast simulation and cycle accurate modes transparently for the design.

Keywords—hardware modelling;hardware design;SystemC; high level synthesis

I. INTRODUCTION

Digital hardware design includes multiple steps where several artifacts are developed. Before logic synthesis, a

typical hardware design flow usually has architecture exploration, functional and performance modelling, hardware

IP RTL design, SoC design, verification, virtual prototyping, and software/firmware development. Hardware

modelling is performed iteratively with fixing and improving models based on simulation results and bugs found.

In IP RTL development and SoC design, which are often done in parallel with hardware modelling. Some

functional, performance and architectural issues can be discovered that causes updates to the architecture

specification. Having multiple independent models, which are developed in parallel and often by different teams,

leads to the problems such as: proving equivalence between the models and RTL, sharing updates between the

models and RTL, extra resources for multiple models’ development and verification.

We propose a design methodology which implements high-level models and hardware synthesis from a single

source code, see Figure 1. Our design methodology is based on SystemC language as it meets requirements of

performance models, IP RTL design, SoC design and verification. SystemC gives multiple advantages over

conventional hardware description languages, such as high flexibility and parametrization, full power of underlying

C++ language, STL and other libraries. To support features of high-level models and RTL synthesis in the same

SystemC code, we have developed Single Source library which consists of high-level communication channels and

process macros. These channels operate in two modes: Fast simulation mode and Cycle accurate mode.

Fast simulation mode is intended for all kinds of modelling done prior to RTL design. In this mode, a SystemC

design with the Single Source channels is compiled with a C++ compiler like GCC or Clang. In Fast simulation

mode there are no clock events, the clocked thread processes are activated by events of the communication channels

listed in their sensitivity lists. That provides simulation speed up in comparison with simulation of conventional

SystemC
design

SystemVerilog
RTL

Intel
Compiler

for SystemC

Functional and
performance

models
C++

compiler

Architecture
specification

SingleSource
library Virtual platform

model

cycle
accurate

fast
simulation

Figure 1. Hardware design with Single Source library

2

SystemC designs. Cycle accurate mode is intended for high-level synthesis. In this mode the Single Source channels

have implementation which complies to SystemC synthesizable standard [1]. For hardware synthesis we are using

Intel Compiler for SystemC [2] which is an open-source tool under Apache 2.0 license available at [3].

The key advantage of the proposed methodology is that Single Source library can be used by hardware architects

to model the architecture intent and micro architects as well as RTL designers can seamlessly update the architecture

model to RTL. This unified approach helps to reduce time to market since RTL is an updated version of architecture

model rather than RTL development starting from scratch after all the functional and performance models are tuned.

II. SINGLE SOURCE LIBRARY

Single Source library includes interfaces, macros, communication channels and auxiliary classes. The library is

open source under Apache 2.0 license at [3]. The main use cases of the communication channels are presented in

Figure 2. These channels can be used in SystemC method and thread processes created with SC_METHOD and

SC_THREAD correspondently. A SystemC process accesses a channel should have the channel in the process

sensitivity list.

A. Single Source Interfaces

The Single Source channels provide functional interfaces with may-blocking and non-blocking functions, some

of them listed in Table I.

B. Initiator and Target

Initiator and Target are channels intended to connect two processes in different modules: one process puts data

into Initiator, other process consumes the data from the corresponding Target. Initiator implements sct_put_if

interface, Target implements sct_get_if interface. Initiator and Target can provide combinational or buffered

connections and can have a pipeline register in the request path (see Figure 3). The response path contains an

implicitly added register if that is required to avoid combinational loop. Buffered connection can have an optional

FIFO. Combinational connection can be used if the target process is always ready to consume, otherwise buffered

connection should be used. Both connections provide maximal throughput. More details are given at [4].

Module 1 Module 2

targetProcess puts
to initiator

initiator Process gets
from target

Module 3

Process
stores data/

state

Module 4 Module 5

in
Process puts
to initiator

signal
Process gets
from target

Module 6

outsignal

register

FIFO

Process Process

pipe

signal

FIFO

pipe

Figure 2. High-level communication channels

Buffered connection

core_ready

targetinitiator

core_req

core_data

Combinational connection

targetinitiator

core_req

core_data

Figure 3. Initiator and Target connections

3

Table I. Single Source interfaces

Interface Function Comment

sct_put_if bool ready() Return true if channel is ready to put request

 void reset_put() Reset this channel

bool put(const T& data) Non-blocking put request into channel if it is ready, return

ready to request

 void b_put(const T& data) May-blocking put request, could be used in thread process only

sct_get_if bool request() Return true if channel has request to get

 void reset_get() Reset this channel

T peek() Peek request, return current request data, if no request last data

returned

T get() Non-blocking get request and remove it from channel, return

current request data, if no request last data returned

 T b_get() May-blocking get request, could be used in thread process only

sct_fifo_if

inherits sct_put_if<T> and sct_get_if<T>

 void reset() Call reset_put() and reset_get() both

unsigned elem_num() Number of elements in channel, value updated last clock edge

for method, last DC for thread

Listing 1 contains Producer/Consumer illustrative example with Initiator and Target. In this example Producer

contains method process which puts some data into Initiator init. Consumer has thread process which gets the data

from Target targ. The Initiator and Target are bound to each other with function bind().

struct Producer : public sc_module {

 sct_initiator<T> init{"init"};

 explicit Producer (const sc_module_name& name) : sc_module(name) {

 init.clk_nrst(clk, nrst);

 SC_METHOD(initProc); sensitive << init;

 }

 void initProc() {

 init.reset_put();

 if (init.ready()) init.put(getSomeValue());

 }};

struct Consumer : public sc_module {

 sct_target<T> targ{"targ"};

 explicit Consumer (const sc_module_name& name) : sc_module(name) {

 targ.clk_nrst(clk, nrst);

 SC_THREAD(targProc); sensitive << targ;

 async_reset_signal_is(nrst, false);

 }

 void targProc() {

 targ.reset_get();

 wait();

 while(true) {

 if (targ.request()) doSomething(targ.get());

 wait();

 }}};

struct Top : public sc_module {

 Producer prod{"prod"};

 Consumer cons{"cons"};

 explicit Top(const sc_module_name& name) : sc_module(name) {

 prod.init.bind(cons.targ);

 }};

Listing 1. Example of Initiator and Target usage

4

put(D2)

D3

put(D3)

D1

put(D1)

get(D4)

D4

get(D1) get(D2)

D2

D2

put(D4)

get(D3)

clk

core_data

core_ready

buffered

value

core_req

0ns 1ns 2ns 3ns 4ns 5ns 6ns

In Figure 4 there is a waveform for signals between Initiator and Target: core_req, core_ready, core_data and

value stored in the Target buffer. This waveform matches to the previous example where put into Initiator is done

in method process initProc and get from Target in thread process targProc. Gets from Target are done at the rising

clock edge, puts to Initiator are done one delta cycle after that. At time 1ns initProc gets from Target, so D1 is not

buffered. At time 3ns targProc does not get from Target, therefore D2 is stored in the internal buffer.

C. FIFO

FIFO can be used for inter-process communication between two processes in the same module and for storing

requests inside one process. Also, FIFO could be used inside of Target as an extended buffer. FIFO implements

sct_fifo_if interface. FIFO can have combinational or registered request and response paths which is specified with

the constructor parameters. FIFO size is specified with the template parameter. To provide maximal throughput for

various process types, FIFO should have enough size as it is described at [4].

Listing 2 contains FIFO illustrative example with thread process put to fifo and method process gets from fifo.

struct Top : public sc_module {

 sct_fifo<T, 10> fifo{"fifo"}; // FIFO size is 10 elements

 explicit Top(const sc_module_name& name) : sc_module(name) {

 fifo.clk_nrst(clk, nrst);

 SC_THREAD(producerProc); sensitive << fifo.PUT; // Process puts to FIFO

 async_reset_signal_is(nrst, 0);

 SC_METHOD(consumerProc); sensitive << fifo.GET; // Process gets from FIFO

 }

 void producerProc() {

 fifo.reset_put();

 wait();

 while (true) {

 fifo.b_put(getSomeValue());

 wait();

 }}

 void consumerProc() {

 fifo.reset_get();

 if (fifo.request()) doSomething(fifo.get());

 }};

Listing 2. Example of FIFO usage

Figure 4. Initiator and Target signals

5

D. Other Channels

Register channel is used to add state in SystemC method process. Register must be written in one method

process and could be read in the same or other process. Register has reset(), read() and write() functions. Register

can be read in one or multiple method or thread processes as well.

Listing 3 has Register illustrative example which accumulates data received from Target targ.

struct Top : public sc_module {

 sct_target<T> targ{"targ"};

 sct_register<T> cntr{"cntr"};

 explicit Top(const sc_module_name& name) : sc_module(name) {

 targ.clk_nrst(clk, nrst);

 cntr.clk_nrst(clk, nrst);

 SC_METHOD(cntrProc); sensitive << targ << cntr;

 }

 void cntrProc() {

 targ.reset_get();

 cntr.reset();

 if (targ.request()) cntr.write(cntr.read()+targ.get());

 }};

Listing 3. Example of Register usage

Pipeline register (sct_pipe) is intended to pipeline combinational logic and enable re-timing feature of a logic

synthesis tool. Pipeline register can be used in one method or thread process as well as between two processes.

Pipeline register is normally added to sensitivity list of a process where put or get is done. It supports to put bubbles

and get backpressure. Pipeline register implements sct_fifo_if. Pipeline register size is specified with the template

parameter.

Listing 4 has Pipeline register illustrative example with pipelining computation in method process.

struct Top : public sc_module {

 sct_target<T> targ{"targ"};

 sct_initiator<T> init{"init"};

 sct_pipe<T, 3> pipe{"pipe"}; // Pipeline number of stages is 3

 explicit Top(const sc_module_name& name) : sc_module(name) {

 targ.clk_nrst(clk, nrst);

 init.clk_nrst(clk, nrst);

 pipe.clk_nrst(clk, nrst);

 SC_METHOD(pipeProc); sensitive << targ << init << pipe;

 }

 void pipeProc() {

 targ.reset_get();

 init.reset_put();

 pipe.reset();

 if (pipe.ready() && targ.request()) {

 T data = doSomething(targ.get()); // Heavy computation to be pipelined

 pipe.put(data);

 }

 if (pipe.request() && init.ready()) init.put(pipe.get());

 }

};

Listing 4. Example of Pipeline register usage

There are Signal (sct_signal) and Ports (sct_in and sct_out) in Single Source library which are similar to

SystemC signal and ports. The reason to reimplement them in Single Source is to support Fast simulation mode.

6

Single Source clock (sct_clock) is implementation of clock source (generator) with generated events with an

option to disable. In Cycle accurate mode sct_clock inherits sc_clock and has the same behavior. In Fast simulation

mode sct_clock does not generate any events to speed up the simulation.

III. EVALUATION RESULTS

To evaluate the proposed methodology, we have taken several SystemC modules from industrial designs and

rewritten them with Single Source library (we masked exact design names here). These modules include AXI port

implementation, data multiplexor, address decoder, and on-die memory controller. In Table II there are comparison

of line of code amount for original designs and designs with Single Source library and simulation speed up of Fast

simulation mode versus Cycle accurate mode.

Table II. Evaluation results

Design
Original,

LoC

Single Source library,

LoC

Simulation speed up

A 360 191 7.9

B 517 287 6.0

C 1624 886 4.3

D 1411 1203 6.2

E 690 465 8.1

F - - 6.6

The proposed design methodology can be applied for arbitrary design kinds. The most simulation speed up can

be achieved for designs with processes which have empty cycles, i.e., do not have input data to process at some

cycles. In SystemC simulation, thread process is slower than method process, so more speed up effect can be

achieved in designs dominated by thread processes.

To check correctness of the library channels implementation, we used about 300 unit tests and several real

hardware designs with various complexity. We run the tests for SystemC implementation as well as for

SystemVerilog generated with Intel Compiler for SystemC.

IV. RELATED WORKS

There are a few existing solutions for modelling and synthesis of hardware in SystemC language. The are

proprietary libraries cynw_p2p, Flex Channels and others distributed with Stratus HLS tool [5]. We do not compare

our library with them because of the license restrictions.

There are several open source SystemC component libraries. One of them is MatchLib library [6] which is

available under Apache 2.0 license. SystemC designs with MatchLib channels can be synthesized with

Catapult tool [7]. MatchLib includes four types of channels: Combinational, Bypass, Pipeline, and Buffer. These

four channels differ in combinational request/response paths and storage capacity. All these four channel types are

covered by Single Source Initiator/Target pair with options for combinational or buffered connection and for

pipeline register in the request path.

MatchLib library provides input/output unbuffered and buffered ports to bind to the channels. The input ports

have blocking and non-blocking pop functions, the output ports have the same push functions. In addition to that,

buffered ports have Full() and Empty() functions. In Single Source library, ports are not required to bind modules

at the same module hierarchy level (with the same parent module). Initiator/Target pair represents ports and

channels both to reduce number of components and lines of the user code. To check if Initiator/Target connection

is full/empty there are correspondent functions ready() and request().

MatchLib connections designed with ports and channels can be used in clocked threads only. Important

advantage of Single Source library is that the channels can be used in clocked thread and method processes as well.

7

Using Single Source channels in method processes allows to design zero latency modules. Generally, Intel Compiler

for SystemC does not apply any rules or limitations on scheduling and translates SystemC code into equivalent

SystemVerilog code as it is prescribed in [1]. That practically means, all the connections and channels options are

valid for thread and method processes in any combinations.

Besides all that differences, the main advantage of the proposed solution is that the library and the high-level

synthesis tool are open source.

There are two other SystemC libraries cited at systemc.org: SystemC-Components (SCC) [8] and Virtual

Components Modeling Library (VCML) [9]. SCC is supposed to be a lightweight productivity library for SystemC

and TLM 2.0 based modeling tasks. The Virtual Components Modeling Library contains a set of SystemC/TLM

modeling primitives and component models that can be used to swiftly assemble system level simulators for

embedded systems, i.e., virtual platforms.

SCC and VCML do not support hardware synthesis, while the proposed methodology has a feature that the

model is synthesizable at every stage (architecture to RTL). The architecture model might be a highly abstracted

version of the design similar to SCC and VCML. SCC and VCML use TLM debug and trace capture features. The

proposed design methodology separates the synthesizable model and the features that provides debug and trace

capture. Any external library or tool could be used for that purpose together with Single Source library.

V. CONCLUSION

In this paper we have presented the design methodology which uses a single source code in SystemC language

for high-level modelling and hardware synthesis. The methodology is based on Single Source library which

provides Fast simulation and Cycle accurate modes transparently for user code. Single Source library supports real-

world design scenarios, uses simple design model, and protects architects and designers from common mistakes in

inter-process communication. The proposed methodology reduces design time by ~2x with reducing the amount of

user written code and provides ~4x-8x simulation speed up in Fast simulation mode.

REFERENCES

[1] “SystemC Synthesizable Subset Version 1.4.7”. http://accellera.org/downloads/standards/systemc.

[2] M. Moiseev, R. Popov, I. Klotchkov, “SystemC-to-Verilog Compiler: a productivity-focused tool for hardware design in cycle-accurate

SystemC,” in proceedings of DvCon`19.

[3] “Intel Compiler for SystemC source code”. https://github.com/intel/systemc-compiler.

[4] “Single Source library wiki page”. https://github.com/intel/systemc-compiler/wiki/SingleSource-library.

[5] “Stratus High-Level Synthesis” https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-

synthesis.html

[6] “MatchLib library source code”. https://github.com/NVlabs/matchlib.

[7] “Catapult C++/SystemC Synthesis tool” https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/.

[8] “SystemC-Components” https://github.com/Minres/SystemC-Components

[9] “Virtual Components Modeling Library” https://github.com/machineware-gmbh/vcml

http://accellera.org/downloads/standards/systemc
https://github.com/intel/systemc-compiler
https://github.com/intel/systemc-compiler/wiki/SingleSource-library
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://github.com/NVlabs/matchlib
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://github.com/Minres/SystemC-Components
https://github.com/machineware-gmbh/vcml

