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Abstract. Data trustees serve as intermediaries that facilitate secure
data sharing between independent parties. This paper offers a techni-
cal perspective on data trustees, guided by privacy-by-design principles.
We introduce PrivTru, an instantiation of a data trustee that prov-
ably achieves optimal privacy properties. Therefore, PrivTru calculates
the minimal amount of information the data trustee needs to request
from data sources to respond to a given query. Our analysis shows that
PrivTru minimizes information leakage to the data trustee, regardless of
the trustee’s prior knowledge, while preserving the utility of the data.
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1 Introduction

The concept of a data trustee (or sometimes data trust) facilitates a data econ-
omy that aligns with privacy goals and data protection regulations, particularly
in the EU [2, 3, 12]. It addresses challenges in sharing data between independent
data sources and data receivers. This is particularly relevant in fields such as
medicine, public administration, mobility, and other domains where data can
drive innovation and create value. Politically, data trustees are presented as an
alternative to the dominance of data platforms, which risk creating a “data
oligopoly” that centralizes power and limits competition [12].

Most discussions have focused on the organizational aspects [3], situating
data trustees as a third party between data sources (entities who have data)
and data receivers (entities who want data). A core idea of the concept is that
sources and receivers are independent systems, operated by any entity, enabling
data sharing (and potentially linking) across institutional boundaries. To fulfill
this role, a data trustee needs to be constituted as an independent organization,
which has no interest in the data itself. As such it can reasonably balance the
interests of the involved parties. The primary task of a data trustee is, thus, to
manage data “on behalf of and in the interest of” [12] the data sources.

The literature [2, 12] categorizes trustees into two types: data stewards and
data exchange. In the former, the trustee stores the data, whereas in the latter,
the trustee facilitates matching between sources and receivers and relays the
data without storing it.
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In this paper, we present a technical perspective on data trustees, focusing
specifically on data stewards and data exchanges. This work addresses a gap in
the discussion on data trustees, which has largely been explored from organi-
zational, political, and legal perspectives. By applying Hoepman’s privacy de-
sign strategies [9], we identify the challenges of implementing privacy-respecting
data trustees and demonstrate that the data exchange model is preferable from
a privacy-centric standpoint.

We then introduce PrivTru, a data exchange designed to be private by design.
To this end, we extend relational algebra, enabling the formulation of individ-
ual subqueries for generalized data from the data sources. By leveraging this
approach, PrivTru outsources pre-processing tasks to the data sources, ensuring
that only the necessary information is retrieved to answer a given query. We fur-
ther prove that our instantiation is optimal in minimizing the information the
data trustee learns about the provided data. The proposed solution achieves this
without any loss of utility and remains optimal regardless of the prior knowledge
the central exchange may have about the input data. Accordingly, our contribu-
tions can be summarized as follows:

– We formulate a technical perspective on data stewards and data exchanges,
the two primary types of data trustees (Section 2).

– We use Hoepman’s privacy design strategies [9] to analyze the privacy prop-
erties of the proposed models (Section 3).

– We introduce PrivTru, an instantiation of a data exchange aligned with
privacy engineering principles (Section 4).

– We analyze the information gain of the central data exchange in PrivTru
and prove that it is minimal compared to all other relational data exchange
implementations (Section 5).

2 Technical Perspective on Data Trustees

In this section, we provide a technical perspective on the notion of a data trustee
by introducing two models capturing its main variations: data steward and data
exchange. To encompass most concepts covered by this notion, the models focus
on the core functionality of a data trustee, which is providing access to data from
data sources to data receivers. Apparently, given the broad understanding of a
data trustee, there may be some instantiations of data trustees, stewards, and
exchanges that are not compatible with our model. We additionally consider
the question of bootstrapping the connection between sources, receivers, and
the trustees, notably the implementation of access control, to be out of scope.
Nevertheless, the models are designed to be extensible, allowing for adaptation
to specific organizational and legal requirements of data trustees or to provide
better guidance for practical implementation.

In the data trustee model, the third party sitting between the sources and the
receivers is a steward or an exchange. These are differentiated by their mandate to
store the processed data, which leads to distinct data flows when in operation. A
steward stores data on behalf of the sources, while an exchange merely processes
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Fig. 2. Illustration of a data exchange.

the information from the sources, without storing any data. Figure 1 illustrates
the architecture and functionality of a data steward. In the setup phase, all
sources send all of their data to the steward (Step 0 ), which then stores it
centrally. Subsequently, the steward provides one or more API endpoints for
the receivers to query the data (Step 1 ). It processes these queries by sending
results back to the corresponding receiver (Step 2 ).

The architecture of a data exchange is depicted in Figure 2. During the
bootstrapping process (Step 0 ), the central entity only receives the schema
of the data provided by the sources. Exchanges provide the same interface as
stewards, enabling receivers to query information and obtain results (Steps 1
and 4 ). However, unlike stewards, exchanges do not store any data. Instead,
upon receiving a query (Step 1 ), they generate subqueries for each data source
and assembles the subresults to answer the full query (Steps 2 and 3 ).

3 Privacy Analysis of Data Trustees

A system that prioritizes privacy should be designed with respect to privacy-by-
design strategies. In this section, we apply these design strategies to our two data
trustees models and argue that data exchanges are preferable to data stewards
under these principles.

Privacy Design Strategies To bridge the gap between privacy requirements
for IT systems driven by ethical and legal requirements and software develop-
ment, Hoepman proposed eight privacy design strategies [9]. According to this
perspective, a system’s design plays a significant role in shaping its level of
privacy. Therefore, privacy considerations should be taken into account from
the very beginning, when the foundational concepts and ideas for a new sys-
tem are first being developed, which includes our models of data trustees. His
contributions are categorized into data-oriented strategies and process-oriented
strategies. Since we focus on the technical side of data trustees, our analysis is
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limited to the former. Of course, process-oriented strategies must also be con-
sidered when deploying a data trustee. The data-oriented privacy strategies as
formulated by Hoepman [9] are as follows:

– Minimize: The amount of personal data that is processed should be limited
to the minimal amount possible.

– Hide: Any personal data, and their relationships, should be concealed from
plain view.

– Separate: Personal data should be processed in a distributed manner, using
separate compartments whenever possible.

– Aggregate: Personal data should be processed at the highest level of ag-
gregation and with the least detail necessary for it to remain useful.

Comparing Data Stewards and Data Exchanges In the following analysis,
we compare the data trustee models (as outlined in Section 2) based on the data-
oriented privacy strategies. Hereby we focus on the differences between the two
models and always assume the same premises when possible.

Minimize: Data trustees generally allocate information from multiple data
sources to be jointly provided to one or more data receivers. This is a problem
for data minimization because when two or more personal data points concern-
ing one individual are joined, the generated information is in most cases more
privacy-sensitive than the two data points alone since it increases the risk of
re-identification attacks [13]. Still, one can argue that the data is sufficiently
minimized if two requirements are fulfilled. Firstly, the data sources need to
make sure, that the data they provide is already minimized. Secondly, the pur-
pose of the whole system is formulated broadly. So that it encompasses all use
cases where any data might be requested. If the sources give their consent to
the possible wide range of data usage, such usage is not a privacy violation. If a
data trustee satisfies these conditions, we can consider the system to be in line
with Minimize. In the data exchange model, data sources can minimize queries
locally, thereby enhancing privacy when compared to data stewards.

Hide: For data trustees, it is essential to ensure that data remains confi-
dential. Encrypting connections secures the content during transfer. However,
when data requests involve only a subset of sources, it may also be necessary to
obscure traffic patterns—especially when a single data source corresponds to an
individual or a small group, a challenge that solely affects data exchanges. In
such cases, obfuscation techniques can mitigate risks. This leaves data exchanges
with a slight but manageable disadvantage compared to data stewards.

Separate: Organizational data trustees are formulated as centralized sys-
tems, which opposes the Separate design strategy. As discussed in Section 2,
a centralized organizational concept does not necessarily demand a centralized
technical model. The data exchange model is fundamentally embracing the Sep-
arate strategy, while the data steward model is breaking it. This is especially
true if a data exchange is instantiated by a distributed protocol between the
data source and receivers, and not through a centralized service. Regarding Sep-
arate, data exchanges are to be favored over data stewards.
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Aggregate: Data aggregation can occur at the data sources or by the data
steward/exchange. For certain techniques, such as k-anonymity [13], access to
all data points is critical for a reasonable privacy-utility tradeoff. Thus, aggre-
gation strategies must be carefully tailored to each use case. Data exchanges are
generally preferred due to their flexibility in determining aggregation levels per
query, whereas the data steward model requires defining these levels during the
bootstrapping phase.

Summary of Comparison Summarizing the analysis, we observe that data
exchanges are mostly preferable from a privacy perspective. This is largely due to
the Separate strategy, which data exchanges fully implement and data stewards
compromise by default. For Hide, both models are comparable, although data
exchanges are more prone to information leakage via side channels. Minimize
& Aggregate can be achieved by both models; however, the data exchange
model conceptually offers more flexibility, as the data sources can minimize or
aggregate the data on a per-query basis.

4 PrivTru: Minimizing Information Leakage

In this section, we introduce PrivTru, a data trustee designed with privacy-
by-design principles. Our analysis revealed that designing PrivTru as a data
exchange is preferable for aligning with privacy principles. Yet, implementing
Minimize and Aggregate poses challenges. In our work, we focus on Mini-
mize and argue that Aggregate can be addressed similarly, as discussed in
Section 7. We specifically examine how queries to PrivTru are structured and
how subqueries are derived.

Data and Query Format For PrivTru, we adopt the commonly used rela-
tional database model, where data is stored in tables T , also referred to as
relations. Each table consists of multiple columns, identified by a set of at-
tributes A(T ) = tA1, . . . Anu, with n ą 0. Each attribute Ai is associated with
a domain D(Ai), which defines the set of permitted values in this column. Ac-
cordingly, the datapoints t in T are the rows of the table. Formally, they are
tuples of length n with ti P D(Ai) for i = 1, . . . n. In the system model of data
exchanges, there are multiple data sources S1, . . . Ss, each providing a portion of
the data. For readability, we assume that each source Si contributes exactly one
table Ti to the system. In addition, the attributes across all tables are assumed
to be pairwise distinct, meaning that every attribute in the system is present
in exactly one table. Note, that data trustees in general and data exchanges
specifically are not tied to a specific data model.

Using relational databases as our data model naturally leads to relational al-
gebra as the foundation for our query model. Specifically, we adopt the relational
algebra as introduced by Codd [7].
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Definition 1 (Relational Algebra [1]). The relational algebra consists of
three primitive operators, working on tables (or relations) T .

(a) Selection: σF (T ) selects tuples in T that fulfill a given propositional for-
mula F . The formula F consists of the logical operators ^,_, , connecting
literals of the form true, false, AθB, and Aθc with A,B P A(T ), c P D(A),
and θ P t=,ău.

(b) Projection: π(A1,...An)(T ) outputs a new relation containing the columns iden-
tified by A1, . . . An in T .

(c) Join: (T ’ S) outputs a relation O with A(O) = A(T )YA(S). Where every o
over A(O) is in O if and only if its restrictions are in the original table, that
is, o[A(T )] P T and o[A(S)] P S. In case that A(T ) X A(S) = H, the join
operator is equal to calculating the cross-product.

We now present an extension of the relational algebra, which we will use
in the next subsection to achieve Minimize in PrivTru. This extension enables
data sources to evaluate basic propositions on their local entries and to commu-
nicate the corresponding truth-values without revealing the underlying data. To
enhance readability, we write ( ), to represent optional negations. As a result,
the following ( ) are also evaluated as negation in the given context.

Definition 2 (Relational Algebra with Propositional Projections). The
relational algebra with propositional projections (RAPP) consists of the three
primitive operators of the relational algebra, where the projection operator is
replaced by the following: π(A1,...An)(T ) outputs a new relation containing the
columns identified by A1, . . . An in T . Additionally, any Ai can have the form
p :

Ž

i( )γi, where p is any string and all γi are literals of the form true,
false, AθB or Aθc, with A,B P A(T ), c P D(A) and θ P t=,ău. In this case,
the resulting relation R = π(A1,...An)(T ) consists of a new column identified
by p, where each tuple in R holds true or false depending on the evaluation
of

Ž

i( )γi on that tuple in T .

For example, Table 1 shows a table of persons with their names, ages, and
income. Using the propositional projections of RAPP, we can query this data to
produce a table that indicates only whether each person is older than 30 (see Ta-
ble 2). This projection is also supported in modern SQL dialects.

Table 1. T

Name Age Income

Alice 30 44k
Bob 33 40k

Carol 50 52k
Eve 42 66k

Table 2. πName, over_30: ageą30T

Name over_30

Alice false
Bob true

Carol true
Eve true
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Calculating Subqueries for Relational Data Exchanges Every data ex-
change compatible with our model must have a strategy to derive subqueries
from the main query. We formally define this problem as follows.

Problem 1 (CalculateSubqueries (CS-Problem))
Input: Query q in the language of relational algebra over relations T1, . . . Ts.
Output: For i = 1, . . . s, subqueries pqi in the language of RAPP over Ti and
a collecting query pq over the relations R1, . . . Rs. So that for every set of
tables T1, . . . Ts, the evaluation of q on T1 . . . Ts is equal to the evaluation
of pq on R1, . . . Rs, where Ri is the result of the evaluation of pqi on Ti.

Every algorithm A that solves Problem 1 can be canonically transferred into
a data exchange, given we have algorithms for evaluating queries in relational
algebra and RAPP. For this, the exchange calculates pq1, . . . pqs from the input
query q (using A) and sends these subqueries to the respective data sources
S1, . . . Ss. Each source evaluates its query on its local data and returns the
results R1, . . . Rs to the exchange. The exchange then evaluates pq over R1, . . . Rs

and sends the result back to the data receiver.
A trivial algorithm to solve Problem 1 is to set pqi := Ti and set pq to q. In

this case, the exchange requests all data from all sources, enabling it to calcu-
late q locally. However, this solution directly contradicts the privacy analysis in
Section 3. It violates Minimize and undermines the spirit of Separate, since
the exchange gains complete knowledge of the data on any query.

To develop a more privacy-friendly solution, we first need to introduce some
theoretical preliminaries. Definition 3 defines a form for expressing queries in
relational algebras, based on the commonly used normal form [1]. Lemma 1 then
presents rewrite rules for these queries.

Definition 3 (Extended Normal Form). A query q in the language rela-
tional algebra is in extended normal form if:

(a) q is in normal form, which means q can be written as q = πβσF (T1 ’ . . . ’

Tk).
(b) F is in conjunctive normal form, meaning it can be written as F :=

Ź

i xi :=
Ź

i

Ž

j( )γi,j, where xi are clauses that are disjunctions of the literals γi,j.
(c) If F is not a trivial tautology (F = true) or trivially not satisfiable (F =

false), then F is satisfiable and not a tautology and every clause x in F is
satisfiable and not a tautology and every literal γ in F is satisfiable and not
a tautology.

Database theory established that every query q can be rewritten in normal
form, and every propositional formula F can be rewritten in conjunctive normal
form [1]. Furthermore, Definition 3(c) can be achieved using rewrite rules and
an algorithm that checks for satisfiability. Consequently, every query q can be
expressed in extended normal form. Definition 3 makes the queries manageable



8 L. Gehring, F. Tschorsch

in our system. Definition 3(c) is particularly useful, as it enables mapping literals
to the tables that determine their values. More precisely, for any set of literals Γ
used in a RAPP query, let T(Γ) be the set of tables T containing A P A(T ), which
is used in a literal γ P Γ. We sometimes omit parentheses when using T. Since we
assume that attributes are unique across all tables and because of Definitions 2
and 3(c), 1 ď T(γ) ď 2 holds for all γ in our scenario.

The following lemma provides useful rewrite rules for propositions and queries,
which we will use to build an algorithm that solves Problem 1.

Lemma 1. For every set of relations R1, . . . Rs, proposition formula F , liter-
als γ, γ1, . . . γm, list of attributes β and i P t1, . . . su:

(a) If F := F 1 ^ (x), where x =
Žm

i=1( i)γi and T(γ1, . . . γm) = tRiu, then
σF (R1 ’ ¨ ¨ ¨ ’ Rn) ” σF 1(R1 ’ ¨ ¨ ¨σx(Ri) ¨ ¨ ¨ ’ Rn).

(b) If F := F 1^( 1)γ1_¨ ¨ ¨_( m)γm and for a subset Γ Ă tγ1, . . . γmu,T(Γ) =
tRiu, then σF (R1 ’ ¨ ¨ ¨ ’ Rn) ” σF 1^(

Ž

γiPtγ1,...γmuzΓ( i)(γi)_p=true)(R1 ’

¨ ¨ ¨πp:
Ž

γjPΓ( j)(γj)Ri ¨ ¨ ¨ ’ Rn).
(c) Let A(Ri, F, β) denote the set of attributes A in β and F , with A P A(Ri),

then πβσF (R1 ’ ¨ ¨ ¨ ’ Rn) ” πβσF (R1 ’ ¨ ¨ ¨πA(Ri,F,β)(Ri) ¨ ¨ ¨ ’ Rn).

We can now introduce Algorithm 1, which is a solution to Problem 1 as
we will prove with Theorem 1. In the algorithm, we treat attribute lists and
propositional formulas as sets. More precisely, for a projection πβ in RAPP, β
is a set of attributes and constructs of the form p : γ. Propositional formulas F
(in conjunctive normal form) are viewed as a set of sets containing literals γ,
where each inner set corresponds to a clause x. The conjunction F is formed by
combining these clauses, while each clause represents a disjunction of its literals.

Theorem 1. Algorithm 1 solves the CS-Problem, for all queries in extended
normal form.

Proof. We can easily see, that Algorithm 1 fulfills the syntactical requirements of
Problem 1. It remains to show that q evaluated on T1, . . . Ts is equal to pq evalu-
ated on R1, . . . Rs, where Ri is the evaluation of pqi on Ti. The proof is structured
into substatements about the algorithm, utilizing Lemma 1. In the following, we
will examine the query Q at different intermediate states of the algorithm. We
assume that Q is constructed from the intermediate values of β, pF, βi, Fi as de-
fined in Statement 1. At the end of the algorithm, Q = pq.
Statement 1. Q is from the form πβσ pF (’

s
i=1 πβi

σFi
(Ti)), making Lemma 1 gen-

erally applicable to it.

This follows directly from Lines 36 and 39, the construction of Q, and the fact
that Ri is the evaluation of πβi

σFi
pqi on Ti.

Statement 2. The foreach-loop in Line 7 preserves equivalence for Q.

Let Q0 be the intermediate query before the start of the foreach-loop and Qk the
intermediate query after the k-th round. We need to show that for k = 1, . . . n,
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Algorithm 1: Query Distribution
Data: Query q = πβσF (T1 ’ . . . ’ Ts) in extended normal form with

F :=
Źn

k=0 xk :=
Źn

k=0

Žnk
j=0( )γk,j .

1 if F = false then
2 return q∅, . . . q∅; // s+ 1 times the empty query q∅

3 pq Ð ∅;
4 pF Ð F ;
5 foreach i P t1, . . . su do
6 pqi Ð ∅; βi Ð ∅; Fi Ð ∅; Γi Ð ∅;
7 foreach x P F do // x is a set representing a clause
8 if |T(x)| = 1 then // Use Lemma 1(a)
9 foreach Ti P tT1, . . . Tsu do

10 if T(x) = tTiu then
11 Fi Ð Fi Y txu;
12 pF Ð pF ztxu;
13 else // Use Lemma 1(b)
14 foreach ( )γ P x do // Consider only literals in x
15 if T(γ) = tTiu then
16 Γi Ð Γi Y t( )γu;
17 foreach i P t1, . . . su do
18 if Γi ‰ ∅ then
19 βi Ð βi Y tpx,i :

Ž

( )γPΓi
(( )γ)u;

20 pxÐ xzΓi Y tpx,i = trueu;
21 pF Ð pF Y tpxu;
22 pF Ð pF ztxu;
23 foreach x P pF do
24 foreach ( )AθB P x do // Literals written as AθB (θ P t=,ąu)
25 tTi, Tju Ð T(AθB);
26 Ai Ð A(Ti)X tA,Bu;
27 Aj Ð A(Tj)X tA,Bu;
28 βi Ð βi YAi;
29 βj Ð βj YAj ;
30 foreach A P β do
31 iÐ ti|A P A(Ti)u;
32 βi Ð βi YA;
33 foreach i P t1, . . . s} do
34 if Fi =H then
35 Fi Ð{{true}};
36 pqi Ð πβiσFi(Ti);
37 if βi =H then
38 pqi Ð q∅;
39 pq Ð πβσ pF (R1 ’ ¨ ¨ ¨ ’ Rs);
40 return pq, pq1, . . . pqs
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it holds that Qk´1 ” Qk. Let k P t1, . . . nu and xk be the clause of the k-th
round. If there is a Ti P tT1, . . . Tsu with T(xk) = tTiu, Lines 8–12 rewrites
Qk´1 to Qk according to Lemma 1 (a). If xk can not be fully evaluated in one
table the code in Lines 13–22 repeatedly rewrites Qk´1 using Lemma 1 (b). In
Line 17 every Γi only holds γ with T(γ) = tTiu. As such the Γi are subsets, as
defined in Lemma 1 (b). The Lines 18–22 only execute the Lemma for each of
the subsets Γi, making Qk equivalent to Qk´1.
Statement 3. The code from Line 23 to Line 32 is preserves equivalence for Q.

This property holds because at Line 23 pF contains only literals γ with |T(γ)| = 2,
as literals with |T(γ)| = 1 are removed in Lines 12 and 22. Consequently, in
Line 30, every βi holds the attributes that pF uses from table Ti (i = 1, . . . s). The
foreach-loop starting at Line 30 ensures that βi = A(Ti, F, β)YPi where A(Ti, F, β)
is as defined in Lemma 1 (c) and Pi are values held βi before Line 23. Since for
projections πAπB can be replaced by πAYB for every pair of sets A,B, State-
ment 3 follows by using Lemma 1 (c) for all i P t1, . . . su.

The theorem follows from Statements 1 to 3.

5 Analysis of Information Leakage

In this section, we quantify the information leakage incurred by a central ex-
change when solving an instance of Problem 1. We show that Algorithm 1 min-
imizes leakage, regardless of the exchange’s prior knowledge.

To measure leakage, we assess the probability of the data exchange correctly
reconstructing the full tables T1, . . . Ts based on R1 = pq1[T1], . . . Rs = pqs[Ts]. We
consider Ti as a set of tuples over the cross-product of its attribute domains,
D(Ti) :=

Ś

APA(Ti)
D(A), disregarding row order. The exchange’s assumptions

about Ti are modeled by the probability measure pi, sampling from all possi-
ble tables T̃ P D(Ti)

2. We consider only discrete pi, where pi(T̃ ) ą 0 holds for
a finite number of T̃ , reflecting real-world scenarios where attribute domains
are naturally finite. A relational exchange updates its assumptions for Ti upon
receiving a result Ri. The updated assumptions are modeled by piRi

. To deter-
mine the optimal solution for Problem 1, we evaluate the deviation of piRi

for
all i P t1, . . . su from correctly guessing Ti, where Ri is the (implicit) output of
a solution.

To quantify the difference between two probabilities p and q, we use the
Kullback-Leibler Divergence [11].

Definition 4 (Discrete Kullback-Leibler Divergence [5]). For two dis-
crete probability measures p and q with sample set X, where q(x) = 0 implies
p(x) = 0, the Kullback-Leibler Divergence of p and q (with 0 log(0) := 0) is
defined as:

D(p||q) =
ÿ

xPX

p(x) log p(x)

q(x)
.



PrivTru: A Privacy-by-Design Data Trustee Minimizing Information Leakage 11

For our case, we calculate the divergence between piRi
and piTi

, where piTi
fully

reveals Ti. Specifically, piTi
(Ti) = 1 and piTi

(T̃ ) = 0 for all T̃ P D(Ti)
2ztTiu. From

D(piTi
||piRi

) =
ÿ

T̃PD(Ti)2

piTi
(T̃ ) log

(
piTi

(T̃ )

piRi
(T̃ )

)
= log

(
piRi

(Ti)
´1
)

(1)

the divergence depends only on the value of piRi
at Ti.

Calculating pi
Ri

Intuitively, piRi
should correspond to the initial probability pi

under the condition that Ri is the result of the evaluation of pqi. However, us-
ing plain conditional probability pi(X|Ri) is not feasible. This is because Ri

is not guaranteed to be an element of D(Ti)
2, as pqi might utilize projections.

Nonetheless, the information gained from Ri can be used to minimize the set of
possible candidates T̃ P D(Ti). Since Ri is queried from Ti, all entries in Ri must
have exactly one compatible entry in T̃ . For compatibility, two conditions must
be satisfied: (1) For all attributes of Ri that do not result from propositional
projections, compatible entries must have the same values projected on these at-
tributes in T̃ . (2) For all columns originating from propositional projections, the
truth-value in that entry must match the evaluation of that entry in T̃ . Formally,
we define the possible candidates for Ti given Ri as:

Ci(Ri) = tT̃ P D(Ti)
2|D injective m : Ri ãÑ T̃ ,

@x P Ri :πA(Ri)XA(Ti)x = πA(Ri)XA(Ti)m(x)^

@p :
ł

i

(( )γi) P A(Ri) : πp(x) =
ł

i

( )γi[m(x)]u.
(2)

This allows us to define piRi
as the probability of pi under the condition Ci(Ri):

piRi
(X) := pi(X |Ci(Ri)) =

pi(X X Ci(Ri))

pi(Ci(Ri))
(3)

Note that if Ri is part of a solution to Problem 1, where Ti is part of the input,
then Ti P p

i(Ci(Ri)). As such, pi(Ci(Ri)) ‰ 0 if pi(Ti) ą 0.

Solving the CS-Problem with Minimal Information Leakage We can
now prove that Algorithm 1 is the optimal solution for Problem 1.

Theorem 2. Let q = πβσF (’ Ti) be a query in RAPP in extended normal form
over T1, . . . Ts. Let pq, pq1, . . . pqs with R1, . . . Rs be the solution of Problem 1 given q
produced by Algorithm 1. Let q̃, q̃1, . . . q̃s with R̃1, . . . R̃s be any other solution
of Problem 1 given q. For any set of discrete probability measures p1, . . . ps

over D(T1)
2, . . .D(Ts)

2 respectively with pi(Ti) ą 0 for any i P t1, . . . su:

D(piTi
||piRi

) ě D(piTi
||pi

R̃i
)



12 L. Gehring, F. Tschorsch

Proof. Let i P t1, . . . su. With Ti P Ci(R̃i), Eqs. (1) and (3), and the additive
property of probability measures, the following holds:
D(piTi

||piRi
) ě D(piTi

||pi
R̃i
)ô pi(Ci(Ri)) ě pi(Ci(R̃i))ô

ř

T̃PCi(Ri)
pi(T̃ ) ě

ř

T̃PCi(R̃i)
pi(T̃ ).

Because of this, it suffices to show that Ci(Ri) Ě Ci(R̃i). We will show this
by proving four substatements.
Statement 1. A(Ri)X A(Ti) Ď A(R̃i)X A(Ti)

Let A P A(Ri)X A(Ti). By definition of Ri = πβiσFi(Ti), it follows that A P βi.
From the construction of βi in Lines 30–32 of Algorithm 1, it holds that A P β.
Since q(’ Ti) = q̃(’ Ri) = q̃(’ q̃i(Ti)), it follows that A P A(R̃i)X A(Ti).
Statement 2. For every x P F with tTi, Tju Ď T(x), (j ‰ i) and every e P R̃i

there must exist a projection πp such that πpe = true iff
Ž

( )γPΓi
( )γ(e) =

true, where Γi = t( )γ P x |T(x) = tTiuu. Furthermore, πpYA(R̃i)
R̃i is also a

solution to Problem 1.

This statement directly follows from the fact that R̃i is part of a solution to
Problem 1 for q. Since x depends on values from at least Ti and Tj , R̃i must
indicate, for each of its entries e, whether that entry sets x to true. By definition,
this is the case if

Ž

( )γPΓi
( )γ(e) is true.

Statement 3. For all T̃ P Ci(R̃i), there exists β and F such that πβσF (T̃ ) = R̃i.

Let β = (A(R̃i) X A(T̃ )) Y tp : ( )γ|p : ( )γ P A(R̃i)u and F be defined as
F (e) = true iff e P Img(m̃). Here, Img(m̃) represents the image of the function
m : R̃i ãÑ T̃ , as defined in eq. (2).
Statement 4. Let Mi : Ri ãÑ Ti and M̃i : R̃i ãÑ Ti be the functions for Ti P

Ci(Ri)X Ci(R̃i) in eq. (2). Then, Img(Mi) Ď Img(M̃i).

We prove this statement by contradiction. Let e P Img(Mi)zImg(M̃i). Let β1,
F 1, β̃i, and F̃ be such that πβ1σF 1(Ti) = Ri and πβ̃i

σF̃ (Ti) = R̃i (as shown in
Statement 3). By construction, F 1(e) = true and F̃ (e) = false. Since Ri and R̃i

are part of solutions of Problem 1, it holds that q(’ Ti) = pq(’ Ri) = q̃(’ R̃i).
Therefore, e cannot be a part of the evaluation of q(’ Ti). More precisely,
for every t P q(’ Ti) with πA(e)t = e: F (t) = false. Since this needs to hold
independently of the other Tj(j ‰ i), there exists a clause x P F with T(x) = tTiu

and x(e) = false. Let x be such a clause. We now look at the construction of
Ri in Algorithm 1. By Line 11, x P Fi. Hence, e R Ri. This is a contradiction
with F 1(e) = true.

Given the four statements, we can show that Ci(Ri) Ď Ci(R̃i). Let T̃ P

Ci(R̃i) with m̃ : R̃i ãÑ T̃ and Mi, M̃i as described in Statement 4. We need to
show that there exists an m : Ri ãÑ T̃ satisfying the properties in Eq. (2). We
argue that m : x ÞÑ m̃(M̃´1

i (Mi(x))) is such a function. The function is well-
defined due to Statement 4. Its domain is T̃ , and it is injective as a concatenation
of injective functions. The expression πA(Ri)XA(Ti)x = πA(Ri)XA(Ti)m(x) is only a
problem when mapping Mi(x) to M̃´1

i (Mi(x)). However, since M̃´1
i satisfies the

required property, it holds that πA(R̃i)XA(Ti)
M̃´1

i (Mi(x)) = πA(R̃i)XA(Ti)
Mi(x),
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and the property follows from Statement 1. From the construction of Ri in
Algorithm 1, we know that Ri only has propositional projections if there exists
a clause x P F with tTi, Tju Ď T(x), (j ‰ i), and all have the form px,i :
Ž

( )γPΓi
( )γ. To fulfill the second property of Eq. (2), we assume WLOG that

R̃i has attributes p̃x,i for all px,i which are true iff the disjunction of px,i above
is true (as described in Statement 2). With this, m satisfies the second property
of Eq. (2), because m̃ satisfies it.

6 Related Work

The concept of data trustees aligns with models used in distributed database
systems, where data is managed across multiple sources. Unlike distributed
databases, which often replicate data across nodes, data trustees typically man-
age unique data from different sources. An overview of distributed database
principles can be found in [14].

To minimize information leakage, we push query execution as close to the
data sources as possible. This approach is different to the late materialization
technique used in database management systems to enhance performance [6].
Despite these advantages, PrivTru currently does not support non-relational
data formats, which limits its applicability in certain cases. For example, sharing
medical data such as MRI images from multiple sources poses challenges, as
discussed by Kolain and Malavi [10]. Extracting only the minimum required
information from such detailed data remains a significant challenge.

Beyond the privacy strategies implemented in our work, systems can be eval-
uated using frameworks such as the LINDUNN [4] or the privacy protection
goals proposed in [8]. We believe PrivTru fulfills their requirements as well.

7 Conclusion

In this paper, we introduced PrivTru, a privacy-by-design data trustee, which
facilitates data exchange from data sources to data receivers. We contributed
to the ongoing discussion on whether data trustees should act as data stew-
ards (storing data) or as data exchanges (relaying information). We argue that
data exchanges are preferable, as they comply with the Separate design strat-
egy while also adhering to the principles of Hide, Minimize, and Aggregate.
PrivTru exemplifies an instantiation of data exchanges, achieving Minimize by
ensuring that each data source provides only the minimum data necessary to
answer a query. We proved that this property holds regardless of the exchange’s
prior knowledge. While we did not explore Aggregate in detail, it can be
achieved by allowing queries with aggregation functions to be evaluated at the
data sources, as done with other operations in PrivTru. In summary, our work
establishes a foundation for designing data trustees that balance data utility with
robust privacy protection, contributing to a more trustworthy data economy.
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