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Abstract 

The rise in electric vehicles(EVs) has led to a rapid increase in the number of electric 

vehicle charging stations(EVCSs)  with approximately 5 million installed worldwide by 

2023. These EVCSs are operated according to various standards and protocols. ISO 

15118, which is used for communication between EVs and EVCS, lacks security 

guidelines, and this absence can result in numerous vulnerabilities due to improper 

implementation. This study introduces the V2G Fuzzer, a security testing tool designed 

to prevent vulnerabilities caused by incorrect implementations in EV CSs. The tool is 

designed as a black-box testing solution capable of handling various implementations, 

regardless of the EVCS platform or programming language used. The fuzzing technique 

is applied to identify errors and discover vulnerabilities in the application layer where 

messages are processed. To validate the effectiveness of this approach, fuzzing tests were 

conducted on open-source EVCS implementations. The results confirmed that the tool is 

effective in determining whether the open-source projects correctly implement the ISO 

15118 standard and in detecting potential vulnerabilities. 

1 Introduction 

The rapid adoption of electric vehicles (EVs) is transforming the automotive ecosystem, with 

projections indicating that over 50% of all vehicles will be electric in the near future [1]. This surge has 

led to the installation of more than 5 million electric vehicle charging stations (EVCS) globally as of 

2023, creating a large need for charging infrastructure [2]. A comprehensive infrastructure is essential 

to provide effective EV charging services, comprising various components and standards. Key 

components include EVCS, Central Management Systems (CMS), and Electric Mobility Service 
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Providers (e-MSP). The ISO 15118 standard plays a crucial role by governing communication between 

EV and EVCS among the standards facilitating this ecosystem. 

ISO 15118 not only manages the communication protocols but also controls the charging process 

and handles the transmission of critical information such as payment details. Encryption via Transport 

Layer Security (TLS) is supported by ISO 15118 however, its use is not mandatory. Approximately 90% 

of EVCSs do not implement TLS encryption, as observed in practice [3]. The ISO 15118 standard lacks 

specific security guidelines and has insufficient implementation requirements. This deficiency creates 

opportunities for attackers to exploit the communication interface between EVs and EVCSs, potentially 

leading to hacks of charging stations or broader attacks on the charging infrastructure. Indeed, various 

threats have been identified targeting the interfaces that communicate with EVs [4]. 

This study proposes the design of a black-box fuzzing tool aimed at evaluating whether EVCSs   

have properly implemented the ISO 15118 standard and at identifying additional vulnerabilities at the 

application layer. This approach allows for the assessment of system functionality without examining 

internal code structures, logic, or implementation details. Fuzzing techniques employing various 

strategies are utilized to explore and exploit security vulnerabilities deeply embedded within protocol 

interactions. The main contributions of this paper are as follows: 

(i) We propose a black-box fuzzing methodology that enables the evaluation of multiple ISO 15118 

implementations without prior knowledge of the system's internal workings. This approach allows us 

to assess the functionality of a system without delving into its internal code structure, logic, or 

implementation details. (ii) We utilize a range of fuzzing techniques employing various strategies to 

explore and exploit security vulnerabilities deeply embedded in protocol interactions. This research 

sheds light on the effectiveness of fuzzing as a proactive security measure, offering valuable insights 

into identifying and addressing potential weaknesses within the context of ISO 15118 protocol 

interactions. (iii) Using our proposed fuzzing tool, we identify several vulnerabilities in EVCS 
implementations. Based on these findings, we suggest measures to enhance the security of the ISO 

15118 standard. 

2 Background and Related Work 

2.1 V2G Communication 

First published in 2013, ISO 15118 enabled communication between EV and EVCS, known as 

Vehicle-to-Grid (V2G) communication. ISO 15118 defines the requirements for implementing 

communication from the physical layer up to the application layer within the OSI seven-layer model 

[5]. It also provides test cases to verify proper compliance with the standard. Figure 1 illustrates the 

relationship between the ISO 15118 standard and the OSI seven-layer model. ISO 15118 operates based 

on IEC 61851, which is used for conventional EV charging. Power Line Communication (PLC) is 

performed through the CP (Control Pilot) line of the EVCS cable, and digital communication based on 

ISO 15118 can be selected via the duty cycle of the CP line [6]. 

The main standards for communication are ISO 15118-2[7] and ISO 15118-3[8]. ISO 15118-3 

defines the requirements for the physical and data link layers for communication between EVs and 

charging stations and specifies how to transmit data using PLC communication. ISO 15118-2 defines 

the requirements related to the network layer up to the application layer. ISO 15118-2 specifies the 

messages exchanged between EVs and charging stations, outlining the flow from IP identification of 

the EV and EVCS to the termination of charging. Additionally, data is defined to be transmitted in the 

EXI (Efficient XML Interchange) format, which encodes XML (Extensible Markup Language) data. 



EVs and charging stations that satisfy the requirements defined in these standards can perform data 

communication based on ISO 15118. 

2.2 Fuzzing Test 

Fuzz testing, commonly known as fuzzing, is a software testing technique used to discover coding 

errors and security vulnerabilities in software. A fuzzer is a type of software that automates this testing 

process by providing unexpected or random data inputs to a program. The primary goal of fuzzing is 

not only to test software functionality but also to explore and identify bugs and vulnerabilities such as 

coding errors, buffer overflow vulnerabilities, and possibilities of denial-of-service attacks. This can be 

achieved by inducing unexpected behavior through the use of malformed or random data as program 

inputs. Fuzzing discovers defects more easily by attempting various combinations of input values to 

cause crashes or abnormal behavior in software. Traditional fuzzing techniques can be broadly 

classified into three categories: black-box fuzzing, white-box fuzzing, and gray-box fuzzing. 

Black-Box Fuzzing: Black-box fuzzers like zzuf[9] do not require access to the source code or 

knowledge of the internal implementation details of the target software. Performing fuzzing by 

generating test cases randomly in a black-box manner is relatively straightforward, but this approach 

can be inefficient. Randomly generated input values may be rejected as invalid by the software or may 

fail to reach deeper parts of the code, limiting the effectiveness of the testing. However, if information 

about the protocol used by the target or the format of the messages is known, black-box-based fuzzing 

can still perform effective testing. This approach can be highly practical and enhance testing efficiency. 

White-Box Fuzzing: White-box fuzzing techniques optimize test case generation by utilizing the 

source code of the target software. These techniques analyze the code to systematically explore 

execution paths using dynamic symbolic execution and other advanced methods. This allows for a more 

thorough examination of the software to discover bugs and vulnerabilities. However, white-box fuzzing 

requires access to the source code and may not be practical in situations where the source code is 

unavailable or resources are limited. 

Gray-Box Fuzzing: Gray-box fuzzing is more practical for real-world applications where source code 

access is not available because it does not require source code access. Gray-box fuzzers like AFL[10] 

 

 

Figure 1: ISO 15118 Protocol Stack and Relationship to OSI Layer 7 



instrument the target binary to collect useful runtime information such as code coverage data. This 

feedback guides the fuzzer to dynamically generate new test cases that are more likely to explore 

unexplored code paths, improving the efficiency and effectiveness of the fuzzing process. 

In summary, fuzz testing is a powerful technique for discovering software vulnerabilities by 

injecting unexpected inputs and monitoring the resulting behavior. The choice among black-box, white-

box, and gray-box fuzzing depends on specific testing requirements, the availability of source code, and 

resources. Testers can effectively identify and mitigate potential security risks in software systems by 

leveraging the strengths of each approach. 

2.3 Network Protocol Fuzzing 

Network protocol fuzzing is a software testing technique used to detect vulnerabilities in network 

protocols [11]. It works by supplying the system with randomly generated or intentionally malformed 

input data to trigger abnormal behavior. Network protocol fuzzing is primarily employed to identify 

vulnerabilities in protocol implementations by inducing errors in message structures or sequences, 

revealing potential security flaws. 

Two main types of network protocol fuzzing exist. The first targets protocols with publicly available 

specifications, as seen in research like L2Fuzz[12] and Z-Fuzzer[13]. These approaches create test cases 

based on official protocol documentation to find vulnerabilities. The second type focuses on protocols 

without publicly available specifications. Research such as Snipuzz[14] uses response values from 

messages to infer message formats, allowing fuzzing in protocols where the specifications are not 

disclosed. 

The complexity of network protocol fuzzing goes beyond simple data exchange. It also involves 

handling functions like transmission error detection, timeout and retry management, and flow control, 

which makes it more difficult than general software fuzzing. A well-designed communication model 

that manages the protocol’s communication flow and states is essential for effective fuzzing. Incorrect 

or incomplete communication models hinder successful fuzzing efforts. 

2.4 Related Work 

The fuzz testing research on the ISO 15118 protocol stack focused on identifying security 

vulnerabilities in the communication interface between vehicles and the grid. In particular, the study 

targeted the TLS protocol, manipulating message fields to uncover various vulnerabilities during the 

TLS handshake process [15]. By using fuzzing techniques to inject malformed certificate data and 

manipulate message fields, the research demonstrated that the ISO 15118 protocol is vulnerable to 

different forms of invalid data inputs. This study contributed to a deeper analysis of potential risks in 

secure communications within the electric vehicle charging infrastructure. However, since the research 

was limited to the TLS layer, it was difficult to identify vulnerabilities at higher layers, such as the 

application layer. 

In addition, similar research was conducted targeting CMS. This research performed fuzzing tests 

based on the Open Charge Point Protocol (OCPP), which governs the communication between EVCS 

and CMS [16]. OCPP, as a key component of the EV charging infrastructure, ensures interoperability 

between EVCS and CMS. The study generated two types of test cases: one that adhered to the protocol's 

constraints and another that deliberately violated them, to verify how well the CMS implemented the 

OCPP protocol. Fuzzing, performed with consideration of OCPP's state machine transitions, uncovered 

vulnerabilities arising from complex interactions. Among the vulnerabilities found, 5 were confirmed 

as Common Vulnerabilities and Exposures (CVEs), with 7 more under review. 



3 V2G Fuzzer Design 

This section examines the design of the V2G fuzzer and analyzes the specific functions of each 

component. First, it describes the design of the communication model used to perform network protocol 

fuzzing on EVCS. Next, it provides a detailed explanation of each component of the V2G fuzzer. Figure 

2 shows the architecture of the V2G fuzzer.  

The communication model for fuzzing the EVCS through the interaction between the EV and EVCS 

is designed and implemented to enable seamless communication with the EVCS. The EV and EVCS 

communicate using the ISO 15118 standard, an open protocol. Based on this standard, a top-down 

approach was employed to design the communication model. The focus of this study is to perform 

fuzzing tests targeting the application layer within the EV charging communication flow. Therefore, 

the model is designed to enable fuzzing at specific points in the communication flow. Figure 3 illustrates 

the V2G communication process following the ISO 15118 standard, and the model ensures that fuzzing 

can be applied to the application layer during this process. This fuzzing tool is designed as a black-box 

approach to be performed directly on actual EVCS. This allows fuzzing to be conducted without 

dependency on the language or platform in which the EV CS is implemented. Additionally, while white-

box or gray-box approaches require knowledge of the code or techniques for emulating the EVCS 

firmware, the black-box approach does not require such techniques, making it a more practical solution.  

This tool establishes a session with the EVCS, allowing communication to input messages—

something that conventional network fuzzing tools find challenging. While it similarly inputs data 

through packets, it follows the specific communication sequence of the EV charger, enabling fuzzing 

that is specialized for EVCS During the design process, a major challenge was the lack of suitable 

existing fuzzing tools to reference for EVCS. Consequently, it was necessary to develop a dedicated 

fuzzing tool for EVCS from the ground up. To address this, a communication model was designed to 

simulate the network protocol between chargers and electric vehicles based on EVCS simulators. This 

design established a foundation for more effectively analyzing potential vulnerabilities in V2G 

communication. This fuzzing tool establishes a session with the EVCS and generates messages to 

perform fuzzing on the target EVCS. During the fuzzing process, the Message Generator creates 

messages, and each fuzzing module manages these messages and transmits values accordingly. The 

 

 

Figure 2: V2G Fuzzer Architecture 



Error Detector then checks the responses. The EVCS uses TCP communication, and if the firmware or 

system of the charger crashes, no TCP response is received. This setup is designed to identify whether 

an error occurred based on the input by detecting the absence of a response.  

3.1 Device Connector 

The Device Connector facilitates the establishment of a V2G (Vehicle-to-Grid) session between an 

EV and an EVCS. This session enables communication when the EV and the EVCS are connected via 

a charging cable. Upon connection, the EV initiates the Signal Level Attenuation Characterization 

(SLAC) protocol, which verifies the physical link between the EV and EVCS and exchanges necessary 

MAC addresses for communication. 

Following SLAC, the SECC Discovery Protocol (SDP) is executed, allowing the exchange of IP 

addresses between the EV and EVCS. Once IP addresses are exchanged, TCP session is established, 

enabling message transmission. Given that communication depends on the TCP protocol, it is crucial 

to manage the Seq and Ack numbers accurately when transmitting fuzzing messages. Incorrect Seq and 

Ack number management may disrupt communication or result in message rejection by the EVCS. The 

Device Connector ensures this precise management of Seq and Ack numbers, thereby maintaining 

reliable V2G communication. 

3.2 Fuzzing Module 

This study utilizes three fuzzing mechanisms—Random Fuzzer, State Machine Fuzzer, and 

Constraint Fuzzer—to test the security of EVCSs using the ISO 15118 protocol. 

Random Fuzzer: The Random Fuzzer generates XML data based on the XML schema defined in ISO 

15118, mutating the values of XML elements without violating the schema. The fuzzing is performed 

by altering the data’s type, value, length, and by using null values. This approach allows testing of 

multiple scenarios where vulnerabilities might occur. 
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State Machine Fuzzer: The State Machine Fuzzer simulates valid communication paths between the 

EV and EVCS before introducing fuzzing at specific states, providing deeper protocol coverage. The 

fuzzer follows valid ISO 15118 message sequences, such as those for starting a charging session, and 

performs fuzzing from the state reached. ISO 15118 defines 14 states for the EVCS, and the state 

machine fuzzer facilitates fuzzing at specific states. For example, in the Wait for 

supportedAppProtocolReq state, the EVCS waits for the SupportedAppProtocolReq message, and the 

fuzzer generates messages based on this to conduct effective fuzzing. The fuzzer ensures that all states 

are covered. 

Constraint Fuzzer: The Constraint Fuzzer operates by applying specific constraints to XML attributes 

when generating messages. For example, the ServiceScope element in the ServiceDiscoveryReq 

message is a string type with a length limit of 32 bytes. The fuzzer ensures that even within these 

constraints, vulnerabilities can be discovered. Additionally, the fuzzer tests violations of such 

constraints to identify whether the EVCS correctly handles exceptions. This process ultimately verifies 

whether the EVCSs is properly implementing the ISO 15118 standard. 

3.3 Message Generator 

The message generator is finely tuned to perform effective fuzzing on EVCS, considering the 

complexity of ISO 15118. It is designed to conduct fuzzing tests on EVCS by utilizing the XML schema 

provided by ISO 15118. Data mutations occur in four ways: type mutation, value mutation, data length 

mutation, and the insertion of null values when generating messages. Message generation is divided 

into two main approaches. The first approach generates data that adheres to the constraints, based on 

the 14 messages exchanged during communication between the EV and EVCS. This method is used to 

verify whether the EVCS is correctly implemented and to identify any potential vulnerabilities under 

ISO 15118-compliant conditions. The second approach violates these constraints, testing how robustly 

the EVCS responds when given values that do not conform. This method assesses the system’s 

resilience and security by analyzing the effects of exceptional or invalid inputs on the EVCS. 

3.4 Error Detector 

The error detector plays a role in detecting errors or bugs that occur in EVCS, identifying 

exceptional situations. Since EVCS and EV are fundamentally connected via TCP communication, any 

bugs in the EVCS software can be detected immediately. When a software bug occurs, the software is 

unable to respond to TCP requests due to the exceptional situation. For this reason, after sending a 

fuzzing message, the TCP response is checked before the next fuzzing message is transmitted. However, 

ISO 15118 does not define specific responses to exceptional input values, making it difficult to identify 

the exact error that has occurred in many cases. This study addresses this challenge by utilizing software 

debug outputs to analyze errors in more detail. As a result, it becomes possible to accurately identify 

which fuzzing message triggered the error. 

Additionally, the responses are analyzed to verify that correct responses are returned for input values 

conforming to the standard. For example, according to the ISO 15118 standard, when the EV charger 

receives a valid input, it is defined to return the value “OK” in the Response Code field. By verifying 

that the expected response is received for standard-compliant input values, compliance with the standard 

can be assessed. 

4 Implementation and Analysis 

This section presents the experimental environment and the analysis of the fuzzing test results. In 

this study, only the Constraint Fuzzer and Random Fuzzer were utilized, while the State Machine Fuzzer 



was not used, and fuzzing was performed on a single state. The fuzzing process targeted the state of the 

electric EVCS that waits for the supportedAppProtocolReq message. 

4.1 Experimental Environment 

This study conducted fuzzing tests on EVCS using the open-source software AcCCS[17], which 

mimics the communication of real EVCS rather than using actual EVCSs. AcCCS was developed by 

Idaho National Laboratory in the United States to sniff data and perform man-in-the-middle attacks on 

communication between electric vehicles and EVCS. The experimental environment, as shown in 

Figure 4, utilized two virtual environments—one running the fuzzing tool and the other running the 

AcCCS software. The communication was established over IPv6, simulating a real EVCS environment. 

This setup was designed to facilitate network fuzzing on actual EVCS in future tests. 

4.2 Constraint-Based Analysis 

AcCCS was fuzzed to verify whether it processes data in compliance with the specified constraints. 

ISO 15118 provides the constraints for the SupportedAppReq message, which are listed in Table 1. The 

fuzzing process, based on these constraints, revealed three software errors, as shown in Table 2. These 

errors include Out Of Memory Error, Index Error, and ParseError. Figure 5 is an Error Massage of 

AcCCS in action Each of the three errors caused AcCCS to halt, which could potentially lead to Denial 

of Service (DoS) attacks. The ProtocolNameSpace element in the SupportedAppProtocolReq message 

was the source of the errors, while other elements remained unaffected. ProtocolNameSpace is a string-

Elment Type Length Data Description 

ProtocolNameSpace Stirng 100 Specific protocols supported by EVCS 

VersionNumberMajor UnsingnedInt - Major version number of the protocol  

VersionNumberMinor UnsingnedInt - Manor version number of the protocol  

SchemaID UnsingnedByte - SchemaID assigned to the protocol 

Priority UnsingnedByte 1~20 Protocol priority 

Table 1: SupportedAppProtocolReq Message Elements 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Experiment environment 



type element limited to 100 characters. AcCCS, however, failed to handle special characters in the string 

value, resulting in a ParseError. When AcCCS parsed the XML data, characters like <, >, and . caused 

ParseErrors, and due to the lack of exception handling, the program terminated unexpectedly. 

An Index Error occurred when the value of the ProtocolNameSpace element exceeded 30 characters. 

Although AcCCS should accept up to 100 characters, as defined by the standard constraints, it failed to 

do so. The Out Of Memory Error occurred when continuous data input overwhelmed the memory. The 

EXI decoding module in AcCCS could not handle the sustained input, leading to Out of Memory Error 

These three errors occurred despite AcCCS following the standard constraints, mainly due to poor 

exception handling and flawed implementation. Fuzzing without following the constraints produced 

similar results to those obtained while adhering to the constraints. This analysis confirmed that errors 

can be identified in software implementing electric vehicle charging communication. Testing a single 

state revealed three errors, suggesting that further fuzzing across multiple states may uncover additional 

issues. The discovery of three vulnerabilities in a single state suggests that additional vulnerabilities 

could emerge when fuzzing is performed on other states. Furthermore, identifying these vulnerabilities 

requires initiating communication prior to handling application-layer messages, which can be 

challenging for conventional fuzzing tools to detect. Thus, the effectiveness of the proposed fuzzing 

tool was confirmed. 

5 Discussion 

This study raises two key discussion points the issue of validity verification and the actual design 

of charging hardware. We developed a methodology to fuzz EVCS and performed fuzzing on EVCS 

Error Type Occurred Element Cause 

Index of Error 

ProtocolNameSpace 

Element value greater than or equal  

to 30 characters 

Parse Error Special symbols 

Out of Memory Mass Data Input 
Table 2: List of errors discovered 
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simulations. However, since we did not conduct fuzzing on the actual firmware and software installed 

in real EVCS, further fuzzing on real-world EVCS is necessary for proper validity verification. 

Additionally, the introduction of new evaluation metrics is required to ensure thorough verification. 

While the experiments were conducted in a virtual environment, it is necessary to implement the 

PLC used by EVCSs to enable testing on actual chargers. There are existing studies that have 

established communication testbeds using real power line modems, and based on this, it is essential to 

incorporate hardware elements into future work. 

6 Conclusions and Future Research 

The increasing number of electric vehicles (EVs) has led to a rise in the number of EVCSs, and the 

infrastructure for EV charging services is being actively developed. Standards and protocols exist to 

support the implementation of EVCS infrastructure, and among them, ISO 15118 has gained significant 

attention for enabling V2G communication. However, implementing ISO 15118 presents challenges, 

as the standard includes limited security guidelines, leading to errors and vulnerabilities due to improper 

implementation. To address this, we propose a fuzzing tool to test whether EVCS correctly implement 

the ISO 15118 standard. The fuzzing tool incorporates a Constraint Fuzzer, a State Machine Fuzzer, 

and a Random Fuzzer, which interact to manage the complex communication processes and state 

machines of EVCS. These fuzzers assess compliance with constraints and identify potential 

vulnerabilities. 

We conducted fuzzing on an EVCS communication simulator and identified three vulnerabilities. 

However, since this fuzzing was limited to a single state, future research will expand fuzzing to all state 

machines to discover more errors and vulnerabilities. Additionally, we plan to continue our research by 

testing EVCS firmware and other open-source projects related to EVCS communication. 
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