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Abstract. X-Ray Fluorescence (XRF) is an analytical technique that
furnishes complex elemental spectra for element identification. Its non-
invasiveness and portable nature have given the technique a broad appli-
cation across various fields, each of which shows an idiosyncratic spectra
type, resulting in a landscape where full automation of XRF analysis is
challenging for Artificial Intelligence (AI) techniques.
In this contribution, we make use of recent results and hypothesis on the
performance and interpretability of AI networks (superposition theory)
to explore the prospects of using AI techniques to overcome the bot-
tleneck of XRF automation analysis. In particular, we suggest that an
autoencoder of XRF spectra whose (monosemantic) latent space dimen-
sions match the number of elemental lines present in the input should
have improved performance and interpretability.
In addition, we will discuss some of the implications and difficulties in
this process, as well as some very preliminary results in this direction.
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1 Introduction

X-Ray Fluorescence (XRF) exploits the distinct radiation signatures of elements
and it is widely utilised across various fields due to its advantages: portability,
non-invasiveness, cost-effectiveness, and powerful analytical capabilities [1], [2].

Although this radiation process is universal at the atomic level, tracing this
universality in the final measured XRF spectra can be extremely challenging.
This difficulty stems from the complexity of accounting for all the characteristics
involved in the wide variability of XRF spectra, which reflect different configu-
rations of material states (liquid, gas, or solid), chemical compositions, bonding,
and macroscopic preparations. In very complex configurations, the interactions
among these parameters can make the task of tracing back the universal prop-
erties exceptionally difficult.
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Given the universality of the radiation and the challenges of its traceability,
a natural question arises: Is it possible to develop an Artificial Intelligence (AI)
algorithm that can exploit the commonalities in the radiation process and auto-
matically learn the corresponding pathways for traceability, thereby automating
the analysis process?

In principle, the answer is affirmative, making this an interesting and relevant
prospect, as mentioned in [3]. Nevertheless, several other questions arise: What
will the architecture and training of such an algorithm entail? What data will it
require? How universal can this algorithm be? What will be the main limiting
factors, risks, and biases? Why, and under what circumstances might it fail?

In this contribution, we will attempt to address and discuss these questions.
Based on new results and recent hypotheses on interpretability [4], we argue that
autoencoding XRF spectra, where the latent space dimensions are constrained
to be spanned by the elemental lines basis, may achieve the desired outcomes.
However, a dedicated dataset (likely synthetic) and several learning methods,
such as domain adaptation [5], should be incorporated into the pipeline.

Finally, we present some preliminary results in this direction by training only
the encoder part of this architecture.

1.1 A X-Ray Fluorescence Primer

Just as atomic nuclei have distinctive features that differentiate elements, so do
their electronic orbitals, which are substantially more accessible for observation
due to their energetic properties [1],[2].

The XRF technique leverages these electronic orbital properties for elemen-
tal analysis. It involves the stimulated emission of characteristic photons of fixed
wavelength (Fig.1), resulting from the excitation of inner electrons in the tar-
geted atoms by external X-ray irradiation. These emitted photons are used to
identify and, in some circumstances, quantify the elements present in the sample.

This process does not require sample pretreatment, and can be performed
with a portable, cost-effective device. Furthermore, it is non-invasive. These fea-
tures have led to XRF being extensively utilised across various fields, including
astrophysics [6], material science [7], environmental monitoring [8],[9],[10] cul-
tural heritage [11], [12], and industrial quality control [13] .

1.2 AI Challenges on XRF Analysis

Despite the fact that XRF emission lines (characterising each element) are uni-
versal (a restricted set of these lines - up to 30 KeV - can be seen at Fig. 1, cor-
responding to the set of elements shown in Fig. 2), the final form of the spectra
detected by a XRF apparatus depends on the complex physics of photon-matter
interactions. To fully understand and characterise such process, a multi-faceted
approach is necessary. This involves studying the primary excitation source, the
sample’s composition, and the geometry of the detection system, among other
factors. In more detail, all the photon-matter interactions should be known a
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Fig. 1. Distribution of selected lines in energy. The X-axis represents energy, whereas
the Y-axis has only labelling information, corresponding to the orbital of the emission
line with IUPAC (International Union of Pure and Applied Chemistry) notation. One
can view XRF spectra as a function of this set of lines, and the goal for automatic
element detection will be to establish a bidirectional relation between the ensemble
basis and observed XRF spectra.

priori and accounted for, including absorption, scattering, and fluorescence pa-
rameters. This complex scheme is deeply influenced by sample properties such as
density, composition, physical and chemical states, in addition to the geometric
and matrix effects4 (see [14], and references therein).

One of the consequences of this photon-matter interaction is the significant
signal attenuation suffered by emission fluorescence lines below 5 KeV5, making
it challenging to analyse low atomic number elements (Z < 10÷ 12) with XRF
technique.

Therefore, we are in a regime where, even though the final analysis object
comes from a universal known common basis, the traceability and accountability
of such are extremely difficult, due to the multiple processes involved.

4 I.e., the influence (excitation/absroption) of one element XRF spectra over another
one.

5 The reader may note in Fig. 1 that this is the most dense line region, making it an
extremely relevant zone.
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2 Methods

2.1 Related works

Given the situation discussed in the previous section, the majority of Machine
Learning (ML) and AI techniques applied on XRF spectra have reasonably fo-
cused on trying to model and describe them for concrete, limited purposes. These
techniques include: Dimensionality Reduction [15], [16], [17], Classification [18],
[19],[20], Autoencoding [21],[22], [23], Denoising [24], Superresolution [25], etc.
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Fig. 2. Colour map for
the elements in fig.1.

Despite the advancement these techniques repre-
sent and the benefits they provide, the work is still
very limited due to many factors, e.g., lower statis-
tics, the incorporation of idiosyncratic features to the
AI algorithms (in order to characterise a particular
field or phenomenon), restricting their application to
other scenarios, even though some of them are al-
ready incorporating fundamental parameters in their
approaches (see [21]). As pointed out in [3]: “[...] mod-
els are only relevant within the minimum and maxi-
mum observed values during training”6, meaning that
only data within the training distribution set char-
acteristics are correctly elaborated by the ML algo-
rithms.

With this perspective, the aforementioned spe-
cialised scenario is highly comprehensible, since both
dedicated algorithms and dataset for these tasks are
presumably extremely challenging to elaborate.

2.2 Proposed AI Architectures

To develop a comprehensive algorithm capable of overcoming these challenges,
we must consider a few fundamental questions: What form will the artificial
neural network (ANN ) architecture take? Is there a simple ANN architecture
that can still provide significant improvements?

It is clear that, if some physical parameters must be included, we should
have a hybrid model combining them with ML techniques. Since one of our
goals is to separate the XRF inputs into its constituents, sparse autoencoder
are ideal candidates for the task [4]. Furthermore, in light of recent hypothesis
[4], making the latent space of such autoencoder match the dimensions of the
desired features can have great impact in terms of interpretability (which is
highly desirable in such a complex algorithm). That is, having the latent space
match basic emission element lines basis will theoretically allow neurons of the
last layer of the encoder network to be superposition-free, that is monosemantic

6 Even with techniques such as domain adaptation, that extend this applicability
range.
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(i.e., to activate only when the line is present). In other words, we hypothesise
that emission elemental lines constitute an overcomplete basis for encoding XRF
spectra that can be at the same time a privileged basis[4] (i.e. features align with
neurons).

It is clear that the elements of such basis are not linear independent, since
lines from the same elements are (highly) correlated. The choice of individual
emission lines, instead of the element presence, lies in a presumption of simplicity
and robustness of the former7.

Ideally, in this scenario, the complex photon-matter interactions would be
modelled in the outer encoder/decoder layers in such a way that different di-
rections in their activation space will correspond to different matter and exper-
imental configurations. Therefore, in principle, one could obtain the equivalent
spectra for a certain elemental composition just by changing direction in the
activation space.

3 Results

Table 1. Emission Lines Autoencoder Performance On Synthetic XRF Spectra
Dataset. Pearson represents its correlation coefficient between predictions and true
labels, and Guess-R denotes the guess ratio.

AI Performance Metrics for Synthetic Spectra

ANN Architecture Pearson Sensitivity Specificity Guess-R Precision

MLP Encoder 0.76 0.65 0.99 0.95 0.92

3.1 Preliminary Results

As a toy model, we trained a classifier to serve as the encoder part of such
an architecture. The model is a two layered Multi-Layer Perceptron (MLP),
classifying the 556 emission elemental lines (Fig. 1) of the selected elements8 in
the 0÷ 30 KeV energetic interval. The hidden layer size9 was determined with a
Bayesian hyperparameter optimisation algorithm (using Optuna [26]), resulting
in 900 hidden nodes10. The loss function was chosen to be the Kullback-Leibler
Divergence (KLD) with respect to the predicted and true emission elemental
lines.
7 Element presence will lie in a more internal layer with respect to element emis-
sion lines. Nevertheless, introducing a deeper, learnable encoding layer for element
presence and concentration may give the desired classification outcome as well.

8 Most frequent elements present on Cultural Heritage Analysis.
9 Along with the following parameters: learning rate, gradient optimiser, dropout
value, activation function and batch size.

10 Model class and weights are available upon request at https://baltig.infn.it/fgarciaa/
multiel spectra app and soon will be included in the python package.

https://baltig.infn.it/fgarciaa/multiel_spectra_app
https://baltig.infn.it/fgarciaa/multiel_spectra_app
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The dataset used for training consists in 1.2 Million synthetic XRF spec-
tra generated with the Multiel spectra python package11. Using a 70% for
training and the rest for testing.

The performance of the model is reported in Table 1.

4 Discussion

X-ray Fluorescence (XRF) spectra are widely variable, complex objects reflect-
ing the intricate underlying photon-matter interactions of atoms under X-ray
irradiation. They can be seen as composed of a universal basis changed and
distorted through several transformations.

As in many other fields, the existing input variability has resulted in a great
number of specific AI algorithms focusing on partial aspects, with restricted
applicability. We presented possible approaches and architectures that could have
a wider range of applicability, in light of new interpretable hypothesis. Only the
desired architecture and functionality are discussed, i.e., a sparse autoencoder
with emission lines corresponding to the latent space basis.

Finally, we show the performance of a toy model of only the encoder part of
such an architecture on an synthetic dataset. We have shown that even though
the network can have some bias towards present lines (high specificity with
respect to the sensitivity), the task is feasible. Yet, more work is needed in order
to further progress in the proposed path.
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